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Abstract: Pseudo-delta sequences and pseudo-delta functions in the framework of
pseudo-analysis are presented. In this paper an important property of pseudo-delta
sequences with respect to pseudo-convolution is proved. The study of such sequences is
of Interest since we can use them in approximaton of a class of operators that appear in
optimization problems.

Key words: Pseudo-addition, pseudo-multiplication, decomposable measure, pseudo-integral,
pseudo-convolution, pseudo-delta sequence.

1. INTRODUCTION

Classical mathematical analysis is based on the field of reals (R, +,-). This has
implications on the corresponding linear algebra, measure theory and integration
theory, which are corner stones In many applications on ordinary and partial
differential equations and difference equations (mostly linear). Many types of non-
additive measures and corresponding integrals ([6], [8], [18], [25]) have been
investigated, stimulated by many different problems in practice, mostly by modeling
different uncertainties in the theory of fuzzy systems, which are bases for the decision
theory and artificial intelligence, the system theory, and the game theory. An important
subclass of non-additive measures contains decomposable measures with respect to
some semiring ([aﬁb],®q®),—wsa<b£+oo ([6], [7]). There are many different

applications of analysis based on such semirings (usually called pseudo-analysis) 1n
optimization theory, nonlinear equations of different types, ‘decision theory, etc. ([2],
18], [12], [18], [20], [25]).
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In the second Section we present the basic definitions and examples related to
semirings on reals. In Section Three we briefly present the corresponding measure and
integration theory and introduce the notion of pseudo-convolutions, a generalization of
the classical convolution of functions. Section Four contains the basic results on
pseudo-delta functions and pseudo-delta sequences and in Section Five we prove a
theorem on the pseudo-convolution of pseudo-delta sequences. In Section Six we
present some applications in the optimization theory.

2. SEMIRINGS ON AN INTERVAL OF EXTENDED REALS

Let [ a,b | be a closed subinterval of [ -, + = | (in some cases we will also take
semiclosed subintervals). The partial order on | a,b | will be denoted by: <. The symbol

< has the usual meaning: for any x, y [a,b ], x<y ifandonlyif x<y and x =y .

The structure (|a,b|,®® ) or [a,b]|™" is a semiring in which the

operations @ and @ have the following properties:

The operation ® (pseudo-addition) is a function ®:|a,b|x|a,b|—>[a,b]
which 1s commutative, nondecreasing (with respect to <) associative and either a or b
1s a zero element, denoted by 0, 1.e., for each x e [a,b ] 0®x=x holds.

The pseudo-addition of n elements is defined by ®” & x;, = x, ®(®” _]1 x;). We
define further: &, x; = lim @ | x; .

I
I~

Pseudo-addition @ is idempotent if for any x € [a,b |, x ® x = x holds.
Let [a,b] ={x:x¢ la,bl, x>0 }.

T'he operation @ (pseudo-multiplication) is a function @ :|a,b ]x la,b | [a,b] which
15 comunutative, positively nondecreasing, i.e. x <y implies x®z<y® 2z, z¢ [a,b ]_+_ :
assoclative and for which there exists a unit element 1 [a,b |, ie., for each xe [a,b]
LOX =%

We suppose, further, 0®x =0 and that ® 1is a distributive pseudo-
multiplication with respect to @ ie., x®@(y®Dz)= (xR y) D (x ® 2).

Let fand A& be functions defined on X and with values in a semiring [a, b ]" :
Then, we define, for any xe X, (f®h)(x)=f(x)®h(x), (fRh)(x)=flx)® h(x) and
for any A e [ a,b ] (A®f)x)=A® f(x).

In this paper we will consider the following semirings:
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Ia)(i) Thesemiring (—=,+ % ™"
x@y=min{x.y}, x®y=x+y, x.ye(—oo_+oo ]

We have 0 = +« and 1 = 0. The idempotent operation min induces a partial (full) order
in the following way: x < y if and only if min(x,y) =y, which is the opposite of the
usual order on the interval (=, + = |.

I a) (ii) The semiring [~»,+ < )74 .

x®y=max{x,y{, x@y=x+y, x,ye[—-r.r:,+-x ).

We have 0= -2 and 1=0. The idempotent operation max induces a partial (full)
order in the following way: x < y if and only if max(x,y) = y. Hence this order is the

usual order on the interval [-=,+= ).

I b) (i) The semiring ( 0,+ = ]'“i"":
x@yzmin{x,y}, xQy=x-y, x,ye(0,+w].

We have 0 = +¢ and 1 = 1. The idempotent operation min induces a partial (full) order
in the following way: x < y if and only if min(x,y) =y, which is the opposite of the

usual order on the interval ( 0,+= |.
I b) (ii) The semiring [ 0,400 )P8%s,

.rl'fby:nmx:x,y:, xPy=xy, x,ye[(),+x~ 35

.

We have 0 = 0 and 1= 1. The idempotent operation max induces a partial (full) order
in the following way: x < y if and only if max (x, y) = y, which is the usual order on the

interval [ 0,+= ).

l[ 'l'he semiring [0"{_ o ] Imin, mix

x@y:min{x,yﬁ, xGD_)':rﬁax{x,y}. x,ye[0,+a:~].

We have 0 = +¢ and 1 = 0. The idempotent operation min induces a partial (full) order
in the following way: x < y if and only if min(x,y)=y. Hence this order is the
opposite of the usual order on the interval [0,+ = |. We also consider a semiring with

operations @ = nax and @ = min .

111 A nonidempotent case in which the pseudo-operations are defined by monotone and
continuous generator g [15], |18].
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By Aczel's representation theorem for each strict pseudo-addition © (1.e.
continuous and monotone on its domain), there exists a monotone function g
(generator for ®), g:[a,b]— [0, | such that g(0)=0 and

u®u = g'1 (glw) + g)).

If the zero element for the pseudo-addition is a¢, we will consider increasing
generators. Then g(a) =0 and g(b) = » . If the zero element for the pseudo-addition is

b, we will consider decreasing generators. Then g(a) =« and g(b) =0. Hence g 1s an
isomorphism of semigroup ( [a,b],® ) with the semigroup ( [0, |,+ ).

Using a generator g of strict pseudo-addition @, we can define pseudo-
multiplication & :

u®u = g_l (glw) gv)).

This 1s the only way to define pseudo-multiplication ® , which 1s distributive
with respect to @ generated by the function g (see [13]). The operation ® has all the

properties of the pseudo-multiplication from the previous Section. It can be easily seen
that g(1)=1.

We will denote by S the domain of a semiring of the type I —IIL.

3. MEASURES, INTEGRALS AND CONVOLUTION
IN PSEUDO-ANALYSIS |

The goal of this Section is to define the integrals based on o — ® decomposable

measures (see the definition below). For that purpose we omit the details and refer the
reader to [18] for a more detailed study of the subject (see also [2], [11], [12], [24]).

Let X be a non-empty set. Let £ be a o — algebra of subsets of X.

Definition 1. A set function m:% — [a,b] (or semuiclosed interval) is a @ -

decomposable measure if it holds that m(0) =0 f @ is idempotent we do not always
suppose this condition); m(A U B) = m(A)®m(B) for A,Be ¥ suchthat AnB=0.
A ® — decomposable measure m is o —® — decomposable if

m(UA,) = @ m(A;)
=1 1=1

holds for any sequence | A; } of pairwise disjoint sets from X. |
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Remark that in the case when @ is idempotent it is possible that m is not
defined on an empty set. Let m be a o - ® - decomposable measure. Some function
f:X —|a,b] is measurable if for any c € [a,b | the set | x: f(x) < ¢ | belongs to X.

We suppose further that ([a,6],® ) and ([a.b],® ) are complete lattice
ordered semigroups. A complete lattice means that for each set A —[a,b| bounded
from above (below) there exists supA (inf A). Further, we suppose that [a,b] is
endowed with a metric d compatible with sup and inf, ie., lim supx, =x and

lim infx, =x 1mply lim d(x,,x) =0, and which satisfies at least one of the following

11 —> 0

conditions:

(a) dx®@y, x'®@y')<d(x,x')+d(y,y')
(b) d(x®y, x'@y')ﬁmax{ d(x,x'),d(y,y'") }.

We suppose further the monotonicity of the metric d, 1.e., x <z <y 1mplies
dix,y) 2 max{ d(y,z), d(x,z) }

For example, on the semiring (-o0,+ ]mi“"* the metric - d(x,y)=

e maxtix,y) -mintx,y)

-e ( satisfies all of the preceding conditions.

We define the characteristic function with values in a semiring by

(0, xeA

=
Kalx)=s | = )

L 2

The mapping ¢:X —|a,b]| is an elementary (measurable) function if it has the

following representation

e:éa,- ®XA,- for a; € [a,b] *
=1

and A, € & 1s disjoint if @ 1s not idempotent.
The pseudo-integral of an elementary function is defined by

J:; e®dm=@a,~ m(A;).
(=1

For any measurable function f: X — [a,b] one can construct a sequence { ¢, } of
elementary functions such that, for each xe X, d(p,(x), f(x)) > 0 uniformly as
n — o (see [18]). Using this fact we give the following
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Definition 2. The pseudo-integral of a bounded measurable function f : X — [a,b] LS
defined by

_[); f®dm = lim IX p,(x)ddm,

n-—»«

where | ¢, | is the sequence of elementary functions constructed in the above-mentioned

theorem.

Some elementary properties (e.g., linearity) and applications of the introduced pseudo-
integral can be found in [14], [18], [16], [17], [19].

Definition 3. Let B(X,S) denote the semimodule of all functions from X into the
“semuring (S,®,®) such that '

® . ,
¥ f(x)dm e S,

where m s a o - ® — decomposable measure.
In the rest of the paper we take that X = R .

Definition 4. The pseudo-convolution of two functions f:R —|a,b| and h:

R - [a,b ] with respect to a ® -decomposable measure m is giwen in the following way

(f*h)(x) = [ fx-t)®dmy

where my = m in the case of sup-decomposable measure m(A) = sup, 5 hlx) (and in
the case of if-decomposable measure m(A) = inf,_, hix) ), and dm;, = h@dm in the
case of ® —decomposable measure m, where ® has an additive generator g and gom is
the Lebesgue measure (g-calculus).

It 1s easy to check that a pseudo-convolution is a commutative operation. This
follows by the equality |

_ ® ., & ;
(f * ()= [g flx - )@ dmy = fo h(x -)® dm = (hx f)(x).

It 15 also an associative operation.

T'he following examples show the explicit forms of pseudo-integral and pseudo-
convolution for special important cases (see also [20], [21]).
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I a) (1) For any real valued function 2 bounded from below we can define a o —sup -
decomposable measure m(A) = inf,_, h(x) (A c R). By taking ® = min = inf , ® = +,

we obtain

J.; f®dm = inf (f(x)+h(x)),
xR

for / bounded below. We will denote by B(X,(-o0,+ ]'ni“’+) the semiring of all

functions bounded from below (with respect to the usual order). In this case the pseudo
convolution becomes

(/‘*h),,,(x)=j;: flx—1)®dm, =jR h(x =)@ dmy = inf (f(1)+h(x 1)

I a) (i1) For any real valued function /& bounded from above we can define a o —sup-
decomposable measure m(A) = sup,.5 hlx) (Ac R), Taking ® = max =sup, ® =+,

we obtaln

I;: f ®@dm =sup(f(x)+h(x)),
xR

for f bounded above. We will denote by ‘B(X,[-o,+0 )™%") the semiring of all

functions bounded from above.

(f*h)m(x)=J'§ f(x—-t)®dmy =Suph(x—t)®dmf =sup(f(t)+h(x—1)).
R iR

Cases I b) (1) and I b) (i1) are treated similarly, taking - instead of +.

] min, max

II For bounded functions f with values in semiring [0, + o0 the pseudo-integral

based on inf-decomposable measure m, m(A) = inf,_, h(x) , 1s given by

[oo f®dm= inf (max(f(x).h(x)),
R xR

and the pseudo-convolution of the functions f and A will be

(f *h)p(2)= [ f(x ~1)® dmy, =inf (max(f(¢), h(x 1))
R

III If ® is a strict pseudo-addition with a monotone generator g, gom : X — [0,g(c) ]
with ¢ € [a,b | is a measure and fis a measurable function, we have.

S

B f®dm=g"‘(jx(g°f)-dx),
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where dx =d(gom) is the Lebesgue measure and u®uv=g "(gw-gw). In the
sequel, generators g will be monotone and continuous functions, so g l(gls) =

glg ') =s.
The pseudo-convolution in the sense of the g-integral 1s given by

(f *h)(x) = g ' ([ g(f(£) glhlx —1t))dt). (1)

Remark. Using continuously differentiable generators g, the g-derivative of a

differentiable function / can be defined. This definition has local character and the

function f must have the same monotonicity as the generator g. The properties of the g-

derivative and g-integral and the corresponding applications can be found, e.g. in [18],
[15], [14], [22], [20].

4. PSEUDO-DELTA SEQUENCES
4.1. The 'delta function' and delta convergent sequences — the classical case

About sixty years ago, Paul Dirac introduced the famous 'delta function' while
solving problems in quantum-mechanics. Although the formal use of this object has
become an efficient tool In quantum mechanics calculus, this 'function' has
contradictory properties: it differs from zero in only one point, but its integral equals
one. This contradiction has been overcome by the construction of various delta
sequences which in a certain sense converge to a 'delta function' and also by defining a
delta function' as a functional. The classical 'delta function' is introduced as a 'function’
defined on the real line as follows

Boo it =10,
(X)) ="¢

(i)

with an additional property j()'(:c)dx =1. We have further that for a test function ¢

(nfinitely differentiable function with compact support)

|6(t—x)p(t)dt = p(x) holds.
R

A classical delta sequence | 5, | is a sequence of functions which converges to a 'delta

function' in the following sense

1 —> 0

[im [o‘” (t —x)p(t)dt = p(x) .
R
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and at the same time the equation

b IO ifb<xorx<a,
lim J'J”(r - Xx) Q= (2)
O=p ] Ll fa<xsb.

1s satisfied.

By (2) 1t follows that lim jo‘,,(x)dx =1, which explains the equation Ih‘(x)dx — 7
Ny o R

Some well known examples (see [9], [23]) of delta sequences are:

1 sinnx[ | 1 N | / n nyl 4l
y ) ‘ ‘) f y ) =l .
r x| T 1+ nx® 4r |

\

4.2. ldempotent analysis and g-calculus

If the pseudo-addition @ is either max or min, the pseudo-delta function will
be (see also [12], [21])

; . I Tt =)s
6" (x) = (9)

lo iftx=0.

As usual 0 1s the zero element for pseudo-addition, and 1 is the unit element

for pseudo-multiplication. The pseudo-delta function defined by (3) 1s the unit element
for the 'convolution' in the sense of a pseudo-integral. As in the classical theory, we
have

j'c’?f dt}’rL'. l {)@ (Z,n =1,

- ""*,J (] w M ¥ .
Since 0 ' may not be a function in the usual sense, we have investigated the

existence of the sequences of functions which converge to o

(M

. .y . ~ () (=] ' » N | « (D .0
Definition 5. Pseudo-delta sequence |6, | is a sequence of functions &,

B( X,[a,b ] i3 ) with the properties:

1. lim (5, * f)(x)=f(x).

I —»u0

o H) < 3 (n
2. lim IX 0% (x)dx=1.
11— 00
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For simplicity we suppose that the elements of delta sequences are even
functions. We gave the following characterizations ([21]):

I a) (i) For the semiring (-0, + o« ]”‘i""* , from (3) it follows:

L (=0 i x=0;

T (x) =

0 (=w) fx=0.

The pseudo-delta sequence will be a sequence which converges to this pseudo-delta

function which 1s the unit element for the pseudo-convolution. Hence for the pseudo-

)ITIII"I

delta sequence | « I the following equation must hold

i
L}
'\+1

lim (f * 3™™ Y(x) = S (x - t)® dmy =

Il —> 0 N —»0 R
lim m}t;(f(t SMINt (x — ) = f(x)
n-—uw te

Therefore we have:

Theorem 1. The sequence of functions {5™™" Y} is a pseudo-delta sequence in

B( R,(~,+ o |™™" ) if the following three conditions are satisfied

1* mm (0)_0
2. c‘)m'“ (x)>0 tf x#0;

3. SMMY(x)—> w0 when n— o for x 0.

min,+ | 2m }

An example of | & ! is the sequence | n - x , for an arbitrary but fixed m e N .

I a) (ii) For the semiring [-o0,+ % )™ the pseudo-delta function has the following

form
T () L=t

&§TEXF () = |

0 (=-x) ifx=0.

Pseudo-delta sequence | o,"*" | is a sequence for which the following equation holds

llln(/ *()rn ux 4 )(J,)— lll]l IR llld"{ . (x—t)@dm,, =

]}l —» N >

Imax,

lm sup(/()+0,
=% JeR

(& = £))= (%)

We now have:
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Theorem 2. The sequence of functions | 6" | is a pseudo-delia sequence if the
following three condifions are salisfred

1, 8y 10)=0:

2., O, "x)<0if x%0:

3. 6, (x)—> - when n > for x=0.

X 2m

Here, we can take the following example & "™ (x) = -n .meN.

(Cases I ' b) (i) and I b) (ii) can be treated similarly, taking into account that, in these
cases, we have 1 = 1. Case II is analogous to case I a) (1).

III We start with a counterexample which shows that definition (3) is not adequate 1f
the @ 1s defined by a monotone and continuous generator g.

Example 1. Let us assume that the g-delta function ¢ s defined by (3), and let the
generator g be

g(x}zl—:-r——. IE[U,l].
-

Then we have
(f+6% xx) = [*f(1)® 5% (x- 1)@ dm =

g "(Jatg "gfi) g x-nnd =g N gifide.

We obtained the g-integral of function /, which, in general, differs from function /. For
example, (see (|22)) for fix) = x we obtain

x+In(l -x)
x+In(l-x)-1

@C

Im x@dm =

Hence (f*0 )ix) = [ix).
For that reason we give the following definition.
Definition 6. A g-delta function is the mapping 6% : R — [a.b ] defined by

fx=0,
o8 (x)= o (4)

a if x#0

in the case of a =0, If b= 0 the g-delta function 1s:
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Fa it a =0,
5¢(x) =< (D)
b if x#0.

We can easily show that we again have '["E” 07" (t)®dm =1 . Recall that the pseudo-

convolution i1s given by (f*xhA)(x) = g l(jg(f(t))*g(h(x —t))dt).
The g-delta sequence | 5% |, is a sequence of functions which converges to
Jde  i.e,,

lim g '([g(f(t)- g6 (x—1))dt) = f(x). (6)

An almost immediate consequence of the (6) is the following

Theorem 3. A sequence | 5% | of functions is a g-delta sequence if and only if §f =

g '8, where | 8, }is a classical delta-sequence with the property &,(x)>0 (xeR).

“* g "w =-Ilnu. Generator g is a decreasing function,

tela,b]=[-=,2], and =0, 0=1. From (3) it follows: 7 (x) =-In(5, (x)). If we

Example 2. Let glt)=e¢

$
InXx

. Il ' . &7 :
put o, (x)=—e , we obtain 07 (x) = nx® —In(n/rx).

T

Example 3. Let g(t)=-In(1-¢),g 'w=1-¢"“. Generator g 1s an increasing
function, t e [a,b]=[0,1],and a =0=0, 1-¢ ' =1. The g-delta sequence is 55 (x) =

] =g 9}

5. CONVOLUTION OF PSEUDO-DELTA SEQUENCES

We now introduce a special subclass of pseudo-delta sequences.

Definition 7. A pseudo-delta sequence |5, | is asymptotically admissible if

. .}_-+;l . .
hm o, >1, forevery ne N.
x>t

Example 4. Pseudo-delta sequence | s™™" | is asymptotically admissible if it

satisfies the following condition: lim ™™ (x)>¢&>0 for some ¢ > 0.

X—>r L0

Example 5. Pseudo-delta sequence ¢ " 1is asymptotically admissible if it satisfies

the following condition: lim &, (x) < —& <0 for some ¢ > 0.

xX—y+w
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Theorem 4. a) The pseudo-convolution for idempotent cases (I and II) of two
asymptotically admissible pseudo-delta sequences is an asymptotically admissible
pseudo-delta sequence (for cases I and II, respectively).

b) The pseudo-convolution of two g-delta sequences is a g-della sequence.

Proof: a) We show that the convolution of two asymptotically admissible pseudo-delta
sequences for Case I a) (1) i1s again an asymptotically admissible pseudo-delta sequence
for the Case I a) (1). The other idempotent cases can be proved in an analogous way.

Let y &) mingt 1 and { oy MmN 1 he two pseudo delta sequences. We show that
their pseudo-convolution (5’ I o5 f‘:," )= mlg ) ;“’:“ (f )+5§“:‘” (x — 1)) 1s a pseudo-
te '
delta sequence, 1.e., it satisfies conditions 1 — 3 in Theorem 1.

1. Let x=0.For £ =0 we have mé(c)mm (0) +c>mm (0))=0.
; 7

St (t)+c‘rmm (—-t) > 0. Hence

If t #0 we have

- Mmin,+ ~min,+ : ~min,+ min,+ -
(Ol.n e 2n )(0) = lI‘lf(OL” (£)+OZH (=1))=0.
(R
2. Since (5, " i and | o)"™" | are both asymptotically admissible pseudo-

delta sequences, it 1is easy to see that their pseudo-convolution.
inf (& LDy Jg mint (1)) is strictly positive for all x =0 .
tcR = M

3. For every arbitrary but fixed x we have lim m}{ (0, DUR;F (. 29 ming+ (y _4)) =
1L —><0 L z

We shall prove that | o i, (52""“ | is an asymptotically admissible pseudo-

delta sequence. By definition we have

lim 01"::“* (x)>&; >0 forsome ¢ >0 and

x—>100

lim a;";" (x) > €9 >0 forsome &5 >0.
xX—yta0

Now

lim mf(()m'"+(t)+0m'm(x—-t))=

n—wtecR

lim (a""“*(zo)+am'“*(x—t0)) ‘{n:nf(t0)+£2 >0,

n—>0

where #, denotes the point in which the infimum is reached.

Thus, the first part of the theorem is proved.
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b) Let {S‘lg”_(x) and J)‘fn (x) be pseudo-delta sequences. Their convolution is defined by

. g . g AN
m]’” * 02‘” Mx). So we have

g '([gof,@t)gdf (x-t)dt)=g '([g(g 1(81,8)) glg ' (59, (x —1)))dt) =

g-l(j()‘ (t)'JZ,n(x_”d“ :gwl(dl,n *62,”(3:)) = 8 11(‘5‘31(;‘:)) = Jf(x)?

1.n

where | 0, |,and | 05, | and { 9, | are classical nonnegative delta sequences. Here

we used the fact that the convolution of two delta sequences is a delta sequence (see [1]
o) 1ELTAR

6. PSEUDO-INTEGRAL REPRESENTATION:
APPLICATIONS IN THE OPTIMIZATION THEORY

In optimization problems the operator known as the Bellman operator often
occurs ([3]). Let X and Y be arbitrary non-empty subsets of R. Let ke C(X xY ). Then

the operator B:(C(Y) — (C(X) is defined by

(Bf )(x) = max (k(x,y)+f(y)) .

j’t_ Y

Using the pseydo-integral with respect to @ = max and ® = + , we can rewrite
the preceding operator in the form -

(Bf )(x) = j;,*'k(.r.y)dm/- = J‘;ﬁk(x.y)@) f(y)dy .

T'his non-linear operator is pseudo-linear in the following sense

Definition 8. A mapping T :B(Y,S)— B(X,S) is pseudo-linear if the following
conditions are satisfied

TW0)=0; T(fOh) =T(F)®Th); TAQFf)=A®T(f) (AeS, f.heBY.S)) .
The Bellman operator B can be extended over the whole B(Y,S™*") by

(Bf )(x) =sup(klx,y)+ f(y)).
yeY

In paper [21] we found a condition which allows pseudo-integral representation for a
class of pseudo-linear operators. Namely, the following theorem is proved:
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Theorem 5. Let S be one of the semirings of the type I-11, with the property that for
every bounded subset {a, } of S and ieS we have ©,1®a,)=A80D,a,. If

T':B(Y,S)— B(X,S) is a pseudo-linear operator, then it satisfies the condition
Gy =G A (e

if and only if there exists a unique function ke B(X xY,S) such that

(Tf )x) = I; R(x.y)® f(y)dy .

In the proof of the theorem (see [21]) we used a pseudo-delta function to obtain the
kernel of the pseudo-integral representation.

6B (2 ~ (%)
We can now use a pseudo-delta sequence {(b,f* ), |, where (é: " )n () =
~ () -
0, (-—y), to construct a sequence | k, | of pseudo-kernels as follows

ko (x,y) = (T(J‘?’["‘J ) ae):

Then the sequence { T,f | of pseudo-linear operators defined by
(TafXx) = [ Fn(x.) @ f(y)dy

tends pseudo-weakly to Tf | 1e.,
(T f-9)e (1) = [ ([i, b (x.3) @ f(3) dy) ® () dax
tends to

(Tf.0)e () = [y ([, k(x.5) ® f () dy) ® p(x) dox

as n — «. In such a way we can approximate pseudo-linear operators.

The representation of a pseudo-linear operator, in the form of a Bellman
operator, occurs in many fields. Let us give only two examples.

. The Shortest Path. In discrete optimization, the pseudo-additive Bellman
operator occurs in trajectory problems ([2], [12]) with the variable time of motidn.
Namely, let (V,A) be a graph with the set of vertices V and the-set of arcs A. The

problem of the shortest path is the construction of the shortest path from the fixed
point x, € V to any point x € V , with the motion beginning at time ¢, . If we denote

by hl(a,t) the time of motion on the ar¢c ae A beginning at time {, then the
corresponding Bellman operator B is defined on the set of functions
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(f|f:Vo{teR|t2t })
\ f.f Vi =1

(Bf )(x;)=min min (7 + Ala,7)),
acA t2f(x;)

where min, , 1s taken over all arcs a€ A entering x,. Then the shortest time

T(x), T:V —|a,b|, for the motion from x, to x satisfies the following Bellman
equation T' = (BT)® (¢, ® o, ), where for |

: 1 ifx=x,.
0y (X) =9 .
0 | + a0 1fx e V { IU }

Antagonistic multistep games. Let X =112 . .2 | and let M be the
metric space of the strategies of two players. Let p;;(a,b)be the probability of
transition from the state : to the state j, if the first player chooses the strategy a e M
and the second one the strategy b M . If we denote by [ ;_j(a,b) the income of the first

player from the given transition, then the game is called a game with value if the

following equality holds for all x = (x',x*,....x")e R”

n . /1 :
minm{axz pijla,b)(x’ =l La,b)):,maxrr})m Zpij(a,b)(xf +1;:(a,0)).
a J j-‘l (1 j:l

The operator B:R" — R" given by
n

B, (x) = min max > piila,b)(x’ +1;:(a,b))
@ J=1

1s the Bellman oparator for the game. It has the following properties

Ble+x)=c+Bx) xeR", c=(¢ec,...c)e R": (D)

| B(x)- B(y)

<

x-y| xeR", yeR", _ (8)

~where |x|=max;x".

It can be proved, using dynamic programming [4], that the value of the r-step
game given by the initial position ¢ and the terminal income x € R" of the first player
always exists and is given by B/ (x). The representation of any operator B which

satisfies (7) and (8) has the form of the Bellman operator of the game. For details see
[10].
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7. CONCLUSIONS

We presented a part of even developing pseudo-analysis which serves as a

mathematical base for many different fields such as fuzzy logic, decision theory, system
theory, nonlinear equations, optimization, and control theory. Pseudo-delta functions
and pseudo-delta sequences in nonlinear analysis play an analogous role to delta-
functions and delta sequences in linear analysis.
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