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1. INTRODUCTION

Consider the problem

min  f(x;.X9.Xg.....%,) (1)

subject to  g;(x.X9.%3.....X,) <0 1=12....m; (2)
<« AP < . < e ')

(i Sx;85u; [ | 187 O (3)

where the objective function f(x) and the constraint left-hand sides g, are assumed to

he continuous and twice differentiable on the region defined by (3). Let

g o e ‘ 0= | - ot .
N = 1 = (X X0 o Xa )l @) s 0 =L .M € 2 X S0, = 12,1 (4)

o

be the feasible region and /7 = min/(x). Globally minimizing f(x) subject to the

]'- n,s

constraints x € S may be defined as finding x € S such that

where ¢ 1s a given small positive nuiber.,

Let us call this problem P. Several algorithims using interval arithietic have
been designed for this general problem. Fujii, Ichida, and Ozasa [1| propose to solve it
by first converting all inequality constraints into equality constraints and mtroducing
Lagrange multipliers to reduce the problem to an unconstrained one, then applving
interval Newton's method to locate the globally optinal solution. A more sophisticated
algorithm 1s due to Hansen |2], Hansen and Sengupta |3] and Sengupta |[10]. They
apply hine searches to obtain a good incumbent solution, linearization of constraints,
interval Newton's methods to solve a system of interval linearized inequalities and
finally monotonicity tests and convexity tests to find the globally optimal solution.
Other algorithims are described in Chapter 4 of Ratschek and Rokne 9],

We propose in this paper a new algorithm which uses the cord-sltope form of
T'aylor's expansion, defined below, and interval arithmetic. The basic idea 1s to find
Linear functions m one variable that bound the function fix) and f'(x) respectively.
Uhose Iimear functions can be used to eliminate parts of the box that cannot contain
any plobally optimal solution. Similar bounding linear functions are found for the
constraint functions g, (x) and used to eliminate parts of the box that are not feasible.

1'his s done by applving various tests which consist in checking if a sufficient condition
tor some proposition about the problem (or the current subproblem) to hold is satisfied
or not, and making use of this proposition in the former case. 'The tests can be classified
as follows (Hansen, Jaumard, and Lu [G]). A direct test is such that the information
provided when the sufficient condition is satisfied suffices to solve the current

subproblem. This 1s the case when it can be shown: (1) that a known solution x" is the
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clobally optimal solution of the current subproblem (direct solution test); (i1) that the
subproblem has no solution better than the incumbent (direct optimality test); (iii) that
the subproblem has no feasible solution (direct feasibility test). A condilional lesl is
such that when the sufficient condition holds, part of the feasible domain of the current
subproblem can be eliminated.

T'he proposed algorithm can be considered as an extension of the algorithin for
elobal minmization of univariate functions given in |4,

This paper i1s organized as follows: Background on interval arithmetic is
recalled In Section 2. Cord-slope forms and various tests used in the algorithim are
mtroduced 1 Section 3. The algorithm itself is presented in Section 4. An extension of
the algorithm designed to locate all globally optimal solutions is described in Section 5.
Computational results are reported in Section 6.

2. INTERVAL ARITHMETIC

Interval arithmetic was introduced by Moore |7 as a basic tool for control of
numerical errors in machine computations. Instead of approxunating a real value x by a
machine representable number, as is done in real arithmetic, a pair of machine
representable numbers 1s used representing an interval in which x hes. Arithmetic
operations for imtervals are defined as follows:

la.b|+|c.d|=|la+c.b+d]; (6)
la.b|-|c.d|=|la-d.b-c¢]|: (7)
la.b|-|c.d| = |mintac.ad.be.bd) .maxiac.ad. be.bd) | ; (8)
la.b] |c.d]=Immia c.a d.b ¢.b di.maxta c.a d.b ¢c.b d}]. (9)

These definitions are readily used to compute intervals containing the range of
a rational function f(x) for x belonging to an interval X. The simplest procedure 1s
nalural extenston of f(x). 1t consists in replacing ecach occurrence of variable x by the
mterval X and then applying the rules of interval arithmetic. Special operations for
hounding trigonometric and transcendental functions allow to extend this procedure to
analvtical tunctions. |

The bounds so obtained are not always precise, but often better ones can be
obtained by exploiting Taylor's expansion, see Ratschek and Rokne [8] tor a thorough
survey and discussion.

While interval arithmetic was not initially designed for global optimization, it
was soon understood that 1t could be effectively used to solve such problems. The many
efforts made mm that direction are summarized in the recent book of Ratschek and
Rokne [9].
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3. CORD-SLOPE FORMS OF TAYLOR'S EXPANSION AND
THEIR USE IN GLOBAL OPTIMIZATION

3.1. Cord-slope Forms of Taylor's Expansion

Let X" denote the initial box. As we proceed with the algorithm, we will
dynamically subdivide this box mnto subboxes. Let X = X, x X, «...x X, be the current

subbox (initially X = X") and ¢ = (¢.¢y.....c,) the middle point of this subbox. Take

any 7 € 11.2.....n} ; using Taylor's expansion, we have:

= [(€).CoaeeniCy )+ [1(E] X0 0eee Xy N Xy —Cp)
+ [3(C) .60 X ces Xy N Xy —C5) + o4 [ (€1 ConeeenEy X, —Cp)
(lor some ¢, € X|.{s € Xy.....&, € X)) (10)
= r,l-I ()= lq,l*_(x) (11)
where
/
rr(x) = [(¢)+ S /(¢ it B : L) = =X
f' . — ¢ s k(('l""'{f l"'."f"lf‘] ..... 'X'H)? (1/'(«1)"‘[’((] (I | "‘f"li‘.'] ..... .1”)
R= 1 Ry
The second-order Taylor's expansion gives: -
ri 1 T
[(x)=[(c)+ > [rlenxy — ¢, )+ (2 -C)H(x.c.np)x -c¢) (12)

ko &
where x-¢=(x) - ¢).xy = ¢y.....x, —¢,) and the clements of H(x.c.) = (h;j(x.c.n)) are

defined as:

J

o

OC L AT (C) €0 <o di ol s on ) Wis 7 oule=1.0n).

|
|
I )
= lt ~Z g = O P \ . . h Wi . . 3 ' "
fjj =207 f CNGOX jC)Counn € A5 X panens 75 M | o T R Tl oo« g Tl i Tt L

) otherwise:

where 1, € X, . Grouping the terms that contain the factor (x; —¢;) together, we have
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. . 4 0 1
f(x)=[f(c)+ E (X =) fr(e) +;hkk(x;, =)

L" [.’"-'! e
/ Lol
1 E | Z h;‘,(l;‘ = C}, )(.\., — (,'_!)
R=lR=rr=10 =

g 1 /"
+(.l',' = )(f,;((f)-l-':—h,';(x,' "(,',*)'i- Z h”(‘l‘.', -C_,' )).
2 jN i

= r,.'i'_l(.l‘)+(.1}- = )qi(.l') (13)

where

0 - Mg i " 1
rE(x) =)+ X (xp-cp)fee) +;hkl.-(xk = Cr))

f:' t .!l. o | -

"
+ S SNh

24 };j('rk' =G .l'J - ¢ )
II. l.;t'-' f’ l} -r'f.

) ’ 1 !
([}-" (X) = f:(() + ;'h'i:'( Xp—¢)+ | Z _h'fil (IJ —Cj)
= J=1.J=

Both (11) and (13) express the function f(x) in the form:

f(x)=rx)+(x; —¢;)q(x). (14)

We will call the expression (14) a cord-slope form of f(x), and in particular call (11) the

[trst order cord-slope form of f(x) and (13) the second order cord-slope form of f(x) .

Similarly we have the first order cord-slope form of f'(x) :

/
= A A e e R A (B 1 o I s I s B 0, e e )
=1
L b L Ve e (15)
= f,f; LX) (XL = € .)q/';_ (X) .

and the first and second order cord-slope forms of g;(x) for i =1.2....m .

3.2. Use of the Cord-slope Forms in Global Optimization

The cord-slope forms can be readily used to eliminate parts of the current
subbox that cannot contain the global minimum. In favorable cases these parts will 1n
fact be the whol » current subbox. T'he basic results are the following:

Theorem 1. Suppose f(x) can be expressed in a cord-slope [orm as:

[(x) = r(x)+(x; —¢;)q(x) (16)
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over the box X. Let |r.r, | = r(X) be an inclusion interval of r(x) over X and |q;.q, | be

an inclusiwon inlerval of ¢g(x) over X, then /bf' any /3..176(1 number [, we have:

Casel g, 20,

/'—!‘;

0 if [ =1 20, f(x)> [ [forall x such thatl x; € X;

.+x| tf g, >0,

:Y,: MG+

q
T ) o e e _ /.—!‘} q
) if - <0 f(x)> [ forall x such thal x; € X; = X; (¢ + .+ 7|
Y
: = . =l
i) [ —r, =0 f(x)< [ forall x such that x; € X; =X; n|-%.¢ + )
(!H
=

)i /_'— r, < 0. [(x)< /-: for all x such thatl x; € X; = X; n|—-2. ¢; +

i -

Case 2 ¢, =,

/._"f

i) i [=r, 20, x)> [ forall x such that x; € X; = X; n|-%. ¢ + Iz
. qu
+ Wige. 3% . TR ). S r ) /— ‘f i
i) if [ =r, <O then [(x) = [ forall x such thal x; € X; = X; n|-%.¢; + ).
{,
s : . - o : i — ..- - - - ' . / _"H :
) if [ =r, 20 fixr< [ for all x such that x; € X; = X; n(¢; + ]
{
, = : = 7 ; — 1y e
whif [-r, 0. [(x)< [ forall x; € X; =X; n(¢; + 4| if q, <05
Y
Case 3 < q, .
| = Y =l g S
Lol = =)L) > | for all x such that XS x\,‘ — X (@ {1 5 S ).:
b (1H ({"
= \ Tor » ’ /-_ru f."‘f'“
v)f [ =r, z0.then [(x)< [ forall x such thal x; € X; = X; n(¢; + JCH ).
Y g

This theorem can be proved in a straightforward way. For example, i 7) of

N7 ’ /.._,";

Case 1, when v = X, = X, ni¢; +—. + 2| we have:
(;

[(X)=rix)+(x; —¢ )gix)
Al
1+

(,
=/

Betore we state all the tests using the cord-slope form, we define first what we
call a strctly feasible subbox. We say that a subbox X is strictly feasible, if we have
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found that the upper bounds (g;), on the constraint functions g,;(X) are negative for

]

all 7€11.2.....m! and all the boundaries of the current subbox differ from the

’ . . »()
bhoundaries of the original box X .

Theorcim 1 can be applied to find the global optimum of f(x) in the following

Ways:

i) use the cord-slope forms of f(x) and take / to be the incumbent optimal
value: X, can be eliminated from X, since for all ¥ such that x; = X, the
function value is larger than /' :

1) 1f the current subbox X is strictly feasible, use the cord-slope forms of f(x)

and take /; to be zero, both X, and X; can be chiiminated from X, since the

(Ti

derivative fi.(x) cannot be zero for all x such that x; ¢ X, or x; € X ;

) finally use the cord-slope forms of the left hand side constraint functions g, ()

-

and ta  g; to be zero, X; can be elininated from X, since all x such that

I

x; € X; are infeasible.

!
Now we state all the tests using the cord-slope form specifically as follows:

1. Direct Optimality Test. Compute the values f(¢), 1=12....n and the

Inchasionsantervalss = r(enen nie: Dy Xy X s s = s (G eps e 0y .

X;...X,), y=12...., 1=12....n. Compute the range I 1= 10,
1l . - IR . C . 1
I/!' -/u =/(C|-(.'-_,3.....C”l +Zl‘:"(f\,-'—‘«'r"’ and |/1_-/;I=/(U}+ .-__.'//:(C)‘*-:;Hkk

1=] ko)

noR
r r . . . . -z .
(1\;‘. = )(-“\k =L Z ZH”(X, =={ i )(;Xj _C,f) G = Illil,\L:/,“J,-] dry. It
= 19)=a]

[r > [op — ¢, the entive box can be eliminated from further consideration.

Proof: Because of (10) and (12), f, 1s a lower bound of f(x) on box X.
Lhevefore it /; > [, —«, [(x)> [, —¢ for all x in X, so the entire box can be

climimated.

2. Direct Feasibility Test. Apply the same procedure (with [/ replaced by g; ) as
in 1 to obtain an inclusion interval [(g;),.(g;),| for cach constraint left-hand

side g; . If (g;), > 0 for some ¢, the entire box X can be elininated.

o
Proof: mmilarly as in 1, (g,), 1s a lower bound of g.(x) on X. Therefore if
9 y =14 &
(£;); > U, there is no feasible point in the box X| so it can be eliminated from

further consideration.
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3. Monotonicity Tests (for Strictly Feasible Subboxes). If X is strictly
feasible, for all i € {1.2.....n}, find the inclusion intervals [(f)),.(f)),| on the

derivatives f/(x).If (f); >0 or (f)), <0, the subbox X can be eliminated.
Proof: If (f/), >0 or (f"), <0, the function is monotonous on this subbox
with respect to x;, since the subbox is strictly feasible, it cannot contain any
olobally optimal solution, so it can be deleted.

4. First Conditional Optimality Test (for All Subboxes). For all / in

11.2.....n¢, compute the inclusion intervals, l(r,'-)f.l(r,'- [ I(q}.);.(q,'-),,l,

I rf ), .lr,i"’ ),, | and |(qf ), .(q;‘f ), |, and let [ = [ope — ¢ - Then the subinterval X
as defined in Theorem 1 can be eliminated from X, .
Proof: Because of Theorem 1, for all x such x; e Xd,;. [(x)> [ = [ont= 55
therefore X can be eliminated.

5.. Second Conditional Optimality Test (for Strictly Feasible Subboxes).
If X 1s strictly feasible, for all £ e {1.2.....n!, we can further compute inclusion
intervals |(r,!£ );.(r,': ),,| and |(q}: ),«.(q}; ), |. Let i;' =0 . Both )_(_,- and X; as

defined in Theorem 1 with freplaced by /. can be eliminated from X, .

Proof: Because of Theorem 1, for all x such that x;, € X; or x; € X, [1(x)
cannot be zero, therefore x cannot be a global optimum and can be eliminated.

6. Conditional Feasibility Test. For all ie€12....n), apply the same
procedure as in 4 with / replaced by g; and f replaced by 0, then eliminate
X from X, .

Proof: From Theorem 1, for all x such that x; in X, g;(x) >0, therefore X,

cannot contain any feasible point and can be eliminated.

4. ALGORITHM

Rules of the algorithm are as follows. All steps are performed in sequential
order except when branching takes place.
Step 1. Start with the initial box X" . Let ¢ = (¢;.¢y.....c,) be the middle point of this

subbox, and compute the values f/(c).i=12.....n and the inclusion intervals
AT i f . ) 4] (). 0 () : :
1, —/;(L].Lz.....(., |.JY, ......:Y”), HU =h,j((,'].(..'2.....(,'j‘ |.1Y" ..... X”), J=12£

and t=12...n. Compute the range I/}U*/;:'I = [(X"). |/;cI /ul | =

_ n s n
f(cl €9.....C, ) + ZI‘:'(XP —¢;) and lflelfl = /‘(C)'*' Z (fl:((')"'%'HU‘(X;.J —Cp))
1= k=1
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n k
(Xp —cp)+ 2 ZH,-J-(XP —(;,-)(th; -¢;), let [, =max; Vol 12y Store the pair
i=1)=]

(X".f7) into a list L, initialize x,, =0 and f,, ==;

Step 2. If L is empty, stop; otherwise take the last pair from list L, denote it by
(X.fx), and delete i1t from the list. Let X=X, xX, x---xX, =

=4y g | x[ly ug|x...x[L,.uw,],and ¢ =(¢.¢y.....c,,) be the middle point of X.
If [x > [ope —¢, stop and report x,,, and [, ; otherwise compute f(c), check

if ¢ 1s feasible; if ¢ 1s feasible and /(¢) < [, , update x,,, =¢ and [,,, = [(¢).

Step 3. Apply the Direct Optimality Test described in the previous section. If X is
climinated, return to Step 2.

Step 4. Apply the Direct Feasibility Test. If X is eliminated, return to Step 2.

Step 5. Apply the First Conditional Optimality Test to eliminate part of X; for all

Ao L e b

Step 6. Apply the Conditional Feasibility Test to eliminate part of X, for all

="139 ¥ BT

Step 7. Check 1t the subbox X 1s strictly feasible. If it i1s, apply the Second Conditional
Optunality Test to eliminate part of X; forall 1 =12.....n .

Step 8. If for some ¢, the entire X; has been eliminated, return to Step 2; otherwise
partition the subbox X into subboxes X' X*... X" as described below. For

cach subbox X‘.t=12... .k, let ¢=(¢.cy.....c,) be the middle point and

compute the values f(¢).i=12....n and the inclusion intervals
Y e y [ L = o . L [ s _ ale .
Ifr. —/;’(('l"LZ““*Lf—-]*X;'f"'ﬂXn)r HU —Il,j((,].(,fz......(.j._|.X‘;‘....X,.,), J = I taal

i=12...n. Compute the range [f’.f0]1=/(X")L1fr.11=F(¢.co.....cp)

- , 9 : LA 1
+Zlf}'(kf - ;) and |/fz,/,f]=f((:)+ Z(l;‘.((:)+;HM._(X£,—ck))(X;ﬂ —-¢p)+
1= . k=1 =

n ok
2 ZH;j(Xf —c,-)(Xj- =), let [, = mnx{/}”,f}',/}z} Af [, > /;)pt — ¢, discard Xt -
i-1j=1

otherwise insert the pair (X*.f;) into the list L so that the second member of

all elements in L is in a descending order, return to Step 2.

T'he partitioning step In Step 8 is carried out as follows: suppose that after
elimination, the box X has been reduced to X'. If no gaps are present in all
components of X', let X, be the component of X" with largest width; bipartition X,
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'

mto two and consequently bipartition the box X' mto two subboxes. It gaps are
present in some components in X', take the component such that the total length of
the two largest gaps in this component are the largest and partition the box X
according to the two largest gaps in this component. In this way, we will only divide
one component and generate at most three subboxes at one iteration, thus preventing

ceneration of too many small subboxes.

1'o assure finite convergence, the following rule is also applied on the partition
step. We define the pth parent of a subbox X (where p 1s an integer greater than or
is called the pth parent of subbox X 1if X 1s

4

equal to one) as follows: a subbox .
obtained from X' after applying p iterations of the tests. At each iteration, the largest
width wiX) of e subbox X under consideration is compared with the width w(X’) of

its pth parent X it w(X) = —_)-u:u\ ), we bipartition X along the direction parallel to

—

which A has an edge of maximum length into two subboxes.

- 5. CONVERGENCE OF THE ALGORITHM

Assume that the functions f(x) and g;(x), thewr first and second derivatives
are all bounded. Also assume that the problem is feasible and has only finitely many
local minuma. At iteration £, let N TNy be the intervals in the hist L and
Yo Yo Y, be the corresponding ranges for the function values obtained 1n the

algorithm. Let X7 =) X} ; be the union of all the boxes left and X, . be the last

o -

hox i the list L that contains at least one feasible point, then:

Lemma 1. /7 ¢ Yy, forallk.

Proof: As proved in Section 3, none of the tests remove the globally optimal solution

. i

v from consideration, therefore /7 = min [(x) where S 1s the feasible set. Let
X X" S

Yin: =|Yer V| and x € Xy, be a feasible point, we have /7 < [(x)<y,, . Since

there 1s no fo sible point in X, ; when j >n;, and the lower endpoints of

Yo oo =L1..ony are i a descending ovder, v, £ min [f(x)=/". Therefore
U -

[T E | Vi Vi | = Y}J.”;,» '

Lemma 2. lim w(X, , )=0
,‘. ¥ VL)

> "o 1 T o Al 3 3 ) - L . A 3 ! O i . . . .
Proof: Let 7" be the set of all subboxes obtained during application of the algorithm,
Le. T=1X; ,.0=12....j=12....n;). Suppose this lemma is not true. Then for some
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constant > 0, we have infinitely many subboxes in 7' with width larger than or equal
to . Let 7" be the list of all those subboxes ordered according to their order of
appearance, 1.c¢. the subboxes obtained in earlier iterations listed before the subboxes

-"fl i-; rl "I

obtamed in later iterations. Let 77 =1 X" X" ... X7 _...! beasublistof 7" so that .

- . . r ' l r FpYL.
is the (p+1) th parent of X /' | then we have (X' )< —w(X" ). This can be proved
2

as follows. Let 4, >4, = =21 be the width of each component of X" and let X" be

/'

- D i wl, o « xrl. : vl ; 1
the first parent of X . Then X" is the pth parent of X™ . If (X") < -;-_)—d(X" ), we

o - 1 i ; . :
have d( X" < d(X2)<sd(X"?) < 7(!(;\") since the width of a subbox cannot be

1

oreater than that of its parvents. If (X "*‘):—;d(X" ), according to our rule of

partitioning, X' | is bipartitioned in the direction parallel to which it has an edge of

maximuin length, therefore X as a subbox obtained from such a bipartition, has the

property that d(X'™) < nmx:%.f._,.....ln: . Using induction, it can be proved that
| ) e R P LU . [t
X"V )< max ! —j- ..... —f;'-: - l = === Therefore we have w(X """ )< —1( X )i
2z 7.4 Z Z 9

I
This contradicts the assumption that w(X ") > d .

Lemma 3. lim w(Y, ,. ) =0
ke > e

Proof: Since f(x) 1s continuous, we have

hm w(f (X, ) =0.
Rt ‘

The inclusion interval Y . obtained in the algorithm is at least as good as the

inclusion interval obtained by using the mean value form (Ratschek and Rokne [|9])
which has convergence order 2; we have

}Iim (Y ;) —W(f( X}, )) =0

which proves the lemma.
The following theorem follows immediately from Lemma 1 and Lemma 3:

Theorem 2. The algorithm converges in [inilely many tlerations to a globally ¢ -
oplimal solution.
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6. BOUNDING ALL GLOBALLY OPTIMAL SOLUTIONS

Let /= min/(x) be the minimum function value and X" =|y|yeS. [(y)=/"}
X: S

he the set of all globally optimal solutions. The algorithm presented in the previous
soction aims at finding only one such solution. However, it can be easily modified to
find all of them in the sense of solving one of the following two problems (assuming
that the number of globally optinal solutions 1s finite).

Problem Q : Find disjoint subboxes [*. ke K such that X" ¢ . K 1" and

S wid®ye 8
A

-

Problem Q': Find disjoint subintervals [ ke K', containing only globally & -
optunal points and such that

’

.r\' =0 Jli. K 1,‘ ?

T'o solve these two problems, we need to set the parameter ¢ in the algorithm
to be zero, so that no globally optunal solutions will be eliminated. Other than that, we
only need to chiage the termination eriteria as follows:

T'o solve Problem @, the termination criteria shall be changed so that the
algorithm stops when the summation of the widths of the remaining intervals is less
Lhat

1'o solve Problem @', the algorithm works in two phases. The first phase

—~optinal solution is found, 1.e., when the difference of the

i
stops when a globally 9

icumbent optimal solution and the lower bound obtained on the function value is less
than — . In the second phase, at cach iteration we put aside the subintervals on which
)

the upper bounds of the function 1s at most -—;— away from the value of the best solution
tound so far. T'hose intervals contain only globally &' -optunal solution and can be taken
as part of the solution set. We continue evaluating the remaining intervals until all of
them have been mcluded in the solution set.

’

TR e . ) ('.
'he second phase can be modified to work in another way: after a globally o

optunal solution is found, we can store the remaining intervals in a list so that the

upper bound of the function on the intervals are in a descending order, and we always
choose the remaiing interval with largest function upper bound to iterate until all the

’

upper bounds of the function on the remaining intervals are at most — away from the
_ ) )

optunal solution.
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These wayvs to solve Problems @ and @' parallel those proposed by Hansen,

Jaumard and Lu |5] for global optimization of univariate Lipschitz functions.

7. COMPUTATIONAL EXPERIENCE

_ The algorithm has been implemented in Fortran 77 and tested on a SPARC
station 2 with a 28.5 mips central processor. The test problems used are the
constrained optunization problems from Sengupta ([10]):

Problem COP1: Three-hump Camel-back Function (|10])

1 |
T + x5 (17)

mininize f(x) = 2.\";"' -1.05x e
subject to 1(5.\':,"' + 25.\'f < 400
13x; - 145x, + 84, < 252
X1 Xy <4

"'1.{.-:.\'!' {.:2.5-:1.2

Problem COP2: Rosenbrock or Banana Function (|10))

minimize [(x)=a(x, - .rf )© +(1- x5 ) (18)

- ‘) ‘)
subject to xy +x5 <4
X)Xg <3
-4<x;,54.1=12

where «is a parameter set to be 1.0 during our test.

Problem COP3: Hansen's problem (|10])

T . . > ")
minmnize  [/(x) = .l'f — X9 (19)

Sllbj(.fl:t ) = .l.'f' —(.1‘2 = 17)_5 +1<0
30;\'] “4(.1‘:,_; “2)2 -10<0
01‘3.1',‘ <l.i:=12

Problem COP4: Hansen's Variable Dimensional Problem

nm ;
minimize f(x)= > (k(x; - 1)% +{xp=20%) (20)

g=)
2 .
subject to 2x; -3 - Z.‘l‘}f <0
=
—~ 4 < x; A p=12 :..m

where m 1s set to be 2 for our test.



2()2

Our algorithm has three options, corresponding to whether we want to solve
Problem P or Problem Q or Problem Q. We compared our algorithm for problem Q
with Sengupta'’s algorithm, which also solves problem Q. The tolerance for the function
value is set to be 10 9 1e., the final solution value /,,, shall be at most 10 2 away from

/7 the widths of all the remaining subboxes are required to be smaller than 10 4.

Computational results arve listed in Table 1, together with those reported by Sengupta

P. ITansen, B. Jaumard, J. Xiong / An Interval Arithmetic Algorithm

10 Sengupta’s omputations were done on a CDC CYBER 174 machine.

Table 1: Computational Results on Sengupta's T'est Problems

]

" Problem

New Algorithm

Sengupta's Algorithim

S - —

- No.of Iterations | Computing Time| No. of Iterations |  Computing Time
COP1 | 114 | 0.71 101 19 |
- COP2 257 | 1.79 388 83
CcoP3 | 35 0.18 64 11 |
- COP4 67 0.64 49 15

Obscrve that computing times are much smaller than those of Sengupta

calthough the difference of computers used must be taken into account; note that
SPARC 15 a work station while CDC CYBER 174 is a large mainframe).

|-}

0]

7]

Jedl

|ilr|
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