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Abstract: In this paper we consider problems which stem from production planning
processes In the chemical industry. Many of these problems may be formulated as
mixed integer linear programs. Since it 1s a big deal to obtain an optimal solution of
this model in a reasonable amount of time, the design of fast and efficient heuristics 1s
very important for practical purposes. In this paper we investigate heuristic approaches
which consist of different rounding strategies based on an optimal solution of the
corresponding linear relaxation of the integer program. Computational experiences on
practical data are reported.
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1. INTRODUCTION

Due to the internationalization of our markets and the increasing competition
in all areas of industry, it becomes more and more important for any company to
reduce costs and save resources. To circumvent this new situation simply by laying off
employees seems not to be the right way, in most cases structural changes have to be
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performed. One possibility is to optimize the production process by applying
mathematical methods stemming from operations research.

In the following we concentrate on production planning problems from the
chemical industry, since the production processes arising in this area incorporate most
of the characteristics of general production planning problems in process industry (see
Westenberger and Kallrath [5] for benchmark problems).

We model here the production process by a mixed integer linear program
(MIR). This MIP is tried to be solved with the help of software packages, like CPLEX,
MINOS ete. It turned out that this approach is not useful, since due to the large
number of binary variables in the MIP formulation of the problem, the time for
obtaining an optimal solution is quite far from being practical.

_ To obtain fast solutions for this sort of problems one may think of various
heuristics which compute suboptimal solutions in a reasonable amount of time. One
possibility 1s the following heuristical strategy: First relax all integer constraints and
solve the corresponding pure linear program to optimality and secondly use the optimal
solution of this linear program to obtain somehow a good integer solution for the
original MIP. In this paper we pursue this idea and investigate several rounding
strategies for obtaining promising integer solutions. Moreover, we discuss the
advantages and arising difficulties.

The paper 1s organized as follows: Section 2 gives a general description of the
production planning problem under investigation and its MIP formulation in
particular. In Section 3 several rounding strategies are described and, finally, i Section
4 the computational results are reported. )

2. PROBLEM DESCRIPTION AND MIP MODEL

The problem type under consideration arises in multi-product batch
processing 1n the chemical industry and can roughly be described as follows: Processing
starts with a set of raw materials from which a given set of final products is to be
produced by a sequence of chemical processes. The production process can be
represented by a network of multi-product facilities which are linked by convergent,
divergent and cyclic material flows (a certain example of such a network is given in
Appendix A). Typically, a given product can be produced on several facilities and a
facility can be used to produce several products. The processing tasks are performed in
batch-mode which means that there are minimum and maximum batch sizes for each
task which depend on the involved chemical reactions and the capacity of the used
reactors. It 1s assumed that the processing of a batch is carried out without
interruption and that the material transfer times are neglectable.
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The processing times only depend on the reactions performed and on the
facility used, but not on the batch sizes. Furthermore, it has to be taken into account
that there exist two types of intermediate products, (1) those which can be stored up to
a given storage capacity and (1) those which cannot be stored and must undergo
further processing immediately (no-wait conditions). A further complication 1s added to
the problem by the fact that for some processing tasks the ratios of all inputs and
outputs are not fixed, but may vary within certain limits.

A feasible solution to the production planning problem described above can be
represented by a production schedule which specifies

e the sequence of the batch processes at each facility,

e the sizes of the batches,

e the assignment of production tasks to facilities,

e the start and the finish time of each batch process, and

e the distribution of the materials and the inventory levels over time.

A production schedule i1s said to be feasible, if it satisfies the given
requirements for the final products and takes the constraints on the batch sizes and
the storage amounts into account. The optimization goals may differ. In this paper we
only consider problems where the objective is to find a feasible production schedule
with minimum makespan, 1.e. the time when the required amount of all final products
is available should be minimized. (Other objective functions could be modeled in a
similar fashion.)

In a first step the entire time horizon is discretized into a number of smaller
periods of the same length. The length of this period is determined as the largest
common divisor of all batch processing times, such that each individual processing time
of a batch may be expressed as an integer multiple of the period length and it may be
assumed w.l.o.g. that each batch starts and ends at period boundaries.

After having determined the length of time-slots we next fix a time horizon
[max, 10 Which the required amount of final products can be produced and denote the
set of feasible time-slots by 7'=1{ 1,...,¢,... . Let P be the set of products and Py c P

the set of final products, F' be the set of facilities used in the production process and
Ry be the set of chemical processes (reactions) which are performed on the facility £;.

Following technological restrictions we distinguish mainly between two different types
of reactions, namely reactions in which the ratio of the ingredients is fixed in advance
(reactions of type I) and reactions for which these ratios may vary in between
prespecified upper and lower bounds (reactions of type 1I). For each reaction r we
denote the corresponding processing time which 1s independent of the actual batch size
by t,,and by m, , we denote the actual batch size of reaction r starting at time ¢. By

introducing the variables x;, for ie P and 1<f¢<¢ . denoting the stock size of
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product i at time { we are able to formulate the mass conservation via the subsequent
stock balance constraint:

ST i BT VieP, VYteT.

Here Rp denotes the set of reactions in which product 7 is input and by R;;, the set of
reactions which produce product ¢ as final product. The constants /'_',f‘ denote the ratio
of product 7 as ingredient to reaction r and /',f the ratio of product 7 as final product of

reaction r. If r 1s a reaction of type II, a shight modification of the constraints above 1s
necessary (see Appendix A for a short description). Additionally, the stocks must fulfill

.lr.',*’“ — L,‘ and x,"t < Uf VI = P, V£ € ’T'
where L;1s the mitial stock size of product : and U, 1s the capacity of the stock for
product 7. By setting U, := 0 one can model no-wait conditions for products which

cannot be stored and have to undergo further processing steps immediately. Finally, to
ensure the production of a certain amount B; of each final product i, 7 € Py, we have

the condition

Bf '“_xu va[j:

TI'he binary variables s, , indicate whether reaction r starts at time ¢ (s,, =1) or not
5, , =0). They are used in the following constraints- which guarantee the exclusive
assigning of one reaction to a facility at the same time,

[
3 2, Spsli VieF, VteT (1)

e

r‘"HF' b=t T..']

and for constraints on the batch sizes:

e
min

. < < r . .
Spip STy S Aay 900 Vre R, ¥Ntel,

where A’

; | . .
ainoand Ap o are given lower and upper bounds for the batch size of reaction

s

Lo formulate the objective function - minimizing the makespan - we
introduce further binary variables f,, indicating whether or not a production is
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performed in period {. By replacing the right-hand side of constraint (1) by f, and

adding constraints of the form
fblift VtET\{tmax }
the minimization of the makespan leads to

mint Do (2)
te T
Since s, , are already binary variables, the condition f, €{ 0,1 | may be relaxed to
0 < f, <1 without changing the problem itself.

During the computational tests with the relaxation of MIP it turned out that
better solutions are obtained whenever the original objective function (2) is replaced by

teT

Note that in the case that s, , and f, are binary variables, both objective functions (2)

and (3) are equivalent, but in the case of continuous variables in the LP-relaxation the
objective function (3) punishes reactions which are performed later in time. Moreover,
the subsequent redundant constraints are added to the original mixed integer linear

program:

L+T, 1 L max
RIS = S DS 1) VreR, VteT
=1

resS, t'=t+,

meaning that whenever a reaction is performed on a facility at least one succeeding
reaction has to be performed, too. The set S, denotes all reactions succeeding reaction

/(3

Starting from the required amount of final products one may compute in a
recursive way a lower bound on the required amount of each raw material and each
intermediate product. If we denote. this amount by B; for each product i, the minimal

number of batches which is necessary to produce the desired amount of product 7 is
given by |

YVie P.
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Thus for each product ¢ we add the subsequent constraint to our model MIP:

{

mnx )
> 2 Sepe Vg Vie P.
I RF' L I

Before discussing different rounding strategies for obtaining good integer
solutions of the mixed integer linear program described above let us mention two facts
on the number of binary variables. Although some of the binary variables may be set to
zero already in advance (note that reactions may not start before all ingredients are
avallable and that 1t makes no sense to start reactions which cannot finish on time) the
number of binary variables is still very high. Note that the number of binary variables
s, , highly depends on one hand on the discretization of time and on the other hand on

Since the correct value of ¢

the chosen: constant ¢ e

max ° 1s not known a priori (it 1s
the optunal value of MIP), good estimations for this parameter are desirable and may

be obtained by using fast heuristics.

3. ROUNDING STRATEGIES

Owing to the large number of binary variables in the mixed integer linear
program MIP the computation of the optimal solution 1s too time consuming. Therefore
we propose to relax the integrality constraints of the variables s, , to 0<s,, <1 and

denote this relaxation of MIP as LP. In the remainder of this section we will describe
several strategies how the optimal solution of the LP can be used to find good
suboptimal solutions of the mixed integer program. Computational experiments and
comparisons between all strategies are given in the next Section.

3.1. Strategy 1

A very first and naive approach to obtain an integral solution 1s the following.
After having solved the LP a fixed parameter p with 0< p < 0.5 1s chosen and all
continuous variables s, , with s,, < p are fixed to zero, whereas all variables s, |
with s, , <1-p are fixed to one. Variables whose value lies in between [ p.1- p)

remain unchanged. Then the LP is reoptimized. This procedure is repeated until either
all variables s, , are already binary or no variable is fixed during the rounding step. In
this case all remaining variables s, , are rounded in the usual way, i.e. s, is set to

zevo, it s, , < 0.5 and 1 otherwise,

Figure 1 gives a short description of Strategy 1 with p = 0.2 .



R. Burkard, M. Kocher, R. Rudoll’/ Rounding Strategies for Mixed Integer Pograms 15

optimize the LLP
| Step (1): for all s, , with re R and teT

| | ; If 5,.,; € [(J. 0.2) or s,, € [0.8,1) than
|
|

|
round

If no variables were rounded in Step (1) then

round all variables accordingly

until all variables are fixed

optimize the LLP

Figure 1: Schematic description of Strategy 1

3.2. Strategy 2

The subsequent rounding strategy i1s a modification of the pure approach
described as Strategy 1. There are two modifications: First, instead of chosing one
parameter p for an appropriate rounding, a set of n parameters p,, ps up to p,, is chosen
satistving 0 < p, < py <--- < p, = 0.5 and secondly, the entire time horizon is divided

into several time periods T, up to T} with 7y, =y 1,....¢t; {, Ty = t; +1,....t, | and

Ty =4 £y £1,.. |. Then the rounding scheme described in the first strategy is

> Emax
applied to each time period 7T, starting from 7=1to & while the actual rounding
parameter p takes all values from p, up to p, . Let us assume that 7 1s the actual time
period. First, p 1s fixed to p,. As long as there exist variables s,, with re R and
t = T, , such that either s,, < p or s,, 21- p, we round accordingly and leave all
parameters unchanged. Otherwise we increase the value of p to the next parameter on
the list, say p,, and repeat. If all variables in the actual time period are fixed (holds

since p, =0.5), we proceed to the next time period 7; , and start again with the

rounding parameter p; .

Note that by fixing T, ={1,...,¢t,... | and p; := p and p, =0.5 we end up
with the simple Strategy 1, The scheme of Strategy 2 is given in Figure 2.

3.3. Strategy 3

The next rounding strategy is a small modification of Strategy 2. Instead of
rounding all variables of a certain time period 7, at the same time, only one variable
$., with s, , < p; or s, <1- p; is selected randomly and rounded 1n each 1teration.

[f no such variable exists, proceed as in Strategy 2 (see Figure 3).
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Setii=1.7=1

.
T—Optimize the LP
Step (1): For all s,, with re R and ¢t e T,

it s, ; e[O, P ) or s,.ite[ l1-p;,1 ] then

round
If no variables were rounded in Step (1) then
If j=n then
Fix 1:=i+1 and j:=1.
otherwise
Bix =ty el

until all binary variables are fixed
optimize the LP

Figure 2: Schematic description of Strategy 2

Setruss 7= 1
Optimize the LP
Step (1): Determine r and ¢ such that s, , € [ 0, p; )

ors,, el1-p il | and round this variable

If no variable was rounded in Step (1)-then
If j=n then

Bixi=3+1land j:=1.

otherwise
K= Jetls

until all binary variables are fixed
optimize the LP

Figure 3: Schematic description of Strategy 3

3.4. Strategy 4

Another possibility in designing a rounding scheme based on the linear
relaxation of MIP is the following adaptation of Strategy 1. First optimize the linear
program and round all variables s,, >1- p and then reoptimize the LP until no such

rounding step can be performed any longer. Instead of rounding the remaining
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variables as proposed in Strategy 1, here the original mixed integer linear program is
optimized. A short description is given in Figure 4.

Optimize the LP
While there exist » and £ such that s, ; € [ 0.8,1 ]

set s,;, =1.

until no variables are rounded
optimize the MIP

Figure 4: Schematic description of Strategy 4

3.5. Strategy 5

This heuristic runs as follows: After every optimization step of the LP we
choose the largest binary variable s, ; among all variables s, , € (0,1) which are not

fixed already, fix it to 1 and put the name of the variable on a stack. This procedure is
repeated until we either obtain a feasible integer solution or the linear program
becomes infeasible. In this case we use the last name of the variable put on the stack

and do the following: if this variable, say s, , is 1, we set it to zero, put its name again
on the stack and proceed by reoptimizing the LP. Otherwise, if s, , =0, we free this

variable again and take the next variable from top of the stack and repeat. This
heuristic is performed until either the last variable put on stack is freed again — in this
case no feasible integer solution exists — or a feasible integer solution is determined.
Figure 5 contains a schematic description of this heuristic with backtracking.

Optimize the LLP
If the solution is feasible then
search for the largest s, , € (0,1)

set this variable to 1 and put it on the stack
otherwise

until the last variable on the stack 1s set to 0
set the bounds to 0 or 1, respectively
delete this variable from the stack
fix the last variable on the stack to 1

until all binary variables are fixed

Figure 5: Schematic description of Strategy 5
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3.6. Strategy 6

In this strategy we combine some ideas of Strategy 2 and Strategy 5. Thus we
divide again the entire time horizon into distinct periods 7),..7, and define a
rounding parameter p. From Strategy 5 we use the idea of branching along variables
with backtracking with a slight modification. In this new strategy we do the following:
After having solved the LP we fix all variables s, ; whose value 1s not smaller than p in

the actual time period to one. All names of the variables are put on the stack at once. If
no variable exists for rounding, we simply choose the largest variable s, , contained in

this time-period, fix it to one and put its name on the stack. If all binary variables are
already fixed in a certain time period, we look at the next time period and repeat. At
each time when the underlying LP becomes infeasible, we take the last names of
variables put on the stack: if this i1s only one variable then we act as in Strategy 5, if
more variables occur, we free all of them and fetch the next names from the stack.
Finally, when working in the last time period and there are still some variables not yet
fixed, we return to the first time period again and repeat until all variables are set to
zero or one. For a description see Figure 6.

Set 1 := 1.

Optimize the LP
If the solution is feasible
Search for the largest variable s, , € (0,1),r e R, € T;

If there exists no such variable

Set 1:=1+1.
If ; > n and some variables are continuous then
Set 1:=1. .

else

if this variable is larger than p
round all variables larger than p and
put them on the stack at once

else

round this variable and put it on the stack

else

free elements that contain more than one variable and
delete them from the stack

while the last variable is set to 0

set the bounds to 0 or 1, resp.

delete 1t from the stack

free and delete all elements with more than 1 var.
set the last variable to 0

until all variables are fixed

Figure 6: Schematic description of Strategy 6
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4. TEST PROBLEMS AND COMPUTATIONAL RESULTS

To evaluate the rounding strategies of the previous section we used the
benchmark problems described in Westenberger and Kallrath [5]. (A short description
of the processing network and all data is given in Appendix A.) We tested several
problems which vary only in the amounts of their final products. In all test problems
we used the same processing network and the parameters of all facilities as well as of
all stocks remain unchanged. In all test problems three different final products are to
be produced. Table 1 contains all different problems together with the considered
and the corresponding number of binary variables. Here Problem 24-13-

valuesof ¢

10 means that 24 kg of final product P;, 17 kg of final product P, and 13 kg of final

product P, are required.

Table 1: Problem description with different ¢, and number of binary variables

—

Problem fmax | bin. variables
12-7-7 24 432
24-13-10 34 612
40 720
30-17-14 45 810
50 900
60-0-0 50 900
45-25-20 65 1170
75 1350 |
30-30-30 | 75 1350 \|
90-50-40 110 1980
120 2160 |

All strategies were implemented in C and the callable library of CPLEX was
used for solving the arising linear programs as well as the mixed integer linear program
in case of Strategy 4. All test runs were performed on a HP9000/J200 workstation with
12 MB memory capacity.

During the computational study it turned out that Strategies 1 to 3 are not
suited for obtaining a good feasible solution of MIP. More precisely, the structure of the
underlying processing network and the connection between several-facilities and the
capacities of various stocks seems to be too complicated for this kind of rounding
strategies. In fact in almost all cases — by choosing various parameters — no feasible
solution could be found at all. So a simple rounding scheme without backtracking
cannot be considered as a useful heuristic for multi-product and multi-facility

production planning problems.
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The situation for Strategy 4 is a bit different. Although this method shows a
good behaviour for the smaller problems (for the problems 24-13-10 and 12-7-7 even
the optimal solutions have been computed within several minutes), for problems
containing more binary variables this method seems to be inappropriate (e.g. problem
30-17-14 could not be solved within several hours).

Strategy 5 and Strategy 6 show the best behaviour of all strategies described 1n
the previous section. Whereas Strategy 5 1s only suitable for smaller problems (the
running times increase drastically for larger problems), the heuristic based on Strategy
6 could find a feasible integer solution for almost all problems within 15 minutes. Only
Problem 90-50-40 could not be solved in one hour. Table 2 shows the running times in
CPU-seconds and the solution values obtained for the test problems. Some of the
problems were also solved for different values of parameter ¢ ... We obtained the best

computational results both from the running times as well as from the objective value
by setting T. = | i |, i.e. by fixing the length of each time period to 1, and by setting

p=08.

Table 2: Solution Values and CPU-times in seconds for all test problems

Problem Solution CPU-tmme
Value 1
12-7-7 20 24 6.89 |
24-13-10 33 34 30.61 }
SO 40 106.92
30-17-14 43 50 213.25 |
I 44 45 111.37
| 60-0-0 44 50 I” 58.12
| 45-25-20 56 75 452.78 |
-- | 59 65 376.14
30-30-30 67 75 948.84
90-50-40 103 110 5233.82
105 120 4212.33

We also compared our heuristics based on rounding strategies with other
approaches known from the literature which have already been applied to these
benchmark problems. Ahleff [1] and Rosenau [4] try to solve the MIP by means of
standard software packages for mixed integer programming, but — not very surprisingly
- it turned out that this approach is only suitable for very small problems even if
preprocessing and other techniques are used to speed up the solution process. Blomer
and Gunther |2| propose several other LP-based heuristics to obtain near-optimum
production sche lules. But in contrast to our approaches they approximate the original
MIP with another mixed integer linear program having a smaller number of binary
variables by e.g. changing the processing times or concentrating to only one facility.
Another approach described in KreBmaier [3] works in a greedy fashion. When
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comparing our results to the results obtained by these heuristics, it can be seen that
the solutions we found are for almost all test problems the best solutions known so far.

We close this section by mentioning that the parameter ¢ . . Influences both

the quality of the obtained solution value and the running times. Here two different

situations can be observed. For the smaller test problems a larger value of ¢, causes

an increase in the running time but often leads to a better solution value. For the

larger test problems the situation seems to be different. Here a decrease of ¢, .

reduces the number of feasible solutions drastically and consequently the running time
increases because more rounding and backtracking steps to find a feasible solution
must be performed. This behaviour is illustrated in Table 3. The first three columns
contain the problem description, the fourth column the number of variables s, , which

are already integral in the optimal solution of the initial LP relaxation, the fifth one the
number of rounding steps performed by the heuristic and the last column the number
of backtracking steps necessary to obtain a feasible solution.

Table 3: Solution values and problem size versus number of rounding and
backtracking steps in Strategy 6

Problem Solution | 1%, bin. variables | roundings | backtracks |
Value in LP-solution B S |
| 24-13-10 33 34 566 20 5
30-17-14 43 50 825 46 7
90-50-40 103 110 1786 ST 251
| (05T M1 2088 FS 1955 128 34
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APPENDIX A: A PRODUCTION PROCESS

For the description of the production process, the following symbols are used:

Symbol for a facility F, with n reactions and the bounds for the batch size

iiirn

il un v
R, .. R|F

]
s

Svinbol for the stock of the product P :

R!, y  stanrt
K P ) min

{
I"*, max

Ry .. reactions that produce P,

R .. reactions that use P, as input

start ... 1mtial stock size for product P, at time £ =0
min . minimum inventory level for product P,

max . maximum mventory level for product P,

If R, 15 a reaction of type 1lI, the input variable has to be divided into two additional

variables na and mb to obtain a linear program. As a consequence, the amount of input
for product P, 1s defined by ma and the amount for P, by mb, where the value of ma

can vary in between specified upper and lower bounds.

m’c‘l,r
m |
1,/
: ma, , | __mb,,
l !
in T — min -" \/
Ri l el If" Rilu 1 If‘l_
nNiax X ~- ~ - ——)
) §
B /ot P, P,
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Description of the production process:
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