
Yugoslav J ournal of Operations Research
7 (1997), Number 2,247-255

ASSIGNMENT OF DISTRIBUTED
PROCESSING SOFTWAUE:
A COMPAUATIVE STUDY

Stella SOFIANOPOULOU

Dep t. of IndustrialMalJa~melJt, Universityot:Piraeus,
80 Karaoli & Dimitriou str., 185 34 Piraeus, Greece.

Abstract: A major issue of the operat ion of distributed systems is the prob lem of
allocating a num ber of processes to a network of processors, with the aim of fully
utilizing their potenti al and flexibility. This paper presents a solut ion to the process
allocation problem from a mathematical programming point of view, employing two
heuristic algorithms. The fi rst one is an adaptation of the simulated annealing heuristic
algori thm, while the second one is based on an iterat ive improvement procedure. The
characterist ics of both heuristics are briefly examined, and in the sequel bot h
algor ithm s are t ested on a set of random problems having characterist ics similar to a
real world problem.

Keywords: Distributed computing systems, process allocation, heuristic algorithms

I. INTRODUCTI ON

Advances in computer hardware and software have contributed to the
development of distributed systems, and distributed processing is definitely an
important element in today'e environment . The term distributed processing has been
widely used du r ing: t he last decade. Enslow [3) provides a dynamic defi nition of t he
term by quoting five important properties that distributed systems should possess.
These properties include mu lti plicity of resource components , physical distribut ion,
existence of a high level operating system, system tra nsparency and, finally, autonomy
withi n the frame of cooperation .

One of t he major problems encountered in the operatio n of distributed systems
is t he problem of allocating a nu mber of processes to a network of processors, that is a
set of homogeneous or heterogeneous processors with a network of communication
chan nels connecting each processor to every other one. Every processor unit has its
own local memory in order to hold data, program code, work space etc . and is
cons trained not to accept an excessive load of processes allocated to it . The software
run on such a distribut ed system is also modula r and is made up of a number of special

248 S. Soflanc poulou JAssignment of Distributed Processing Software

programs. known as processes, which commu nica te by exchangi ng messages . Every
process when allocated to a processor occupies part of the processor's available
resou rces <process resource requirements). It should be noted here that. certai n types of
processes are used more often than others and thus there is a need to include repli cates
of those processes that should be allocated to different procesors (replicat ion
const ra ints),

The communication cost associated with the message passing between
processes residing on different processors is a significa n t cr iterion in the design and the
opera tion of a dist ribu ted system. We are ass uming here that communication costs
bet ween processes residing on the same processor (int ra-processor communication) are
negligible compared to the costs occurring when they are on different processors linter ­
processor communication). Thus. it can be clearly seen that different allocations of
prOC't"sses to processors result in a different amount of inter -processo r overhead. Our
target . therefo re , is to dete rmine an allocat ion that has t he minimum inter-processo r
(or maximum intra -processor) message passing.

The purpose of this paper is to examine and compare two heuristic algorithms
for the solution to the process allocation problem. A brief presentation of the model
which descr ibing the problem mathematically is presented. The simulated annealing
heuristic 118 well as the iterative transformation procedure are briefly described. The
two algorithms arc compared and their performance is evaluated using two different
comparison methods. Conclusio ns are drawn in the last sect ion.

2. MATHEMATI CAL FORMULATION

The Process AJlocation Problem (PAP) presented in 191 deals With the
allocat ion of II nu mber N of communicating processes to a network of processors. Each
of the identical processors hns its own dedicat ed memory and a complete network of
communicating channels that links it to all other processors. Different types of memory
const ra ints as well us capacity constraints on each processor are also present in the
model. Associated with the exchange of messages between processes i and j is
communica tion cost cu' while the optimization criterion in the model is the
minimizat ion of the message pass ing cost between processes residing in different
processors . The problem is formulated as following:

so that

.v - I ."/

T7umlze z '" L Lc,)(1- XI))

I- I) • •• 1

. - 1 N

Lr)x,. + L r)xJv :S; H- r. k '" 1.. ...N
•• 1) • • • 1

(II

(2)

3. SIMULATED ANNEALING METHOD

(3)

(4)

249

i ::; 1.. ...N - 2.

j '" i+ l.. .. .N - 1. k '" j+ IN

S. Sofian opoulou I Assign men t of Distributed Processing Software

{

I . if processes i andj are ass igned to the same processor
:>:;=

U O. otherwise. i = I, ...,N·I.) "" i + I, ...,N

x ,, +x-. - x . ' II} I }

The simulated anneal ing algorithm is a heuristic method based on
randomization techniques. The method has been successfully applied to combinator ial
problems in computer systems design (5), the solution of the travelling salesman
problem [41 , the solution of the quadratic assignment problem [2J, the minimization of
message passing cost in the PAP 110) and the machine cell formation Ill] in a
manufactu ring context.

Constraints (2) refer to the resource limitati ons of the model. Assuming that R
is the resource availability (e.g. memory, capacity etc.) of each processor, then these
constraints ensure that the sum of the resource requirements Ti of all processes i
connected to process k , i.e. assigned to the same processor as process k , does not exceed
quantity R ·Th which is the spare capacity of the processor after having allocated
process k to it. Const raints (3) are imposed to preserve the trian gular st ruc ture of the
model. They ensure that if xv=l and xLi"" I. then processes) and k should be also
connected, i.e. Xjk"" I .

The exact solution to the integer programming problem (1) through (4)
provides the optimum allocation of processes to processors. However, obtaining the
exact optimum in an integer programming problem in practice is often either
impossible or simply unattractive. Since the opt imal solut ion to the PAP becomes qu ite
expensive in terms of computing time. researchers have used different heuristic
approaches that produce suboptimal solutions. A survey of heu ristic assignment
algor ithms for the PAP and their performance analysis is presented by Price and
Krishnap rasad 18J. while an efficient algorithm based on simulated annealing and
adapted to PAP has been developed by the author 1101. and is briefly presented in the
next section.

The basic idea is to generate random displacements from any current feasible
solution, an d accept as the new cur rent solution not only solutions which improve the
objective func tion, but also some which do not improve it; the latter ones are accepted
with probability exp{-6{ I T), depending on the amount of deterioration tJ.(of the
objective function an d a tunable parameter T (the temperature).

The two major components requ ired in the implementation of simulated
annealing are:

250 S. Soflanopoulou 1Assign ment orDistributed Processing Software

1. A perturbation mechanism for gene rating random neighbor solutions.
2. An anneali ng schedule cons ist ing of

a J A finite decreasing sequence of valu es T" 1= 1,2•... for the cont rol parameter T of
temperat ure ; i.e. initial and final values and a rate of decrease.

b) The number of solut ions 1.., attempted a t each temperature T, as temperatu re
decreases .

The a lgorit hm iterates until the stopping temperature value is reached or no
feasible solution has been found during 1.., attempts.

In the present implementat ion, the neighborhood generation scheme consists
of randoml y select ing and connecting two processes p and q which are not
interconnected, t.e. the corresponding var iable xpq which is O. is made equal to 1. This
move has some implications which involve disconnecting process p from all processes to
which it was previously connected and connect ing it to a ll processes to which q is
a lready connected (t riangu lar constraints (3) of section 2) . Obviously, this move is
carried out on ly if the capacity const raints (2) a re not viola ted .

The ini tial (and fina ll va lue of T is determined using a small number of pilot
runs before the actual annealing process hegins, at an appropriately high (low) value so
that almost all candidate solut ions that deteriorate the objective function are accepted
as the current solut ion with a probability of 0 .95 or more (0.05 or less). The cooling
schedule. i.e. the rate of decrease of tem perature T is very crucial for the successful
ap plication of the algori thm. If the rate of temperature decrease is too high t he n the
algorithm leads to loca l opt imum solut ions, whil e ifit is too low, CPU time is wasted . In
t his work the cooling schedule suggested in [I I is adopted where Tj is updated by:

T,.. , = Tt l :1 + I T, In(l +0) I 30 , n (5)

where 6 = 0.1 and 0 t is the standa rd deviation of the object ive function val ues of the
solutions examined at T/.

T he number of solut ions 1.., attempted at each temperature T/ is set to
N (.'ll - 1) / 2 . This paramete r setting is ad opted taking into account that the number of
a ll possible 1110\' ('S that can lead a cur rent solution to a neigh boring one (i.e. making
va r iable xM' which is cur rently set to O. equa l to 1) is a t most N (N - 1) / 2 (actua lly
t tll'rl' a rc muc h fewer since capacity and tri angular cons t rai nts should be satisfied).

Having defined the above ingredients of the simulated annealing and an init ial
feasi ble solution to t he PAP, one can apply the algorithm. Obviously, the number of
iterat ions to be perfor med depends on the size of the problem. For the sake of
completeness it should be mentioned that a sta rting feasible solution to the PAP is
formed by randomly choosing processes and grouping them together until some
capacity const rai nt is viola ted. If this is the case, the next randomly chosen process
starts forming a second group and this procedure is conti nued until all processes are
grouped .

S , Sofianopoulou I Assignment of Distributed Processing Software

4. ADAPTED ITERATIVE TRANSFORMATION PROCEDURE

251

Another heuristic approach which has been used to tackle the PAP is an
"iterative transformation procedure" proposed by Price (61 and Price and Garner 171.
T his improvement procedure is based not only on the commu nicat ion costs between
processes residing on different processors, but also on the execution cost of each process
on each processor. Since t his second kind of cost is not present in our version of the
PAP, the iterative transformation procedure has been properly modified. The method
begins with a feasible assignment of processes to processors . Then at each iteration all
possible reassignments of processes are evaluated taking into accoun t the
communica tio n costs, and every time the most advantageous one is chosen. The
procedure continues until no better reassignment can be found. The communication
cost of an assign ment Y= II Yij ILv..M is calculated as ;

N- l N N - l M N

L L c" - L L L c"YoY')
1=1 ' _i+1 i 31) - 1 '=1+1

(6)

where N is t he number of processes and At the number of processors. Actually, Al
represents the number of processors used in the initial feasible assign ment of
processes , i.e. in the assignment from which the iterative transformation procedure
starts. Obviously, M also represents the maximum possible nu mber of processors to be
utilized . Perhaps, it should be emphas ized here that in the formul ation U)-(4) proposed
in section 2 the number of processors to be util ized is not known a priori (refer also to
19».

The reassignment of processes to proccessors is attained by a t ransformation in the
assign ment matrix Y, where;

Y'} = { : for all l , j

and

AI

L Y'l = 1 for all i
}_ l

(7)

(81

The element Y'j = 1 of the matrix Y denotes that process i is assigned to
processor j , The t ransformation T ;A -+ A of the set of all assignments A is performed

as follows:

1. Given an assign ment matrix definin g an allocat ion of processes to
processors. every process is temporarily allocated to each one of the processors and a
penalty is computed. The penalty is equal to the communicat ion cost of the particular
process with a ll ot her processes when they are assigned as indicated in the assignment
matrix Y.

252 S. Sofianopoulou I Assignment of Distributed Processing Software

2. The minimum penalty is determined for each process. If the m inimum
penalty corresponds to the assignment of the particular process as it is in the
assign me nt matrix Y. then the iterative procedure stops. If, however, there is a process
which when allocated to a differe nt processor {from the one that is curre ntly assigned!
produces a smaller communication overhead in the total cost , a new solut ion­
assignment is determined . If there is more than one such process, then the one that
produces the smallest overhead in the total cost is chose n.

3. The assignment matrix Y is modified by relocating the process determined
in Step 2 and transformation T is repeated .

Finally, it should be noted that the iterative transformation procedu re can be
modified and extended to guara ntee convergence to a global optimum, but at a
cons iderable computational cost [61. This modification consists (after completion of the
above described procedure) of the eva luation of al l t wo-step t ransformations, that is, a ll
simultaneous reassignments of two processes . The procedure then continues with all
three step reass ignments and so on until we reach the transformat ion that
simulataneous ly reassigns a ll N processes . Of course, this generalization of the
procedure corresponds to a complete enumeration of all possible solutions.

5. COMPARATIVE STUDY

The computat ional results presented concern fourtee n test problems. These
data sets were randomly produced so as to resemble an original sample set of data
provided by a telecommunications laboratory. This sample data set refers to an
instance of t he PAP with 12 processes . each having a particular occupancy. code- and
data-storage requirement. Results obtained with the annealing method are compared
with those of the "iterative tra nsformation procedure". The test problems used include
no replicates . Because of the absence of execut ion costs the ini tial feasi ble assignment
was obtained using exactly th e same procedure we have employed in the an nealing
method.

Two approaches where adopted in this comparat ive study. In t he fi rst , the
itera tive heuristic of Price was run 52 0 t imes, which is approximately equivalent , as far
8S CPU time is concerned, to ten runs of 1500 ite ra tions of the annealing heuristic. The
corresponding best solut ions and average gaps between the optimum (computed
employing an impli cit enu meration method developed by the author (911 and the
heuristic values produced are compared. As can he seen from Table 1. where the best
solut ions fou nd, t he gap values. the CPU times , on a VAX. 111780 system, and the
optimum objective function values are presented. the annealing heuristic has a better
performance than the iterative transformation one. Out of the fourteen test cases tried.
the simulated annealing algori th m achieved the global optimum in thirtee n, while the
ite ra tive heu rist ic achieved it in only five. Also in almost every case with the annealing
heu ristic the average gap did not exceed 2'l- (with th e exception of only two cases out 0 1

fourteen) while the corresponding average gap produced by the iterative transformation
procedure where more than 5%.

S. Sofianopoulou I Assignment of Distributed Processing Software 253

In the second approach the expected number of runs (and hence CPU timeJ
required in order to obtain at least one successful result with probability 95%, is
evaluated for both heuristics and compared. Note that any solution within 1% of the
optimum is considered to be a successfu l result. Assuming that for each test case the
probability of success of a single run is p (empirically estimated from a large number of
runs), the probability of performing N runs without a single success is (l -p)N. Setting
this probability equal to 0.05 (i.e. 1-0.95) the required number of run s N with at least
one success is given by:

N::: log(1 -0.95Jllog(1 -p J (91

Then, the corresponding total CPU time required for one success is computed
by multiplying N by the average per run CPU time. It should be mentioned that the
probability p of achieving a successful result and the average per run CPU time is
evaluated for the annealing heuristic and the iterative transformation procedure based
on 100 and 520 runs respectively.

Table I

Annealing Heuristic (.) Iterative Transformation
Procedure (..)

Data Best Gap CPU Best Gap CPU Optimum
set Solution (%) (sees) Solution (%) (sees)

1 436 1.491 102.37 436 6.383 103.54 436
2 484 0.847 106.24 485 5.760 125.28 484
3 489 0.470 88 .96 491 7.157 125.01 489
4 496 0.766 88.49 500 5.360 126.14 496
5 501 0.739 98.06 505 6.301 120.09 501
6 496 1.310 107.45 498 3.983 103.46 496
7 454 1.145 103.51 454 5.329 228.39 454
8 467 2.227 87 .36 467 8.098 238 .30 467
9 475 2.336 89.24 475 10.49 100.56 475
10 520 1.340 108.18 515 4.072 316.39 515
11 467 0.257 107.75 469 5.317 123.54 467
12 511 0.196 112.93 516 5.137 123.68 511
13 465 1.548 103.78 470 7.262 114.37 465
14 460 1.891 93.41 465 8.347 118.47 460

•

(.) 10 runs of 1500 iterations
(n) 520 runs

The calculated required number of runs and total CPU time for the annealing
heuristic for 1000, 1500 and 2000 iterations respectively and for the iterative
transformation procedure are demonstrated in Table 2. In all cases (but three) the
annealing heuristic required a smaller amount of CPU time in order to guarantee (with
probability 95%) at least one successful run out of N . It is interest ing to note that one
expects to require a relatively lower number of runs in order to achieve one successful

254 S. Soflanopoulou I Assignment uf Distributed Processing Software

result, as the number of iterations of the annealing heuristic increases. The three major
columns of Table 2 for the 1000, 1500 and 2000 iterations of the annealing heuristic do
exhibit in general such a behavior. There arc, however, a few exceptions te.g. data sets
8, 13 and 14) that are due to the probabilistic nature of the annealing heuristic . The
empty spaces in the last major column of Table 2 indicate that none of the 520 runs of
the iterative transformation procedure produced a success ful result.

Tab le 2

Annealing Heuristic (.) Iterative
Transformation

Uata 1000 iterations 2000 iterations 3000 iterations Procedure (..)

set No of CPU Noof CPU Noor CPU Noof CPU
runs (sees) run, (sees) run, (sees) runs (sees)
(+) (+) (+) (+)

1 20 131.40 14 140.70 11 144.10 778 171.16
2 6 41.82 4 41.44 3 41.91 388 93.12
3 5 29.65 5 44 .40 3 36.48 172 41.28
4 4 23.96 2 18.66 2 24.70 1556 373.44
5 4 25.72 4 39.80 2 26.74 388 93.12
6 7 48.23 4 41.36 4 53.88 41 8.20
7 12 84 .72 9 92 .70 7 97.86 518 233 .10
8 15 87.30 22 199.10 9 104.04 110 51.70
9 41 223.45 20 164.00 10 101.90 . .
10 6 42.06 4 44.96 3 42.57 388 240 .56
11 2 13.98 2 22.06 1 14.3 1 1556 373.44
12 1 7.16 1 10.94 1 14. 59 258 61.92
13 10 65.30 11 101.3 1 7 84 .77 - .
14 15 95 .55 14 129.36 16 197.92 1556 357.88

(.) resu lts hailed on 100 runs
(U) results based on 520 runs
(+) number of runs required to obtain at least one "success" with 95% probability

6. CONCLUSIONS

The assignment problem of distributed processing software has been briefly
presented . The simulated annealing algorithm and an iterative transformation
procedure adapted to the PAP have been examined end compared. Two different
approaches where used to compare the efficiency of the two heuristic algorithms . The
computationa l results obtained show the superiority or the simulated annealing
method.

S. Sofianopoulou I Assignmen t of Distribut ed Processing Soft ware

REFERENCES

255

11J Aarts. K , a nd Korst, J., Simulated Annm lw g nod Boltrmenn Machines; Wiley. Chicheste r,
1990.

12\ Burkard . R.E .• and Rendl, F ., "A thermodyn amically motivated simulat ion procedure for
combinatoria l optim ization problems", European JOIIJ'lJal of Oporationnt HI'$f'nrc!J, 17
1198·H 169·174.

13] Enslow, PJI., 'Whnt is a 'd ist ributed ' data processing system?", Computer, 11 11978) 13­
21.

(4] Golden , B L., a nd Skiscim, C.G., "Using simulated annealing to solve rounng and locanon
problems", .v.wll l Hesearr!J LogzstlC'S qUiIl1("J'~Y, 33 (1986) 26 1- 279.

(5) Kirkpatrick, F.• Gt'latt C D. j r ., a nd Vec chi, ~tP.• "Opt imizat ion by simulated a nnealing",
Science, 220 119831671-680,

(6] Price, C.C" "T he ass ignment of cumputational tasks among processors in a dist ributed
syste m", Proceedin gs AFIPHNmionat Computer Conterence, 1981, 291· 296 ,

(7) Price, C,C. , a nd Garner. J . M" "Task assignment modelled as a qu adratic programming
problem". Report D~lS-7 , Dept. of Maths. and Sta ts., Stephen r . Austin State University.
Texas, 1983 .

(8) Price, C.C.• a nd Krishnaprasad . S .• "Software allocatio n models for distributed computing
systems", Proceedmgs 4fh tntemstionel Contcrence on Distributed Computme Systems,
1984,40-48.

IY) Soflanopoulou. 5 .• "Opt imum allocation of processes in a dist ribu ted environment: a
process-to-process eprcach", Journal ot Opereuonel ReSf.'<1I'C'h 8oC'1f'ty, 41 j 1990) 329-337.

(l 0) Sofianopoulou , 5 ., "Simulated annealing applied to th e process allocation problem".
European Journal ofOperouonsl Researrh 60 11992) 327-334.

(I II Sofianopoulou, S .• "Application of simulated annealing to a linear mode! for the
fonnulation of mac hine cells in group technology", In ternational Journal of Production
Research. 35 (1997) 501-511.

