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Abstract: In this paper we analyse algebra (operations and transformations) and
geometry of the class of continuous piecewise linear functions (k-functions), In
particular, their universal representativity and the algorithms reducing them from one
representation to another. For the general piecewise linear programming problem, the
dual 1s formed and the corresponding duality theorem is presented, the method of exact
penalty function i1s grounded, and the saddle point theorems for the disjunctive
Lagrangian are proved. It is noted that the logical part of algorithmic tools to solve k-
problems can be implemented as a universal computer code allowing the formation and
solution of the concluding family of standard linear programs, one of which gives the
solution to the original k-problem.
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1. INTRODUCTION

Plecewise linear programming study [1 - 6] in a natural way leads us to some
new settings of optimization problems, namely, to the problems of disjunctive
programming. We begin with the fact that an arbitrary continuous piecewise linear
function (k-function) defined on R”, allows some standard representation form

f(x)=m1n‘ ij'-bj (1.1)

(/)

|max ’
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. M - i -
where A, are matrices, xe R”, b, e R"  and |a|  denotes the maximal coordinate

of the vector a. Thus the inequality f(x)<0 determines the set M =[JM, .
IJI

o (o |
JM’,—{.I‘ A.),.\ _b{, f -

An arbitrary finite system of A-function inequalities can be reduced (constructively) to
a single inequality with a function of the same type (1.1). Therefore, we can write an
arbitrary piecewise linear programming problem in the following standard form

max (¢,x)| [(x) =0 3 (1:2)
where f(x) 1s as (1.1).

In contrast with the traditional point of view of a feasible set as the
inlersection of a finite number of some sets (halfspaces, simple convex sets and others),
the feasible set in (1.2) i1s the wnion of some sets (polyhedral sets), namely,
M =, .1'| f(x)<0 {= UM ;, where M ; = : xl A =<0 ¥

g J
{ /)

In the general framework, let | M 7 1" R"” and f(x) be an arbitrary

function defined on R”. Let us write two problems

i

P : max, [(x)| x¢€ (M L (1.3)
J=]

n

P . max) f(x)| xe UM, j. (1.4)
J=1

It 15 natural if the first one is named the conjunctive form and the second one
15 named the disjunctive form of the optimization problem. The form (1.3) 1s very
common 1 mathematical programming. The form (1.4) is rather natural for the
precewise (linear and nonlinear) programming problem (1.2).

In (1.3)-(1.4), let us set M; = { x| F;(x)<0 |, F;:R" > R"’ ,j=1,..,m. The
Lagrangian corresponding to P takes the well-known form

"
b, (x.u)=[f(x)— 3 (u; F;(x)).
=10

I'he Lagrangian for P may be defined as

P ,(x,u)= f(x)-min(u;,F;(x)), (1.5)
(/) Lat

we refer to it as the disjunctive one.
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The following scheme illustrates the correspondence between the problems
P . P and their Lagrangians

n

Loy > @ (x, u) = fx)— Dilw;:, Fix)),
7=1

P - @ (x,u)=f(x)-min(u;,F;(x)).
(J) |

But, to obtain symmetry, it would be more convenient to associate with P another

Lagrangian @ (x.u) = f(x)- max(u ; ,F;(x)) .

| i
I.}!
Thus, we see that the piecewise linear programming problem (k-problem) in
the standard form (1.2) leads us to the disjunctive Lagrangian

L () =l x) = minlu,,A,xﬂb,) : (1.6)
.. (IR |

Many questions arising in the study of £-problems may be connected with this function.
Some of them are investigated in this paper.

The algebra of k-functions and k-problems allows some extensions of problem
settings, at least to the so-called o-extension of functional spaces. We shall work with
the special algorithmic extension of original functional space F, namely, with the
extension to minimal functional space F closed with respect to the discrete maximum

operation, i.e. | [ilx) !« F implies max ) e
' ()

For example, if F,, 1s a class of all linear functions then F 1s a class of all A-
functions, 1if F, 1s a class of all quadratic functions then F 1s a class of piecewise
quadratic functions and so on. It makes 1t possible to study A-programming problems
and disjunctive optimization problems connected with them outside the framework of
only linear settings.

Although piecewise functions and the corresponding mathematical tools are of
mnportance, works on these topics are rare. We mention papers |1 - 6], especially the
first, which contains a rather solid investigation of the algebra and geometry of k-
functions.

2. 6-EXTENSIONS OF FUNCTIONAL SPACES

Let F,, be some functional space whose elements are functions defined on real
space X. If | [;(x) : wg < Fo, then the function of the discrete maximum

flac)i= ma;; f;(x) may either belong to F;, or not. The way we generate f(x) is said to
Jee

be the a-operation.
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Let us consider the minimal extension of space F, to some space F with the

property of o-closure:

L f(x) }-_J cF=>maxf,(x)eF. (2.1)
J jed

Of course, in this situation the property of linear closure holds too:

‘LEI}EJ lcF = Y q; mjxf ckF, (2.2)
= | JE

J

where a; c R, 1€ I

We shall call the minimal o-<losed extension of some space sumply its o-
extenston. Obviously, the meaning of such extension implies

F=U#F,,
k=0

where F), , =| Y a; mdx/ ‘[;eﬁ a;eR, iel, jed; |I|<+xn, |J;|<+x0 |

! ’ Jt 'jr

As a matter of fact, it 1s possible to reduce any function from F to some
standard form. The tools for such reducing are the following identities which are valid
for an arbitrary set of functions:

max f;, +max g, = max (f; +g;); (2.3)
Jed te [ (J.0)ed 1 3

2.0, maxfj-maxZaf —=max2‘a,|f (2.4)
= | J*J I'Ji h—f S:FJI !‘I

where [, ={i\a;>0 },1 ={z’.|a;<0 };

max [ “[ max /:i_f}r:. ].+ LT
7-1,...m 7=1,...,m~-1

(2.5)
™ [ /;n. - mnax f ] +  Inax f
J=1,....,m-] J=1,...m-1
min [i = _[ mln /r fn ] + min f; =
=10 1=l ] i=1,....,n-1
| (2.6)
:“[/u_ min /J ] +/nfr
i=1,....n-1
max /. — max = max max g;; 2 0)
[Nf ;Jg’] .-FJi{f’g'} rac il et
max)‘j—maxgi-mmmax()‘ - &) =maxmin(f; - g;) (2.8)

Jed 15| el gjed Jed el
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These identities are of abstract logical sense and can be proved directly.

In a line with F, let us consider the space

e e
1=0

Whel'e HO =F0.. Hk+] -_-{ Za,ff‘ A, ER, ﬁ EHk, l.[‘<+w }
11

Note that the positive cut-off function “+”, being a particular case of o-
operation, after repeated applications gives the same functional class F.

Theorem 2.1.
1) Any function from F can be represented in the forms:

max f; — max g;, (2.9)
JeJ 1= |

min maxlj, (2.10)
el jed;

max m}n fJ (2.11)
Jed i€

where | el tc Fy; (2.9) means F), = F, for k > 1, consequently F = F, .

2) Class F coincides with H.

3) Representations (2.9) - (2.11) are equivalent.

Proof: 1) Relation (2.9) means the coincidence of F);, with F; for 2 > 1. Clearly, it is
sufficient to prove F, = F;. Due to (2.4) we may consider only one transformation,

namely, the transformation of the function f(x)=max f; with Vo }, c F; to the form

1=

(2.9).

Let I={1,.,n} and use induction on n. For n=1 it is evident that
f(x)= fy(x) satisfies the required property (2.9). Letn > 1. As f; € F} , these functions

can be represented as

f; =max f! - max
Ygedi e kel 8

where { f;, gi tc Fy. Therefore

(25
f(x) [ zpax Is=in ] + fn-

n—1
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By induction we have max f;:= f € F}. Since f=[f-fu I' +f, and { f.f, }c F,

i=1,...n-1
due to (2.4) we have: [ [, €k, and due to (2.7): [ fr ]+ e I} . This fact and

inclusion f, € F, give us f € F, . Consequently, F, = F, and therefore F = F, .

The fact that functions from F can be represented in the form (2.10) or (2.11)
follows from identity (2.8).

2) At first we shall prove inclusion Hc Fy, 1e. H, c F;,Vk. If fe H,, then due to
(2.4): f e Fy.Hence .H, c F,. Let H, c F,. We have to prove H, ; c F;. An arbitrary

function from H, , takes the form
el

T'his mmplies that £ can be written as a linear combination of discrete maximum
functions with generators from F,. This fact and the relation (2.4) give [/ the required
representation (2.9).

Inversely, let f € F | 1.e. f takes the form (2.9). Let us show that the function of
discrete maximum with generators from F, belongs to H, 1.e. belongs to one from H,,.
T'hereby, we shall prove the inclusion f e H.

Let us take

f:”jf‘“‘ff}" | f; IcFy, Jj=L.m

-

It m=1,then f=f, c H,. Let m > 1. Apply the relation (2.5):

/‘2[ - Inax /.j'"/:m ]* +f;n'
J=1,....m~-1

According to inductive assumption we have [= max [ ;€ H). Therefore,
' J=1,....m-1
e [ P o ] + [ € Hy 1, which completes the proof of 2).

3) We already mentioned that the function (2.9) can be rewritten as (2.10) with
f} =[; — &; (see(2.8)). It remains to prove the inverse. Let f have the form (2.10), i.e.
i miln mz}x/';, If I={1,..,n} and n=1, then f = maaxf;j e Fy. For n > 1 the proof
[ J= | -’-‘:'Jl
can be carried out as above by induction on n. Due to (2.6):
f= min maxf! -maxf] | +max [} .

L vaent]) 1]1 J, / _j‘fJ;, J"—Jn
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According to the inductive assumption

f= min maxf; e F},
1=1,....,n-1 je.

le. f can be represented in the form (2.9). Consequently, using transformations (2.3),
(2.4) and (2.7) we can write [ as (2.9).
The equivalence of the forms (2.11) and (2.9) can be proved in the same way.

The proof of Theorem 2.1 is completed.

We shall call any function £ from F a o-function, or a opiecewtse function. 1f
F, is the space of all linear (affine) functions, then F is the space of all piecewise linear
functions.

3. PIECEWISE LINEAR FUNCTIONS

Piecewise linear functions are evidently the o-functions in the case when F 1s
the space of all linear (affine) functions. One can define the class of piecewise linear
functions (below k-functions) in one of two ways: either as above or proceeding from
some axioms describing such functions. Now let us fix our attention on the second way.

Let { M ; } ; be a finite family of polyhedral sets and {1 j(x) } ; be a family of
proper linear functions. We shall say that the system | M G ! determines a

piecewtse linear function l(x), defined on X, if:

1) UM;=X, M}~Mj=0 for izj;
jed |

2) lx)=1;(x), VxeM;, Vjed.

Here M ? is the algebraic interior of the polyhedral set M ;,1e. ye M ? S yttse M;
for all s e X and sufficiently small ¢t > 0. The term polyhedral set, as well as above,
denotes the set defined by a finite system of proper linear inequalities

(ftj,x)—a’jﬁ(), ] Ed.
In this definition some of M ; or M 3 may be empty.

Let Ly be the space of all affine functions, and L be the space of k-functions
defined by external manner according to properties 1) and 2). Clearly, functional clas-
L coincides with F from the previous section, which is constructed from F, = L ,1.e L

is the minimal algebraic extension of the affine functional space, closed with respect 1o

e
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the operation of discrete maximum [7]. Therefore, representation (2.9), as well as both
(2.10) and (2.11), are universal forms of piecewise linear functions (k-functions).

To simplify and unify the expressions of k-functions, systems of inequalities
with k-functions, problems of piecewise linear functions and so on, we shall assume

now X =R"” . Then

Ly={Ux)=(a,x)-a | aeR", aeR |,

J‘<:+oo, |I|<+oo ',

L:{ mzfjxlj(x)—ma}xh,(x) , {lj,h} }C LU*
JE [

Let

fal o se=max ey s izl o =iminz:
LOPs () LU ()

where z 1s an element of some finite dimensional vector space. If Ax-b=

[ F1(20) 510 oy s (06} ]T 1s a vector of linear functions, then (according to our notations):

|Ax-b|  =max/(x).
e ()

Representations of piecewise linear functions in the forms (2.9) - (2.11) take unifying
forms:

‘Ax—b|max—|Bx—d‘max, (3.1)
min| A;x - b' =% (3.2)
max| A;x-b/ | . . (3.3)
() 2

Here are some more obvious properties of the function of discrete maximum:

2 e, = =2 i
max min

for a>0: |az| =da|z| ;for a<0: laz ] a salzl . s
max max max min

4. SYSTEMS OF PIECEWISE LINEAR INEQUALITIES AND THEIR
GEOMETRIC INTERPRETATION

A finite system of piecewise linear function (k-function) inequalities can be
written as

: { :
el i

0 A= e & - (4.1)
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This system can be represented as a single inequality

T _
>min| Aix-b/ | <0,

=3 () max
or (according to Theorem 2.1) in the form

‘min ‘ij—bj | <. (4.2)

We assume this form to be standard. Another standard form is

|Ax-b| -|Bx-d| <0 (4.3)
max max

(see (3.1)). So an arbitrary finite system of piecewise linear inequalities can be written
in any of the standard forms (4.1) - (4.3).

Consider the representation form (4.2). Assume that M ; = { x‘ Az < b/ ).

Then the solution set of the inequality (4.2) is M = |JM ;. On the other hand, if M is
| j=1
an arbitrary polyhedral set (from R"), 1e. M = (JM; and ' M : ! are polyhedrons,
j=1

i.e. M ; are defined by finite systems of linear inequalities: M i={x| Ajx<b’ },then
M is a solution set of inequality (4.2).

From the same point of view let us look at the inequality (4.3). Let

Ax-b=[1L),..L,x) |, Bx-d=[s;x),..5,0 [,

L Lj(x), 8i(x) }’i’_”]‘k =lin

(L 1s an affine functional space). Set

M ={ xl Li(x) < s;(x), j=1;...,m .

S
Then it is easy to show that |JM,; coincides with the solution set of inequality (4.3).
i=1 |
Thereby, for inequality (4.3) some polyhedrons M; are pointed. Being united they give
us the solution set of inequality (4.3). On the other hand, if polyhedral set M is given by
some or other manner, e.g. by a family of linear inequality systems each of which gives
a convex polyhedral component of the set M, then to lead us to the representation of
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the set M in the form of a single inequality of type (4.3) the chain of transformations
(2.3) - (2.8) must be applied.

Finally, let us consider a system of piecewise linear inequalities in the form
(4.1), which formally 1s more complicated than (4.2) or (4.3). Let

Mi={x| Alx<b/ }, M,:=UM;, M:=NM,.
(]) (¢)

The set M, is a solution set of the {-th inequality of system (4.1), so that M is a solution
set of the whole system.

Facts contained in 2 - 4 establish the ways of constructive correspondence
between polyhedral sets and their analytic representations. Although the accompanying
algebra of the transformations may be rather complicated, the logic of such
transformations is very simple and in real applications may be carried out by computer.

5. PROBLEMS OF PIECEWISE LINEAR PROGRAMMING

5.1. Preliminary remarks

An arbitrary problem of piecewise linear programming, i.e. the problem of
seeking the extremum of some k-function under constraints in the form of a finite
system of mmequalities with A-functiond on the left-hand side, can be written 1n the
universal simple form

-

P : max | (c,x)] min lA,-x—bJ ‘ <0, x=0"}. (5.1)
m ”

max

Indeed, the method of reducing a system of k-inequalities to a single k-inequality has
already been discussed. Let f(x) be an arbitrary k-function to be optimized (e.g.
maximized) under a single k-inequality of the form g(x) <0 (maybe, with x>0 ).

Rewriting the problem max| f(x) ‘ g(x) <0 | in the form
max | ‘ g8lx) <0, f(x) 2>t }

and transforming the system of two k-inequalities to a single k-inequality, we get the
problem of maximizing of some linear functions under a single constraint in the form of
the k-inequality. In (5.1) constraint x > 0 is separated to obtain symmetry in some of
the analytic constructions considered below.

I'he subject under our consideration will be the problem (5.1). Let us write the
partional problem



[. I. Eremin / About Some Problems of Disjunctive Programming 35

L; : max ((r,x}| Al}-xi'bj, x20 | (0.2)

J
T'he relation between problems (5.1) and L ; 1s very simple:

opt(D.1)= max optl;, (D.3)
i (J:M ;=0) P: &)

where M ; :{x.:0| Aj-xﬂb-’ ',

In spite of the solvability of original problem (5.1), we admit that in (5.2) for
some ;j the sets M ; = { X% 2 0[ A xS b/ } may be empty. Therefore, an arbitrary k-

problem after reducing to the form (5.1) desintegrates into a finite number of linear
programs. Solving them, we find a solution to the original problem. Since the
corresponding transformations are constructive, the arbitrary problem of piecewise
linear programming can be solved using both such constructivity and some methods of
linear programming (e.g., the simplex-method).

5.2. Solvability conditions for the k-problem

Many valid properties and theorems can be formulated for k2-problems in the
terms of linear programming. Some of them are simple consequences from known
linear programming facts, others need their own prootfs. The following theorem does
not need a proof:

Theorem 5.1. If

sup | (¢,x)| min| A ;x — b/ <0, x>0 }<+o,
\ (/) J max '

then sup in this problem s attained.

Let us write the problem which is dual to L;:

LJ : min | (b*j,1z~i)‘ A:{f‘u.j >¢, ul 20 ', (5.4)

Assume that M ; = { u’ 20' AJI- R }

Theorem 5.2. The problem (5.1) is solvable if and only if

It *
j=1
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Proof: Since the conditions M; #0 and M ; # (0 are necessary and sufficient for

solvability of the problem L;, nn}fax opt L is finite and coincides with opt P. Inversely,
J:M ;=0

if problem P is solvable, then all problems L; with M ; #0 are solvable too, and
according to the well-known dual relations in linear programming we have M ; 0.
Remark. Another variant of Theorem 5.2 can be formulated just as:

(Pissolvable) & (M #0 &M ; # 0 = LJ- 1s solvable) .

5.3. Duality

Let us take the original k-problem in the form (5.1), adding to it the following

assumption (not so essential): the dimensions of all the vectors A ;x - b/ are equal, i.e.
the number of inequalities in all systems A ;x < b’ are the same. This condition allows

us to denote the dual variable for L; (i.e. the variable ©’ in the problem (5.4)) by the
common symbol «. According to this notation problem (5.4) can be rewritten as:

min{ (bj,u)| Afzt >2¢, u20 }, J=Lx m. (5.5)

Let us formulate the problem

P max min | (bj,u)‘ A;ru >¢, u20 |. (5.6)
J:M ;=0

We shall consider it the dual of problem P. The dual problem for problem P* does not
have symmetric architecture with respect to the setting of the original problem. But if
P 1s rewritten in equivalent form

nlwx min{ (c.,x)| Aj-xizbj. x=0 }, (5.7)
JELL,....m;

then (5.6) and (5.7) take a symmetric form.
The following is valid for problem (5.6):

Theorem 5.3. Problem (5.6) is solvable if and only if

dje{l..m } M;#0 & M;=0. (5.8)
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Proof: Indeed, if J:=| j| M; =0, M; 20}, then for any jed:

inf{ (b7,u)| xe M }=-x, therefore in (5.6) the maximum can be taken only for
J e . This fact implies the solvability of problem P*. The necessity of conditions (5.8)

is obvious: if P~ is solvable, then there exists ;' such that the problem L:,- is solvable

too, that 1s equivalent to (5.8).
Theorems 5.2 and 5.3 as well as dual relations in linear programming lead us to:

Theorem 5.4. If problem (5.1) is solvable, then (5.6) is solvable, too, and their optimal
values are the same.

Note that unlike linear programming the property of the simultaneous
solvability or unsolvability of problems P and P* is lost. Let us allow the improper
optimal values and write these problems in the forms

P :sup Inf (¢, x),
lj} IhMJ

P :sup inf (67,u);
(j} HEMJ-

The conditions of the simultaneous solvability of P and P* are described by Theorems
5.2 and 5.3, but it is possible to have the situation: P is unsolvable, P is solvable. This
reflects the fact that if P” is solvable then

HjO:M‘

j(’};t@ & Mj‘"=@.

Then the problem L; 1s improper of the 2nd kind, ie. sup (¢,x)=+w. Therefore
| xe M,

opt P = 4o , 1.e. P 1s unsolvable. The simultaneous unsolvability of the problems P and

P is realized by the pair of improper linear programming problems L and L of the 3rd
kind.

6. THE SADDLE POINT PROBLEM FOR DISJUNCTIVE
LAGRANGIAN

Consider the problem

P, :max| f(x)| xe UM; |, (6.1)
()

1.e. the problem (1.4) from the Section 1, and associate with it the function
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@ (x,u)=f(x)-min(u;,F(x)), (6.2)
gy

which will be called a disjunctive Lagrangian for P
We shall call the problem (6.1) quite regular, if all the problems

max| f(x)| F;(x)<0, x20 | (6.1);

are solvable. Such property is equivalent to the solvability of problem (6.1) and the
nonemptiness of all the sets M ;M ; #0, j=1,..m. |

Let @;(x,u;)=f(x)-(u;, F;(x)) be the Lagrangian for (6.1);; here xeR",

u; € R" . The well-known fact (e.g., see [7]) holds:

Lemma 6.1. If |[x,u |20 is a saddle point for the Lagrangian ®(x.u)=
flx)—(u.F(x)) of the problem

max{ f(x)| F(x)<0, x20 }, (6.3)

then (i, F(x)) =0 and x € Arg (6.3) .

Lemma 6.2. Let all the functions @ ;(x,u;) have saddle points | % iU |=0,

J=L..om 1If x isthe value of x; which gives us max f(x;), then
| (/)
d (7)) = f(X)), (6.4)
)

| r_r . (

where @ (x,) = f(x) -~ min (&, F;(x)).
(/) ‘

Proof: According to Lemma 6.1: (w;,F;(x;))=0, j=1,.,m and f(x)-(a;,F;(x)) <

[lx,;) (= [(X)), Vx=0.Hence

num[ f’(.r)HFEPF;(J:)) ]:_ Fl%) .
(/) |

But since the left side of this inequality is equal to

flx)- min(:T),,F,(.r)) (= (2.7)),
{ 1) :

the desired inequality 1s valid.
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Lemma 6.3. If | X, |> 0 is a saddle point for @ (x,u), then

min(ﬁ-,.F-(f)) =)
(/) / J

and x € Arg (6.1).

Proof: According to the saddle point definition

D (), S D (o) S Dasla.l)

vx =0 V0
oY
f(x)-min(u;, F;(x)) < f(x)-min(u;,F;(x)), (6.5)
() ‘ vx -0 () | |
(7) ‘ ‘ Yu 0 (/)
Rewrite inequality (6.6) as
min{ﬁ,,Ffl:f)) 2 mln{u},F/(f)) (6.7)
() ‘ | Yu-0 (y) | ‘

At first we prove that xe M =M ;, ie. 3; :F; (x)<0. Indeed, if F;(x)<0, V;,
(/)
then choosing a suitable © >0 one can obtain an arbitrary large right-hand side of
(6.7). But 1t conflicts with (6.7). The fact proved gives us: « := min(u;, F;(x)) < 0. More
. . ()
precisely, o =0. Indeed, if « <0, then relation (6.7) with = =0 1mplies the
contradictory 0> —|a|= 0. Therefore, relation min (i ;, F;(x)) is proved.
() |

Next it 1s necessary to prove the optimality of the vector x for the problem
(6.1),1.e. f(x)< f(x),Vx e M . Let us turn to the relation (6.5). We write 1t now as

flx)- f(x)>—min(

()

If xeM, le. x¢ M, for some j(-,, then min (u;,F;(x)) <0 . Due to (6.8) we have
| A

f(x)-flx)20, Vxe |JM,; . The proof1s completed.
(57)

Lemma 6.4. Let the problem (6.1) be quite regular, i.e. the problem

L, :max|(¢,x)| x€ GMJ- ',
j=1



40 I. 1. Eremin / About Some Problems of Disjunctive Programming

where M ; = { x‘ AAS b), x>0 }, ts solvable and M ; #0,V ;. Then the function

L (x,u)=(c,x)-min(u;,A;x ~b’) has a saddle point | x,u |, and its components x
()
and @ =| uy,...,u,, | satisfy:

X = argmax(c,Xx;), X ; € Arg max (¢, x) ,
(/) : .rfr:MJ

u; € Arg min (b7, u), 7=1,...,m.
u-M

Proof: If we show that «a := mm(Ej,A,-x—bJ) =0, then due to Lemma 6.2 the left
() *

inequality in the definition of the saddle point for L (x,u) will be valid. Since the

vector x > (0 satisfies at least one of the systems A 7% < b/ . we have ¢ <0.But ¢>20,

- because

min (i, A ;¥ - b’) =
(/) ‘

=min| - (b’,&;)+(c¢,X)+(A]&; -¢,%) |2 min[ (¢,X) - (¢,X;) |2 0.
() ' () '

Here we use the relations: A.f w;-cz0; (b’,1;)=(c,x;) according to dual relations in
linear programming; (¢, X) = (¢,X;), VJ.

It remains to prove the right inequality in the saddle point definition for L (x,u), 1.e.

Iy (x.0) s L (=x,t).

Since o = 0, the inequality above takes the form

0.5 ~min(u,,Ax=b"), (6.9)
Yu; 20 (y)
But Vj,: A; x - b/ <0, and for all ©<0: min (u ;, A ;X - b/) < 0, consequently (6.9) is

(7)
valid. T'he proof i1s completed.

Lemmas 6.3 and 6.4 imply

Theorem 6.1. Lel all the systems A_,-xﬁbj, x20, y=1,...,m be consistent. Then

problem (6.1) is solvable if and only if its disjunctive Lagrangian

L (x,u)=(c,x)-min(u;, A;x-b’)
¥R A

has a saddle point | X, |20, and
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w

1) ¢f L , ts solvable and X} € Arg L uj € Arg L;, x = argmax(c,Xx;), then [ x,u | s

)
J ()
a saddle point;

2) if| x,u |is a saddle point for L_,(x,u), then \ X, U ! satisfy all the relations from 1).

The existence of a saddle point | X, |> 0 for the function @(x,u) written in

the form (6.5) - (6.6) is equivalent to equalities

max min @(x,u) = min max @(x,u) = d(x,u) . (6.10)
x 0 w0 20 x>0

In the game interpretation of mathematical programming duality it is natural
to formulate statements similar to Theorem 6.1 in the form of relation (6.10).

Theorem 6.2. Let the problem (6.1) be solvable and M ; # 0, Vj. Then for x € Arg
(6.1) there exist such w; >0, j=1,...,m that the vector | x,u | satisfies the relation

J
(6.10) with

DPlx,u)=L, (x,u) =(c,u)- minuTj,A,-x -b/).
() ‘

7. METHOD OF EXACT PENALTY FUNCTIONS FOR PIECEWISE
LINEAR PROGRAMMING PROBLEMS

Let us consider the general problem of piecewise linear programming in a
canonical setting (5.1), L.e.

P :maxj(c,x))] min | A;x-b/ | <0, x20 |. (7.1)
H—=3 L m max

We are interested in its equivalent reduction to some problem of the same type but
without the main constraint in (7.1). Associate with L , the following k-problem

sup[ (c,x)—mm(Rj,(ij—bj)*) ], (7.2)
x 0 (/)
where R, 1s a nonnegative vector parameter of dimension m , i.e. m; is the number

of inequalities in the system A x - b/ <0 .

As before, we shall use the following notations: L; denotes the problem

— *

max { (¢,x)| Ajx<b’/, x20}, L, denotes the dual, u;=argL;, & =|u),..u, |,

M;={x20| Ajxsb’ }.

J
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Theorem 7.1. Let problem (7.1) be solvable, M ; #0, Vj; u; € Arg L}. If R; = Ryu;,
R, > 1, then the optimal values and optimal sets of problems (7.1) and (7.2) are the

same, L.e.

opt (7.1) = opt (7.2), (7.3)
Arg (7.1) = Arg (7.2). (7.4)
Proof: We denote the goal function in (7.2) by @p(x) and the part subtracted from

(¢c,x) by @,(x). At first let us prove equality (7.3). Since x € Arg(7.1), we have
®p(x)=(c,x)=o0pt(7.1), consequently

opt (7.2) = sup@p(x) = opt (7.1).
x U

Inversely, due to Lemmas 6.4 and 6.3:

(¢,x)-min(u;,A;x-b’)<(c,X), Vx=0.
(/) |

Taking this inequality into account we can evaluate @ (x) for x > 0 as follows:

Pp(x) < (¢, x)+min(u;, A x -b’) - Py(x) <
(/)

< upt(7.1)+T}P(Ej,(ij—bJ)')—-tbo(x) <

(7.9)

—

:upt(7.1)+§1—(Rj,(AJ-x—bJ)' ) — Dy (Xx) =
0

L min(R;,(A;x-b’)") <opt(7.1).

() (/)

=opt(7.1)-

Hence sup@p(x) < opt (7.1). Therefore, equality (7.3) 1s proved. From 1it, in particular,
x:20

follows the inclusion Arg (7.1)c Arg(7.2), which makes it possible to write max
instead of sup 1n problem (7.2).

Now prove the inverse inclusion. Let x € Arg (7.2). According to (7.5) we have:

R,-1 . a '
~—min(R;,(A;x-b/)").

()pt(7.1)=‘PH(f)Eopt(_'?-l)‘ - T
0 J
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Hence

min(Rl,- ,(A_,-x ~5/)")=0 ,

( 7)

and we have 3, :(Rj”,(AJ-“E—bJ" )")=0, which with R; >0 implies A; x < blo .
; I

Consequently, xe M; < M = _UIM ;- The feasibility of the vector x for problem (7.1)
JT;

and equality (¢,x)=opt(7.1) imply x € Arg (7.1) . Therefore Arg (7.2)c Arg (7.1). The

proof of equality (7.4) 1s complete too.

Construction of the proof can be repeated in more general cases of problem
(6.2) and its equivalent reduction to the problem

sup| f(x)-min(R;.F}(x) ]. (7.6)

x () (/)
Namely, the following Theorem is valid:

Theorem 7.2. Let all the problems max| f(x)| F;(x)<0, x>0 | have the saddle

points [ X, U; ] Then for R ;> Ryu;, Ry>1 problems (6.2) and (7.6) are equivalent,

i.e. their optimal values and optimal sets are the same.
Indeed, according to Lemma 6.3 we can write the inequality

f(x)< f(x)+ min(z

U TJ,FJ(.T)), VxEO,

and then perform all steps according to (7.5).
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