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Abstract: The goal of this paper is to investigate t he role of viscodamper behavior in
the iden tification of frame models from dynamic response data caused by seismic
fo rcing funct ions. Including nonlinear damping of viscodampers in the mathematical
model for even simple str uctures sign ificantly affects t he distribution of dampin g, and
the accuracy with which response can be predicted. A num ber of different
mathemat ical models of these struct ures are evaluated using syste m ident ification.
Each mathematical model depends on a number of para meters related to the
character istics of the structure. The gradient method is applied to calculate the values
of these parameters which best reproduce th e measu red response of th e structure.

T his paper presents the mathematical model for mulation of a five-story steel
frame model us ing the parameter system identification technique and shaking table
experiments. T he base isolate syste m consist ing of helical springs and viscodampers
was manufactured at GERB, Germany. The experi mental work was conducted using
the shaking table of the Instit ute of Earthquake Engineering, University of Skopje,
Macedonia.
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1. INTRODUCTION

Sys te m identificati on is a tool that can be used to eva luate a model. By
systematically adjusti ng the parameters to provide the best possible correlatio n
betwee n predicted and measured responses , the form of the analyt ical model can be
evaluated. System identification is a generic term for this optimization process, and
there are many approaches to applying it to structural engi nee ring. There have been
many survey articles wr itten on system identification [1,2,31, 5 0 this discussion need
not be exhausti ve. Evaluating models by adjust ing parameters to fit known response
data is known as parametric identification .
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Base isolation is a n an ti-se ismic st rategy by means of which damaging
earthquake motion reduces structural responses through a mechanism buill into the
structural syste m. Such a sys te m, cons isting of helical springs and viscodampers . was
developed by the GERB Company in Germany. A five-story steel frame structu ral
model , isolated by GERB vibration base isolation elements, was intensively tested
applying a set of different earthquake motions on a biaxial seismic shaking table.
During the testing it was observed that the viscous damping of the dampers was
cont inuously decreasing. Namely, with an increase in the number of applicat ions of
oscillations to the cylinders in the viscous mass, the temperature of the fluid increased
and, consequently, the damp ing: coefficients decreased.

On the basis of this experimental conclusion, resea rch was performed in order
to determine the relationship between the change in the damping and the path passed
by the cylinder . This means, physically, that the kinetic energy of the cylinder , when it
moves in a viscous medium, turns into thermal energy. With an increase in fluid
temperature, the fluid tends to lose its viscosity, which in turn causes a decrease in the
damping capacity, To determine this relat ionship, experimental results were obtained
by seismic shaking table testing and using the technique of parameter system
identi fication.

2. SYSTEM IDENTIFICATION TECHNIQUE
IN EARTHQUAKE ENGINEERING

Mathematical modeling using system identification is the process of defining of
mathematical equa tions for a given physical syste m whose input fun ctions and
responses art> known. The problem of mathemati cal modeling is divided into two
categories depe nding on the degree of previous knowledge of the nature of the
considered process. Modeling has the character of "black box" identification for a certain
phenomenon and the physical aspect of the problem is unknown. The ot her category
includes all problems whose physical aspects are known. Earthquake engineering
problems fall into the second category because either their physical processes or their
geometry. properties of the material or structural characteristics are known.
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Ffgure 1. Ident ificat ion by Bekey
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A very good description of this identification technique for application in
engineering problems was given by Bekey and the syste m identification consists of the
following three phases:

1. Definition of the form of the model, i.e., selection of the differential equations of the
model and ext raction of the unknown parameters.

2. Selection of a criterion by means of which the "goodness of fit~ of the model responses
and physical system responses may be evaluated when both the mathematical model
and the physical system have been excited by the same input .

3. Selection of an algorithm or strategy fo r the adjustment of parameters in such a way
that the differences between model and syste m responses may be minimized [3) .

A general configuration of the modeling problem is shown in Fig. 1.

In earthquake engineering the responses of the physical systems can be
obtained by experimental invest igations of the syste ms using various test procedures,
such as shaking table tests, full scale tests of st ructures, etc. All these tests provide
various experimental results which, depend ing on the model concept, are used for the
determination of the model parameters directly or after filtering.

Our test model is a five-story steel fram e, mounted on two heavy base floor
girders, supported by four sets of spring-viscodamper elements manufactured by the
GERB Company, for simulat ion of a base isolated model directly or after filtering.
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Figure 2. Structural model on the shaking table
with vibration base isolation elements
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The position of the set , consist ing of a spring and viscodamper elements. is
shown in Fig. 2. The viscodamper axis and the column axis are overlapping. The springs
and viscodampers are designed for the real dead load of the model, which is
approximately 80 kN.

This experi mental program was planned in a way to ensure the collection of
maximum use ful experimental data. So, the displace ment and accelerat ion time
histories were recorded for various sets of earthquakes of different excitation levels on
each floor.

The aim of installing viscodampers is to absorb the energy brought into t he
system and to decrease the amplitude of t he sys tem vibrations. The frame has a linear
behavior, while the nonlinear behavior of the system stems from the viscodampers .

The experimental model was instrumented by 30 channels which measured
the accelerations, displacements and st resses . The displacements were record ed by
linear potentio meters with respect to a reference beam located on the foundation block.
The horizontal displacements were measured on the base girder and each floor . The
.horizonta l displacements were used in the system identification. T he earthquake
Pet rovac 1979, was simulated on t he shaking table.

3. MATHEMATICAL MODELING

From a theoretical point of view, a large nu mber of mat hemat ica l models
would be possible for each structural sys tem, whose solutions present the cons ide red
dynam ic response wit h different accu racies . However. each model involves unknown
functions and unknown parameters and each approach has its own advantages. The
problem is how to select "the most adequate" of all available models and how to reduce
the unknown functions of unknown parameters. It seems that only by the technique of
the cons truction of mathematical models. based on system identification, can an
objective evaluation of the advantage of each of the considered mathematical models be
provided. Although this paper is aimed at presenting the advantages of the parameter
identifica tion technique in comparison with ot her approaches, it cannot be applied to
all practical cases. Its application significantly depends on the kind of available
expe r imenta l data for the conside red physical system and their reliab ility. In this paper ,
efforts ure made to answer some of t hese questions.

Following Bekey's procedure of t he parameter system identi fica tion, the fi rst
step in its application is the definition of the form of the mathematical model , i.e.,
selection of the differential equations by which the physical system is mathematically
described . A large number of different dynamic models, having different complexity
levels. can be applied for a certain physica l model.

The cons idered structure was in elastic range for all simulated earthq uakes .
The supporting spring also remained in elastic range, while non-linearity was observed
only in the behavior of the vlscodampers . According to these experimental resul ts and
using the available test data , two models were cons ide red. The fi rst model (Fig. 2) has
the structure idealized by 72 degrees of freedom and mass concent ra ted at the joints .
Each mass has three degrees of freedom, two transla tions and one rotation . The model
is, basica lly, supported by a system of springs and nonlinear viscodampers .
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The second model has the structure idea lized as a rigid body which is
elastically supported by elastic spr ings and nonlinear viscodampers. Analysis showed
that this model with only t hree degrees of freedom, two translations and one rotation
provides very good results .

With that in mind, in this case the mechanical properties of the viscodampers.
having nonlinear relationship. are not known. The strategy of th e formulation of the
mathematical model for the given physical problem was directed towards
identification of the change in the viscous damping of th e dampers depending on
temperature. Literature offers many relationshi ps experimentally defi ned as different
empir ical and t heoretica l models. but they always apply to known fl uids.

The viscous material of the GERB dampers, in this case as a physical medium,
is cons idered to have unknown properties. Therefore. the technique applied for
formulation of the mathematica l model is based on para meter sys tem identi fication .

The differential equations of the dynamic behavior of the physical system in a
relat ive coordinate syste m in matrix form are expressed as follows:

[M J{ iiIPI }+ [ R(uIJ{ ulPI }+[KJ{uWI I= - [M J{ n(t ) I.
- -

mOO

(I I

[Ml = 0 m 0

r, 0 rz<p

the mass matrix . (21

(R) = 0 the damping matrix. (31

k, 0 k..

[K] = 0 ", ky,~ the stiffness matrix . (4 )

k", - ; J~",

The mass matrix and stiffness matrix can be determined on the experimental
base if the mass, dimensions of the syste m and the stiffness of the springs are known .

T he vector of motion ( u (P) I= I zW) , y ( fl ), tp( fl) I indicates the total mot ion for- - - -
the two translational degrees of freedo m and one rotational degree of freedom for the
mathematical model. Vectors ii (fl ) u( fl )and are the vectors of acceleration and velocity,- -
expressed as functions of an un kn own -:ector . Ai; it is obvious fr~m the above ~quation .
its solut ion is parametr ical ly dependent on vector p . The quality and quantity of the

experimental data affect the selection of "the most adequate" of all available models for

the considered problems.
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To date . the damping matrix has been ca lcu la ted as a linear combinat ion of the
muss matrix a nd st iffness. or as a function of the velocity v of a body in a viscodamper,
but this work presents another point of view, i. c.. damping is given through three
unknown para mete rs in the function of the path s of the cylindrical body

(5)

W} = fa. b. c l . vecto r of unknown parameters.

A number of experiments have shown that the damping, caused by constan t
disp lacement of the body in the cylinder, decreases within physica lly permitted limi ts,
leading to the conclus ion that it is an exponentially decreasing fun ction . T hat is why
the damping is expressed th rough this function. as shown in (5). T he unknown
parameters {a , b. c} will he determined by parameter iden tifica tion of t he system. Fig. 3
shows the meaning of parameters in t he physics .

Q

b - - -

c

-- - - - - - -

s(mm)

F iJ.:urc a,Curve of damping in the viscodamper

Unknown parameters a and b show the init ia l and ultimate value of
the damping ratio of th e matter in the damping cylinders..

Equation (1) presents th e dyn amic behavior of the mathematical model of the
discussed physical sys te m. It can be solved nu merically by ste p-by-ste p integration.

T he solution of this equation presenting th e hori zontal displacement of the
system is compared with th e expe rimental measure of the hori zontal displacement of
the sys te m and is used for de te rmi ning the error fun ct ion .

The next problem is the select ion of a crite rion function or an error function .
It is explained as follows.
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Suppose we have a sys tem subjected to a time dependent input In( i l l. which
produces a set of measurable outputs Y j U) .j = I ,....n . If we have a model which we

believe represents the syste m. this means we have some means by which. given an
input. {n( t) land some information about the system in terms of a vector of unknown
constants. P. we can predict the output of the system. x j (~.i ) . Here we include ~ as

an argument to emphasize the dependence of the predi cted output of t he syste m on the
infonnation supplied by the model.

One measure of how the predicted response matches the measured response is
the squared-error loss function over time interval 0 -c t < T:

" T
JI~) ' I Je, [ XJ I ~. t1 - yJ(I) l'dt.

polO

16)

In t his equation CJ' j:::: l •...•n represent the weight coefficients for evaluation

of var ious physical variable infl uences . For this case g j has the value of one, since the

error function is formed only hy displacement . Again. 1\ is included as an argu ment to

emphasize the dependence of J on ~ . If ,J ( ~ ) = O. then the predicted response would- -
exactly match the measured response. We would like to know what value of II . if any,

min imizes J.
Unfo rtunately. very few models permit a closed form solution for 1\ which

minimizes J globally . It is, however , often possible to generate an iterative scheme that
will produce a 11 that is a local minimum.

The third step in the identi fication technique is very important and represents
the select ion of t he algorith m for para meter adjust ment to minimize the criterion
funct ion (6). There are a large nu mber of methods in mathematical opt imization th eory
that can be used in the identification process . Most of them are based on the iterat ive
technique.

Gradient methods are the most suitable for determination of th e function
minimu m in a multi-dimensional space .

4. OPTIMIZATION ALGORITHM

Given a set of parameters Jl • we would like a systemat ic method to discover a

new set II such that J (Jl )< J (Jl ). Repeated often enough. this will lead to a
- H I _ H )_I

minimu m for J . If the function J is approximately quadrat ic in t he neighborhood of II ,-,
there will be little error in the approxi mat ion

T T 2
J( ~ ) = J I II J+ " J III Ji-II - II )+11 2111 - ~ ) " Jill Ji~ - ~ )

_ I ~ I _ I _ I - 1+ 1 - I - H I - I -I - H I - I

where
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To mmimize-J. its gradient wit h respect to

Hessian matrix is invertible. it follows that

II = II , [ ,,' ./11' ) I- I " ,fil' J.
_ ,. \ _ , _ , _ r

fl is set to the zero vector. If the
- H I

Si nce J will not , in ge neral. be exactly quadratic, we will want to be able to
adjust th e size of the correction to 'I . Thus we modify the equation by adding a step-,
size variable . 11 :

, -I
II = ~, u l "' ,fI ~J J ",f(~ J .
- 1. 1 - , - , - ,

The components of V.I and VlJ are found by taking t he appropriate
derivatives of the error fun ction :

z" ./

Experience has shown that the second integral. particularly when II, is close

to a minimum. is negligible when compa red with the first. The Gauss-Newton iteration
scheme. therefore . is to choose u a nd ca lcu late

II = II , u I Mlill 11" " ,fil' J,- ,.1 - , - . - /

where the approximote Hessian mat rix . au .is defined a.s

TIll' technique for choosing (J is known a." a line sea rc h algorithm s ince the
mul udimensional minimizntion problem has been reduced to a single di mension .

5. LINE SEARCH

By ostublishi ng n searc h di rection. the erro r funct ion is reduced to u function
of the' variab le 0:
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J lal=JIP -aAH -' W I" J W I )
-I -'-I

whose derivative is

..'!... J la) = -",]Till I Afr ' (p I " J l p I.
do. -1 .. 1 - - I - ,

30 1

If we are pointed in the right direction, J ' (0) < O. If the error su rface were
quadratic, t hen the exact minimum would be at 0. = 1. If J ' (l ) > 0 then there must
be a mini mu m for 0 -c fl -c 1. In order to fi nd a point closer to the minimum, a cubic
polynomial is constructed so that its values and derivatives match J at the end points ,
and the minimu m of the cubic is used as a new trial point. If. on th e other hand, J ' ( 1 )

< 0 and J (1 ) < J (0). then a quadratic extrapolation is made. In this way, successive
approximations to the fun ctional min imum are made until some stopping criterion is
met.

The stopping criterion for the line search will affect the relative amoun t of
ti me spent on finding search directions and doing line searches. In general . spending
too mu ch time on either is not economic. In practice. a good deal of trial and error is
necessary to find a reasonable distribution of effort . In this case four or five iterations
in the line search is probably a good compromise.

6. DISCUSSION OF THE RESULTS

The algorithm Ior parameter adjus tment is based on t he modified Gauss­
Newton method which usually provides convergence. Using this developed algorithm
the model presented in Fig. 3 was first analyzed.

The mathematical model was proposed with three unknown parameters :

IP I = {a,b, cl .

Following the parameter system identification technology for the given
mathematical model and developed algorithm for parameter adjustment, the initial
values of the parameter had to be estimated . The values of this vector can be defined as
rando m values but in order to have a smaller number of iterations the following,
estimation procedure was used. Using t he empirical relations, the initial values were
es timated as:

I P I = 1550000, 340000, 61
- 0

After the fourth iteration. vector {P I took th e following values:

1P I = 1929900, 640000, 5.601.
- 4
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The responses of the mathematical model were calculated for the vector of
parameter p and the results were compared with the experimental ones. The results of

this identification technique are given in fig. 4. The experimental results as
displacement of the sys tem and the mathematical results as displacement of the same
point of the frame are shown in the same Figure.

From that Figure, visually, a good correlation between the experimental and
analytical t ime histories can be seen. The same analyses were per formed for the model
presented in Fig. 2, and the correlation of the analytical and exper imental displacement
time histori es on the all five floors, for the earthquake Petrovac 1979, is shown in Fig.
5.

It is not necessary to comment on the differences between the responses since
they are numerically qualified .

For the second model, which is more complex than the previous one, the error
function calculated for one story is less than th e error funct ion calculated for the
simplest model. But the effort made for the second model is much greater compared
with the effort made for the analyses of the first model.

It is difficult to give an accurate answer to the question as to which model
shou ld be applied in the analysis or design of a real structure, although the system
identification technique makes it possible to quantify some answers. But, practically
speaking, it seems that the physics of the problem should be of primary importance for
deciding which model should be applied .

7. CONCLUSION

The application of the parameter syste m identification technique in the field of
earthquake engineering, in the case where valuable experimental results are available
for the considered physical systems, is a very powerful tool for an objective defin ition of
mathematical models.

It has been shown that the use of the Gauss-Newton iterative identification
procedure greatly reduces the computational effort required . At the same ti me, the
technique appears to be quite stable and converges rapidly.

The use of vibration isolators is possible in many buildings, such as nuclear
power plants as well as ordinary structures, as a protection against earthquake
engi neer ing. Vibration isolators reduce the earthquake loads on a structure by more
than five to ten times with respect to those of a fixed base structure . Therefore, the
increase in cost due to isolating devices and double-layer foundations is much less than
the ext ra cost of anti seismic design requirements of the convent ional method.

Changes of damping in viscodampers are found in this paper and given the
opportunity to quantify the effects of any parameters on the mathematical model
response. For that re ason , damping is a calculated mathematical response of
displacement for both considered models . Continually good agreement between
experimental and numerical results has been shown.
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