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Abstract: The goal of this paper is to investigate the role of viscodamper behavior in
the identification of frame models from dynamic response data caused by seismic
forcing functions. Including nonlinear damping of viscodampers in the mathematical
model for even simple structures significantly affects the distribution of damping, and
the accuracy with which response can be predicted. A number of different
mathematical models of these structures are evaluated using system identification.
Each mathematical model depends on a number of parameters related to the
characteristics of the structure. The gradient method is applied to calculate the values
of these parameters which best reproduce the measured response of the structure.

This paper presents the mathematical model formulation of a five-story steel
frame model using the parameter system identification technique and shaking table
experiments. The base isolate system consisting of helical springs and viscodampers
was manufactured at GERB, Germany. The experimental work was conducted using
the shaking table of the Institute of Earthquake Engineering, University of Skopje,
Macedonia.
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1. INTRODUCTION

System identification is a tool that can be used to evaluate a model. By
systematically adjusting the parameters to provide the best possible correlation
between predicted and measured responses, the form of the analytical model can be
evaluated. System identification is a generic term for this optimization process, and
there are many approaches to applying it to structural engineering. There have been
many survey articles written on system identification [1,2,3], so this discussion need
not be exhaustive. Evaluating models by adjusting parameters to fit known response
data is known as parametric identification.
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Base isolation is an anti-seismic strategy by means of which damaging
earthquake motion reduces structural responses through a mechanism built into the
structural system. Such a system, consisting of helical springs and viscodampers, was
developed by the GERB Company in Germany. A five-story steel frame structural
model, isolated by GERB vibration base isolation elements, was intensively tested
applying a set of different earthquake motions on a biaxial seismic shaking table.
During the testing it was observed that the viscous damping of the dampers was
continuously decreasing. Namely, with an increase in the number of applications of
oscillations to the cylinders in the viscous mass, the temperature of the fluid increased
and, consequently, the damping coefficients decreased.

On the basis of this experimental conclusion, research was performed in order
to determine the relationship between the change in the damping and the path passed
by the cylinder. This means, physically, that the kinetic energy of the cylinder, when it
moves in a viscous medium, turns into thermal energy. With an increase in fluid
temperature, the fluid tends to lose its viscosity, which in turn causes a decrease in the
damping capacity. To determine this relationship, experimental results were obtained
by seismic shaking table testing and using the technique of parameter system
identification.

2. SYSTEM IDENTIFICATION TECHNIQUE
IN EARTHQUAKE ENGINEERING

Mathematical modeling using system identification is the process of defining of
mathematical equations for a given physical system whose input functions and
responses are known. The problem of mathematical modeling is divided into two
categories depending on the degree of previous knowledge of the nature of the
considered process. Modeling has the character of "black box" identification for a certain
phenomenon and the physical aspect of the problem is unknown. The other category
includes all problems whose physical aspects are known. Earthquake engineering
problems fall into the second category because either their physical processes or their
geometry, properties of the material or structural characteristics are known.

SYSTEM

.

CE CRITERION
FUNCTION

MODEL

t

PARAMETER
ADJUSTMENT
ALGORITHM

Figure 1. Identification by Bekey
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A very good description of this identification technique for application in

engineering problems was given by Bekey and the system identification consists of the
following three phases:

1. Definition of the form of the model, i.e., selection of the differential equations of the
model and extraction of the unknown parameters.

2. Selection of a criterion by means of which the "goodness of fit" of the model responses
and physical system responses may be evaluated when both the mathematical model
and the physical system have been excited by the same input.

3. Selection of an algorithm or strategy for the adjustment of parameters in such a way
that the differences between model and system responses may be minimized [3].

A general configuration of the modeling problem is shown in Fig. 1.

In earthquake engineering the responses of the physical systems can be
obtained by experimental investigations of the systems using various test procedures,
such as shaking table tests, full scale tests of structures, etc. All these tests provide
various experimental results which, depending on the model concept, are used for the
determination of the model parameters directly or after filtering.

Our test model is a five-story steel frame, mounted on two heavy base floor
girders, supported by four sets of spring-viscodamper elements manufactured by the
GERB Company, for simulation of a base isolated model directly or after filtering.
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Figure 2. Structural model on the shaking table
with vibration base isolation elements
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The position of the set, consisting of a spring and viscodamper elements, is
shown in Fig. 2. The viscodamper axis and the column axis are overlapping. The springs
and viscodampers are designed for the real dead load of the model, which is
approximately 80 kN.

This experimental program was planned in a way to ensure the collection of
maximum useful experimental data. So, the displacement and acceleration time
histories were recorded for various sets of earthquakes of different excitation levels on
each floor.

The aim of installing viscodampers is to absorb the energy brought into the
system and to decrease the amplitude of the system vibrations. The frame has a linear
behavior, while the nonlinear behavior of the system stems from the viscodampers.

The experimental model was instrumented by 30 channels which measured
the accelerations, displacements and stresses. The displacements were recorded by
linear potentiometers with respect to a reference beam located on the foundation block.
The horizontal displacements were measured on the base girder and each floor. The
horizontal displacements were used in the system identification. The earthquake
Petrovac 1979, was simulated on the shaking table.

3. MATHEMATICAL MODELING

From a theoretical point of view, a large number of mathematical models
would be possible for each structural system, whose solutions present the considered
dynamic response with different accuracies. However, each model involves unknown
functions and unknown parameters and each approach has its own advantages. The
problem is how to select "the most adequate" of all available models and how to reduce
the unknown functions of unknown parameters. It seems that only by the technique of
the construction of mathematical models, based on system identification, can an
objective evaluation of the advantage of each of the considered mathematical models be
provided. Although this paper is aimed at presenting the advantages of the parameter
identification technique in comparison with other approaches, it cannot be applied to
all practical cases. Its application significantly depends on the kind of available
experimental data for the considered physical system and their reliability. In this paper,
efforts are made to answer some of these questions.

Following Bekey’s procedure of the parameter system identification, the first
step in its application is the definition of the form of the mathematical model, i.e.,
selection of the differential equations by which the physical system is mathematically
described. A large number of different dynamic models, having different complexity
levels, can be applied for a certain physical model.

The considered structure was in elastic range for all simulated earthquakes.
The supporting spring also remained in elastic range, while non-linearity was observed
only in the behavior of the viscodampers. According to these experimental results and
using the available test data, two models were considered. The first model (Fig. 2) has
the structure idealized by 72 degrees of freedom and mass concentrated at the joints.
Each mass has three degrees of freedom, two translations and one rotation. The model
is, basically, supported by a system of springs and nonlinear viscodampers.
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The second model has the structure idealized as a rigid body which is
elastically supported by elastic springs and nonlinear viscodampers. Analysis showed
that this model with only three degrees of freedom, two translations and one rotation
provides very good results.

With that in mind, in this case the mechanical properties of the viscodampers,
having nonlinear relationship, are not known. The strategy of the formulation of the
mathematical model for the given physical problem was directed towards
identification of the change in the viscous damping of the dampers depending on
temperature. Literature offers many relationships experimentally defined as different
empirical and theoretical models, but they always apply to known fluids.

The viscous material of the GERB dampers, in this case as a physical medium,
is considered to have unknown properties. Therefore, the technique applied for
formulation of the mathematical model is based on parameter system identification.

The differential equations of the dynamic behavior of the physical system in a
relative coordinate system in matrix form are expressed as follows:

[M{(B) )+ R 1{a(P) }+[K 1u(P) ) = ~[M]{7i(0) }, (1)
m 0 0]
[M]=|0 m O the mass matrix , (2)
L D 0 t!I'.'.
r, R
[RlI={ 0 r, rg the damping matrix , (3)
Toe Toy T
kz 0 20
[K]=| 0 k&, k| thestiffness matrix. (4)
ke Ky Ky |

The mass matrix and stiffness matrix can be determined on the experimental
base if the mass, dimensions of the system and the stiffness of the springs are known.

The vector of motion 1u{E) }={2(E}+J’lﬂ) .tp{E}} indicates the total motion for

the two translational degrees of freedom and one rotational degree of freedom for Fhe
mathematical model. Vectors u(}) u(p)and are the vectors of acceleration and velocity,

expressed as functions of an unknown vector, As it is obvious from the above equation,
its solution is parametrically dependent on vector [} . The quality and quantity of the

experimental data affect the selection of "the most adequate” of all available models for
the considered problems.
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To date, the damping matrix has been calculated as a linear combination of the
mass matrix and stiffness, or as a function of the velocity vof a body in a viscodamper,
but this work presents another point of view, 1. e, damping is given through three
unknown parameters in the function of the path sof the cylindrical body

r,= b+{a—b}uxp{-crl]”v]d£ (5)
(B = la, b, ¢} - vector of unknown parameters.

A number of experiments have shown that the damping, caused by constant
displacement of the body in the cylinder, decreases within physically permitted limits,
leading to the conclusion that it is an exponentially decreasing function. That i1s why
the damping is expressed through this function, as shown in (5). The unknown
parameters {(a, b, ¢} will be determined by parameter identification of the system. Fig. 3

shows the meaning of parameters in the physics.

Ns
fzh =

simm)

Figure 3. Curve of damping in the viscodamper

Unknown parameters a and b show the initial and ultimate value of
the damping ratio of the matter in the damping cylinders..

Equation (1) presents the dynamic behavior of the mathematical model of the
discussed physical system. It can be solved numerically by step by-step integration.

The solution of this equation presenting the horizontal displacement of the
system 1s compared with the experimental measure of the horizontal displacement of
the system and is used for determining the error function.

The next problem is the selection of a criterion function or an error function.
It is explained as follows.
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Suppose we have a system subjected to a time dependent input {n(t) }, which
produces a set of measurable outputs y ;(8),J = 1,..n . If we have a model which we

believe represents the system, this means we have some means by which, given an
input, {n(f) jand some information about the system in terms of a vector of unknown

constants, E , we can predict the output of the system, x g (.t). Here we include [} as
an argument to emphasize the dependence of the predicted output of the system on the
information supplied by the model.

One measure of how the predicted response matches the measured response is
the squared-error loss function over time interval 0 <¢ < T*

n T :
J(P) = ngj[xjfg.t}-yju) ]'!d:, (6)
J=10

In this equation g j» J=1,...n represent the weight coefficients for evaluation
of various physical variable influences. For this case g 7 has the value of one, since the
error function 1s formed only by displacement. Again, [} is included as an argument to
emphasize the dependence of J on B . If J(B)=0, then the predicted response would
exactly match the measured response. We would like to know what value of B, if any,

minimizes .J.
Unfortunately, very few models permit a closed form solution for [} which

-

minimizes J globally. It is, however, often possible to generate an iterative scheme that
will produce a f} that is a local minimum.

The third step in the identification technique is very important and represents
the selection of the algorithm for parameter adjustment to minimize the criterion
function (6). There are a large number of methods in mathematical optimization theory
that can be used in the identification process. Most of them are based on the iterative

technique.
Gradient methods are the most suitable for determination of the function

minimum in a multi-dimensional space.

4. OPTIMIZATION ALGORITHM

Given a set of parameters [} , we would like a systematic method to discover a
new set [} such that J(J 1}“:‘“[},-}' Repeated often enough, this will lead to a

—t+1 —I+
minimum for J. If the function J is approximately quadratic in the neighborhood of E:‘ :

there will be little error in the approximation

v i TI'o2
J(B. ) =JPB )I+VT (BB, —BI+L/2P,  =P) VJBIB,  -B.)

i ]

where

vJ,=allp,
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and
2
Vi, = 1P, P,

To minimize .J, its gradient with respect to [} " is set to the zero vector. If the

-1+

Hessian matrix is invertible, it follows that

By = B - [V I WG, ),

~f+1

Since J will not, in general, be exactly quadratic, we will want to be able to
adjust the size of the correction to [} . Thus we modify the equation by adding a step
—-i

size vanable, a;

p. =B -ulv’.ﬂp_l}]" V).

bl K

The components of V. and V2% are found by taking the appropriate
derivatives of the error function:

: i o H!‘-”
‘G'Jpz =22]lgj IIJ{E-thtiI_J—- dt
B, jeo a,
2 T T 72
e L ax (B.1) éx (p.1) 0" x (B.1)
- =22 Ig; f = ! dr+[gjtxjtll.!}-yjtt)l“'—:-dt .

Experience has shown that the second integral, particularly when j};, is close

to a minimum, is neghgible when compared with the first. The Gauss-Newton iteration
scheme, therefore, is to choose a and calculate

b = - (AHG, 1w,

where the approximate Hessian matrix, AH , is defined as

n |\T Ax (B.t) &x(.0)
&H;n - 22 ‘['g.l s = d!

The technique for choosing « 1s known as a line search algorithm since the
multidimensional minimization problem has been reduced to a single dimension.

5. LINE SEARCH

By establishing a search dirvection, the error function is reduced to a function
of the variable ¢
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J () =J[ gi_u&'ltgf jvJH}I }]

whose derivative is

d :
—J@) =-WT B, ) AH (B IvIP ).
dﬂ, =i+1 —_l

If we are pointed in the right direction, J'(0) < 0. If the error surface were
quadratic, then the exact minimum would be at @ = 1. If J'(1) > 0 then there must

be a minimum for 0 < a < 1. In order to find a point closer to the minimum, a cubic
polynomial is constructed so that its values and derivatives match J at the end points,
and the minimum of the cubic is used as a new trial point. If, on the other hand, J'(1)
< 0 and J (1) < J (0), then a quadratic extrapolation is made. In this way, successive
approximations to the functional minimum are made until some stopping criterion is
met.

The stopping criterion for the line search will affect the relative amount of
time spent on finding search directions and doing line searches. In general, spending
too much time on either is not economic. In practice, a good deal of trial and error is
necessary to find a reasonable distribution of effort. In this case four or five iterations
in the line search is probably a good compromise.

6. DISCUSSION OF THE RESULTS

The algorithm for parameter adjustment is based on the modified Gauss-
Newton method which usually provides convergence. Using this developed algorithm
the model presented in Fig. 3 was first analyzed.

The mathematical model was proposed with three unknown parameters:
{B}=lab,ci

Following the parameter system identification technology for the given
mathematical model and developed algorithm for parameter adjustment, the initial
values of the parameter had to be estimated. The values of this vector can be defined as
random values, but in order to have a smaller number of iterations the following
estimation procedure was used. Using the empirical relations, the initial values were

estimated as:

fllu } = (550000, 340000, 6 }

_

After the fourth iteration, vector { | took the following values:

{EI } = {929900, 640000, 5.80}.
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Figure 4. Analytical and experimental displacement time histories at the center
of the model for Petrovac 1979 earthquake, N-S component

Figure 5. Analytical and experimental displacement time histories on the all five
floors of the model for Petrovac 1979 earthquake, N-S component
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The responses of the mathematical model were calculated for the vector of
parameter [} and the results were compared with the experimental ones. The results of

this identification technique are given in Fig. 4. The experimental results as
displacement of the system and the mathematical results as displacement of the same
point of the frame are shown in the same Figure.

From that Figure, visually, a good correlation between the experimental and
analytical time histories can be seen. The same analyses were performed for the model
presented in Fig. 2, and the correlation of the analytical and experimental displacement
time histories on the all five floors, for the earthquake Petrovac 1979, is shown in Fig.
D.

It is not necessary to comment on the differences between the responses since
they are numerically qualified.

For the second model, which is more complex than the previous one, the error
function calculated for one story is less than the error function calculated for the
simplest model. But the effort made for the second model is much greater compared
with the effort made for the analyses of the first model.

It is difficult to give an accurate answer to the question as to which model
should be applied in the analysis or design of a real structure, although the system
identification technique makes it possible to quantify some answers. But, practically
speaking, it seems that the physics of the problem should be of primary importance for
deciding which model should be applied.

7. CONCLUSION

The application of the parameter system identification technique in the field of
earthquake engineering, in the case where valuable experimental results are available
for the considered physical systems, is a very powerful tool for an objective definition of

mathematical models. . .
It has been shown that the use of the Gauss-Newton iterative identification

procedure greatly reduces the computational effort required. At the same time, the
technique appears to be quite stable and converges rapidly.

The use of vibration isolators is possible in many buildings, such as nuclear
power plants as well as ordinary structures, as a protection against earthquake
engineering. Vibration isolators reduce the earthquake loads on a structure by more
than five to ten times with respect to those of a fixed base structure. Therefore, the
increase in cost due to isolating devices and double-layer foundations is much less than
the extra cost of anti seismic design requirements of the conventional method.

Changes of damping in viscodampers are found in this paper and given the
opportunity to quantify the effects of any parameters on the mathematical model
response. For that reason, damping is a calculated mathematical response of
displacement for both considered models. Continually good agreement between
experimental and numerical results has been shown.
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