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Abstract: In this paper we consider problems which stem from production planning
processes in the chemical industry. Many of these problems may be formulated as
mixed integer linear programs, Since it is a big deal to obtain an optimal solu t ion of
t h is model in a reasonable amount of time, the design of fast and efficient heuristics is
Vel}' important for practical purposes. In this paper we investigate heuristic approaches
which consist of different rounding strategies based on an optimal solu t ion of the
cor responding linear relaxation of the integer program. Computat ional exper iences on
practical data are reported.

Keywords: Mul ti-product and multi-facility production planning, schedu ling problems, h eu ri sti cs,
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1. INTRODUCTION

Due to the internationalization of our markets and the increasing competition
in all areas of industry, it becomes more and more important for any company to
reduce costs and save resources. To circumvent this new situa t ion simply by laying off
em ployees seems not to be the right way, in most cases stru ctu ra l changes have to be

•
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Kontrol le", Projektbereich Diskrete O pt irni erung.

,



10 R. Burkard, 1. Kocher, R. RudoJ fI Rou ndi ng St rategies for Mixed Integer Programs

performed. One possibility is to optimize the production process by applying
mathematical methods stemm ing from operations research.

In the following we concentrate on production planning problems from the
chem ica l industry, since the production processes arising in this area incorporate most
1)1' the characteristics of general production planning problems in process indu stry (see
Westenberger and Kallrath 151 for benchmark problems).

We model here the production process by a mixed ' integer linear program
(M l R). This MIP is tried to be solved with the help of software packages , like CPLEX,
MI 0 etc. It turned out that this approach is not useful, since due to the large
number of binary variables in the MIP formulation of the problem, the time for
obtaining an optimal solut ion is quite far from being practical.

To obtain fast solu t ions for this sor t of problems one may think of various
•

heurist ics which compute subopt imal solu t ions in a reasonable amount of time. One
possibility is the following heuristical st rategy: First relax all integer constraints and
solve the corresponding pure linear program to optimality and secondly use the optimal
solu t ion of this linear program to obtain somehow a good integer solution for the
original MIP. In this paper we pursue this idea and investigate severa l rounding
strategies for obtaining promising integer solu t ions. Moreover, we discuss the
advantages and ar ising difficulties .

The paper is organized as follows: ect iun 2 gives a general description of the
production planning problem under investigation and its MIP formulation in
particu la r. In ect ion 3 several rounding st rategies are described and, finally , iI) Section
4 t he computational results are reported . _

2. PROBLEM DESCRIPTION AND MIP MODEL

The problem type under consideration arises in multi-product batch
processing in the chemical industry and c~U1 roughly be described as follows: Processing
star ts with a sot of raw materials from which a given set of final products is to be
produced by a seque nce of chemical processes, The production process can be
represented by a network of multi-product facilities which are linked by convergent,
divergent and cyclic material flows (a certain example of su ch a network is given in
Appendix A). Typically, a given product c~U1 be produced on severa l facilities and a
facility ca n be us sd to produce severa l products . The processing tasks are performed in
batch-mode which means that there are minimum and maximum batch sizes for each
task which depend on the involved chemical reactions and the capacity of the used
reactors . It is assumed that the processing of a batch is carried out without

.i nte ri-u pt iun and that the material transfer times are neglectable .



R. Burkard, M. Kocher, R. Rudolf / Rounding St rategies for Mixed In teger Pogram s 11

The processing times only depend on the reactions performed and on the
facility u sed, but not on the batch sizes. Furthermore, it has to be taken in to account
that there exist two types of intermediate products, ( i) those which can be stored u p to
a given storage capacity and (ii) those which cannot be stored and must undergo
fu rther processing immediately (no-wait conditions). A further complication is added to
the problem by the fact that for some processing tasks the ratios of all inputs and
outputs are not fixed, but may vary within certain limits.

A feasible solution to the production planning problem described above can be
represented by a production schedule which specifies

• the sequence of the batch processes at each facility ,
• the sizes of the batches,
• the assignment of production tasks to facilities ,
• the star t and the finish time of each batch process, and
• the distribution of the materials and the inventory levels over t ime.

A production schedule is said to be feasible, if it satisfies the given
requirements for the final products and takes the constraints on the batch sizes and
the storage amounts into account. The optimization goals may differ. In this paper we
only consider problems where the objective is to find a feasible production schedu le
with minimum makespan, i.e . the time when the required amount of all fmal products
is available shou ld be minimized. (Other objective functions cou ld be modeled in a
similar fashion. )

•
In a first step the entire time horizon is discretized into a number of smaller

periods of the same length. The length of this period is determined as the largest
common divisor of all batch processing times, such that each individual processing time
of a batch may be expressed as an integer multiple of the period length and it may be
assumed w.l.o.g. that each batch starts and ends at period boundaries.

After having determined the length of time-slots we next fix a time horizon
{max, in which the required amount of final products can be produced and denote the
set of feasible time-slots by T = { 1,... , tl~ax }. Let P be the set of products and PE C P

the set of final products, F be the set of facilities used in the production process and
R F

j
be the set of chemical processes (react ions) which are performed on the facili ty F,.

•

Following technological restrictions we distinguish mainly between two different types
of reactions, namely reactions in which the ratio of the ingredients is fixed in advance
(react ions of type 1) and reactions for which these ratios may vary in between
prespecified upper and lower bounds (react ions of type II). For each reaction r: we
denote the corresponding processing time which is independent of the actual batch size
by 1 r , and by m r ,t we denote the actual batch size of reaction r start ing at time t, By

introducing the variables X i ,t for i E P and 1 < t < t max denoting the stock size of

,

•
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product i at t ime I we are able to formulate the mass conservation via the su bsequent

stock balance constra int:

reactions which produce product i as final product. The constants /~~ denote the ratio

of product i as ingredien t to reaction rand ( ,' the ratio of product i as final product of

reaction r, If r is a reaction of type 11 , a sligh t modification of the constraints above is
necessary (see Appendix A for a short description ). Additionally, the stocks must fulfill

To forruula te the objective fun ction - minimizing the makespan - we
introduce further binary variables 1'1' indicating whether or not a production is

•
Here H p denote-s t he se t of reactions in which product i is input and by Rl' t he set of, ,

where

I :! R. Bu rkard , M. Kocher, R. Rud ol f'I ROll ndi ng S t rategies for Mixed Integer Programs

The binary variables s r ./ indicate whether reaction r sta rts at time I l sr ,1 = 1 ) or not

(s,.! = 0 l. T hey are used in t he following constraints- which guarantee the exclusive

assign ing of one reaction to a facility at the same t ime,

where L, is the initial s tuck size of product i and V i is the capacity of the stock for

product i . By se t t ing V, := 0 one can model no-wait conditions for products which

ca nnot be stored and have to undergo further processing steps immediately. Finally , to
e nsu re the production of a certa in amount H i of each final product i, i e PI<; , we have

ti ll' condit ion

a nd for constra in ts on the batch sizes:

•
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performed in period i , By replacing the right-hand side of constraint (1 ) by t"1 and

adding constrain ts of the form

'li tE T \ { t max }

the minimization of the makespan leads to

min L t, . (2)
1<- T

Since S,. ,I are already binary variables, the condition t~ E { 0 , 1 } may be relaxed to

o< t~ < 1 without changing the problem itself.

During the computational tests with the relaxation of MIP it turned out that
better solutions are obtained whenever the original objective function (2) is replaced by

(3)

Note that in the case that s,. 1 and t~ are binary variables, both objective functions (2),

and (3) are equivalent, but in the case of continuous variables in the LP-relaxation the
object ive function (3) punishes reactions which are performed later in time. Moreover,
the subsequent redundant constraints are added to the original mixed integer linear
program:

l +T r I tmro.:

" s; t' <._ " "<' rL.. oJ L.. L.." ,., ,
t '= / S r t,.,; , = + T,

V rE R, V tE T

meaning that whenever a reaction is performed on a facility at least one succeeding
reaction has to be performed, too. The set S,. denotes all reactions succeeding reaction

r .
•

Starting from the requi.red amount of fmal products one may compute in a
recursive way a lower bound on the required amount of each raw material and each
intermediate product. If we denote. this amount by B; for each product i , the minimal

number of batches which is necessary to produce the desired amount of product i is
given by .

•mm
,.,; R~

I

B ·I Vi E P .

•
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Thus for each product; we add the subsequen t constraint to our model MIP:

"•

•

Before discussing different rounding st rategies for obtaining good integer
solut ions of the mixed integer lineal' program described above let u s mention two facts
on the number of binary variables . Although some of the binary variables may be set to
zvro all' .ady in advance (note that reactions may not sta rt before all ingredients (U"(~

ava ilabl • and t ha t it makes no sense to start reactions which cannot fini sh on t ime) the
nu mber: of binary variables is st ill very high . Note that the number of binary variables
s"l highly depends on one hand on the discretization of time and on the other hand on

th« chose n-cons ta nt t max . Since the correct value of t max is not known a priori tit is

th« optima l va lue of MIP J, good estima t ions for t h is parameter are desirable and may
bl' uhtainud hy using fast heuristics.

3. ROUNDING STRATEGIES

Owing to t he large number of binary vm'iables in the mixed in teger linear
program MIP t lu - computa t ion of the optimal solu t ion is too time consuming. 'I'here fore
we propose to relax the integrality constraints of the variables S' .I to 0 < S, .I :s 1 and

denote t h is relaxation of MIP as LP. In the remainder of t h is section we will describe
severa l st.rategios how t he optimal solu t ion of t ill' LP ca n be used to find good
subopt una l solu t ions of till' mixed integer program . Com puta t iona l expe r ime nts and
cum parisons between all s t ru te tries are given in the next sect ion.

:1. I. StratcJ.,'Y I

very firs t and nai ve approach to obtain an integral solution is t he following.
ftr-r hav ing solved the Ll' a fixed parameter p wit h u , fJ ' 0.5 is chose n and all

cont inuous va rra hlos S, .I with S' .I <. pare fixed to zero, whereas all variahlos S' . I

with S' .I _ 1- fJ are fix ed to one . Variables whose value lies in between [p.l - p)

remain unchanged . Then t he LP is reoptimized . This procedure is repeated until e ither
a ll va riahk-s S" I an' already binary or no variuhle is fixed during t he rounding step. In

th is case all remaining var ia bles S' .I an' rounded in t he usual way , i.e. So is set to

zero, if s ; 1 <. 0.5 and I otherwise .,

Figur« I gives a short description of Stra tegy I with fJ = 0.2 .
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optimize the LP

Step (1) : for a ll S ,. / with ,. E R a nd l E T
I •

If s ,. / t: [ 0. 0.2 ) lJI' s ,../ E [ 0.8, 1) t ha n
•

round

If no variables wen' rounded in Step ( 1) then

I round all variables accordingly
un til all va r ia bles are fixed

optim ize the LP

Eigure I : Schematic description of St ra tegy 1

:~.2. Strategy 2

The su bsequent rounding strategy is a modification of the pu re approach
described as Strategy 1. There are two modifica tions : Firs t , ins tead of chosing one
parameter P for an appropriate rounding, a set of Il parameters P I , P '2 up to P II is chosen
sa t isfvin g 0 <. P I <, P'2 < . .. <. PII = 0.5 and secondly . the ent ire t ime hor izon is divided

in tu several t im e periods T] up to T,: wit h T) = l 1.. . . , ,] L T'2 = l I ] + 1.. .. . ' '2 J a nd

TI: = : I I: I + 1, .. . , I max } . Then the rounding scheme described in the first stra tegy is

applied to each time period T; s ta r t ing from i = 1 to h while the actual rounding

parameter p takes all valu es from PI up to P II . Let us assume that i is t he actual t im e

per iod . First. P is fixed to Pv - As long as the re exist variables 8 ,. ,1 with ,. E R and

f E T; . su ch that e it her 8 ,. ./ < P 0 1' 8 ,../ > 1 - p , we round accordingly a nd leave a ll

parameters unchanged. Otherwise we increase the value of p to the next pa rameter on
the list , say P 2 ' and repeat . If all variables in t he actual t im e period are fixed (holds

since p 11 = 0.5 ). we proceed to the next time period T;. I and sta r t again with t he

rounding parameter PI .
•

Note that by fixing T) = I t oo .,lma" } and PI := P and P2 = 0.5 we end u p

with the sim ple Strategy 1. The scheme of Strategy 2 is given in Figure 2.
•

•

:~.3. Strategy 3 •

The next rounding st r a tegy is a sma ll modification of Strategy 2. Inst ead of
rounding all variables of a certain time period T; at t he same t ime, only one variable

8 ,../ with 8,. ./ < Pj 01' s,.,/ < 1 - P j is selected randomly and rounded in each iteration .

If no such variable exists, proceed as in St r ategy 2 (see Figure 3 ).
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•

Set i:= 1,):= 1.

Optimize the LP
Step ( 1): For all 8 r ,1 with r E Rand t E T;

If 8,.,1 E [ 0, Pj ) or 8,.,1 E [ 1 - Pj ' 1 ] then

round
If no variables were rounded in Step (1) then

If ) = n then

Fix i := i + I and l > 1 .

otherwise •

Fix l > ) + I .

until all binary variables are fixed
optim ize the LP

Figure 2: Schematic description of Strategy 2

Set i := 1, ) := 1. •

Optimize the LP
Step (1 ): Determine r a nd l such that S,.,I E[ 0, Pj )

or S,.,I E[ I -P j,I 1and round this variable
•

If no variable was rounded in Step (Lr 'then

If ) = n then

Fix i := i + I and i > 1 .

otherwise
Fix l > ) + 1 .

until all binary variables are fixed
optimize the LP

Figure 3: Schemat ic description of Strategy 3

3.4. Strategy 4

Another possibility in designing a rounding scheme based on the linear
relaxation of MIP is the following adaptation of Strategy 1. First optimize the linear
program and round all variables SrI > 1 - P and then reoptimize the LP until no such

•

rounding step can be performed any longer. Instead of rounding the remaining
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variables as proposed in Strategy 1, here the original mixed integer linear program is
optimized. A short description is given in Figure 4.

Optimize the LP
While there exist r and l such that Sr ,t E [ 0.8,1 ]

set Sr t =1 .,

until no variables are rounded
opt imize the MIP

Figure 4: Schematic description of Strategy 4

3.5. Strategy 5

•
This heuristic runs as follows: After every optimization step of the LP we

choose the largest binary variable s; t among all variables s ; t E (0,1) which are not, ,

fixed already, fix it to 1 and put the name of the variable on a stack. This procedure is
repeated until we either obtain a feasible integer solution or the linear program
becomes infeasible. In this case we use the last name of the variable put on the stack
and do the following: if this variable, say s; t is 1, we set it to zero, put its name again,

on the stack and proceed by reoptimizing the LP. Otherwise, if S r t = 0 , we free this,

variable again and take the next variable from top of the stack and repeat. This
heuristic is performed until either the last variable put on stack is freed again - in this
case no feasible integer solution exists - or a feasible integer solution is determined.
Figure 5 contains a schematic description of this heuristic with backtracking.

Optimize the LP
If the solu tion is feasible then

search for the largest S r t E (0,1),

set this variable to 1 and put it on the stack
otherwise

until the last variable on the stack is set to 0
set the bounds to 0 or 1, respectively
delete this variable from the stack •

fix the last variable on the stack to 1
until all binary variables are fixed ,

•

Figure 5: Schematic description of St rategy 5

•

•

--.

,
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3.6. Strategy 6

in t h is st ra tegy we combine some ideas of Strategy :2 and Strategy 5. Th us wo
divide again the entire time horizon in to distinct periods 1\ ,.... 1'" and define a

rounding parameter p . From Stra tegy 5 we use the idea of branching a long- va r- iab les

with backtracking with a sligh t modification . in th is new strategy we do the following:
Afte r having solved the LP we fix all variables s r.! whose value is not smaller tha n p in

the actual t ime period to one. All names of the variables are pu t on the stack at once. if
no var iable exists for rounding, we sim ply choose the largest variable s ; / conta ined in,

t h is t ime-per iod, fix it to one and put its name on the stack, if all binary variables a re
already fixed in a certain time period, we look at the next time period and repeat . At
each time when the underlying LP becomes infeasible, we take the last names of
variables put on the stack: if this is only one variable then we act as in Strategy 5, if
more variables occur, we free all of them and fetch the next names from the stack.
finally , when working in the last time period and there are still some variables no t ye t
fixed, we return to the fir st time period again and repeat until all variables are set to
zero or one, For a description see Figure 6.

Set i := l.

Optimize the LP
If the solut ion is feasible

Search for the largest variable 8,. / E (0, 1), ,. E H , I E 'F,,

If there exists no such variable
Set i := i + 1 .

if i > n and some variables are con tinuous then

Set i := 1. •

else
if this variable is larger than p

round all variables larger than p and
put them on the stack at once

else
round this variable and put it on the stack

else
free elements that contain more than one variahle and
delete them from the stack
while the last variable is set to 0

set the bounds to 0 or 1, resp.
delete it from the stack
free and delete all elements with more than 1 var.

set the last variable to 0
until all variables are fixed

Figure 6: Schematic description of Strategy 6

•
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4. TEST PROBLEMS AND COMPUTATIONAL RESULTS

To evaluate the rounding strategies of the previous section we used the
benchmark problems described in Westenberger and Kallrath 151 . (A shor t description
of the processing network and all data is given in Appendix A ) We tested several
problems which vary only in the amounts of their final products. In all test problems
we used the same processing network and the parameters of all facilities as well as of
all stocks remain unchanged . In all test problems three different final products are to
be produced. Table 1 contains all different problems together with the considered
va lues of t m a x and the corresponding number of binary variables. Here Problem 24-13-

10 means that 24 kg of final product PI , 17 kg of final product P'2 and 13 kg of final

product 1';1 are required.

Table 1: Problem description with different t m ax and number of binary variables

I Problem I t IIIax ! bin . variables

12-7-7 24 432
24-13-10 34 6 12

40 720

30· 17·14 45 8 10
50 900

60-0-0 50 900
45-25-20 65 1170

75 1350

30-30-30 75 1350
90-50-40 110 1980

120 2160

All str ategies were implemented in C and the callable library of CPLEX was
used for solving the arising linear programs as well as the mixed integer linear program

•

in case of Strategy 4. All test runs were performed on a HP9000/J200 workstation with
512 MB memory capacity. .

Dur ing the com pu tational study it turned ou t that St rategies 1 to 3 are not
su ited for obtaining a good feasible solu tion of MIP. More precisely, the structure of the
underlying processing network and the connection between several-facilit ies and the
capacities of various stocks seems to be too complicated for this kind of rounding
st rategies. In fact in almost all cases - by choosing various parameters - no feasible
solution cou ld be found at all. So a simple rounding scheme without backtracking
cannot be considered as a useful heuristic for multi-product and multi-facility
production planning problems.

•

•

•
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The sit uat ion for Stra tegy 4 is a bit different. Although this method shows a
good behaviour for the sma ller problems (for the problems 24-13-10 and 12-7-7 even
the optima l solut ions have been compu ted within severa l minutes ), for problems
conta in ing more binary variables this method seems to be inappropriate (e.g. problem
:30-17-14 cou ld no t be solved within several hou rs ).

Strategy 5 and Strategy 6 show the best behaviour of all st ra tegies described in
the previous section. Whereas , t rategy 5 is only suita ble for smaller problems (the
running t im ' s increase drastically for larger problems ), the heuristic based on Strategy
Gcould find a feasible in teger solu t ion for almost all problems within 15 minutes. Only
Problem 90-50-40 cou ld not be solved in one hour. Table 2 shows the running times in

P l.J -soconds and the solu t ion values obtained for the test problems . Some of the
problems were also solved for different values of parameter t m ax . We obtained the best

computa tiona l results both from the running times as well as from the objective value
by setting T; = : iI , i.e. hy fixing the length of each time period to 1, and by set t ing
,

p = 0.8 .

Table 2: e lution Values and CPU-t imes in seconds for all test problems

Problem Solution t m ax CPU-tim e
Value

12·7-7 20 24 6.89
24-13-10 :~3 :34 30.61

34 40 106.92
30-17-14 43 50 213.25

44 45 111.37
•

60-0-0 44 50 58 .12
45-25-20 56 75 452.78

59 65 376.14
30-30-30 67 75 948.84
90-50-40 103 110 5233 .82

105 120 4212.33

We also compar ed our heuristics based on rounding strategies with other
approach'S known from the literature which have already been applied to these
h mchmark problems. hleff 111 and Rosenau 141 t ry to solve the MIP by means of
standa rd softwa re packages for mixed integer programming, bu t - not vel}' su rpr isingly
- it t u rned ou t that th is a pproach is only su ita ble for vel}' sma ll problems even if
preproc -ssing a nd other tec hniques are used to speed up the solu t ion process . Blorner
a nd Gli nther 1:2 1 pro pose severa l other LP-based heuristics to obtain near-optimum
productio n sche lules. But in con trast to our approaches they approximate the original
MIl-' with a nother m ixed in teger linear program having a smaller number of binary
variables by e.g. cha ngi ng the processing t imes or concentrating to only one facility .
Anutho r a pproach described in Krel3maier 131 works in a greedy fashion. When

•



R. Burkard, M. Kocher, R. Rudolf / Rounding Strategies for Mixed In teger Pograms 21

com par ing our results to the results obtained by these heuristics, it can be seen that
the solu t ions we found are for almost all test problems the best solut ions known so far .

We close this sect ion by mentioning that the parameter t max influences both

the quality of the obtained solut ion value and the running times. Here two different
situations can be observed. For the smaller test problems a larger value of t m ax causes

•

an increase in the running time but often leads to a better solution value. For the
larger test problems the situat ion seems to be different . Here a decrease of t m ax

reduces the number of feasible solu t ions drastically and consequently the running time
increases because more rounding and backtracking steps to find a feasible solu tion
must be per formed. This behaviour is illustrated in Table 3. The first three colum ns
contain the problem description , the fourth column the number of variables s,. t which,

are already in tegral in the optimal solut ion of the initial LP relaxation, the fifth one the
number of rounding steps performed by the heuristic and the last column the number
of backtracking steps necessary to obtain a feasible solu t ion.

Table 3: Solu t ion values and problem size versus number of rounding and
backtracking steps in Strategy 6

Problem Solution t m ax bin. variables roundings backtracks
Value in LP-solution

24-13-10 33 34 566 20 5
30-17-14 43 50 8') 1:: 46 7_<I

90-50-40 103 110 1786 317 257
105 120 1955 128 34

•
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Description of the production process:
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