Yugoslav Journal of Operations Research
7 (1997), Number 2, 247-255

ASSIGNMENT OF DISTRIBUTED
PROCESSING SOFTWARE:
A COMPARATIVE STUDY

Stella SOFIANOPOULOU

Dept. of Industrial Management, University of Piraeus,
80 Karaoli & Dimitriou str., 185 34 Piraeus, Greece.

Abstract: A major issue of the operation of distributed systems is the problem of
allocating a number of processes to a network of processors, with the aim of fully
utilizing their potential and flexibility. This paper presents a solution to the process
allocation problem from a mathematical programming point of view, employing two
heuristic algorithms. The first one is an adaptation of the simulated annealing heuristic
algorithm, while the second one is based on an iterative improvement procedure. The
characteristics of both heuristics are briefly examined, and in the sequel both
algorithms are tested on a set of random problems having characteristics similar to a
real world problem.

Keywords: Distributed computing systems, process allocation, heuristic algorithms

1. INTRODUCTION

Advances in computer hardware and software have contributed to the
development of distributed systems, and distributed processing is definitely an
important element in today’'s environment. The term distributed processing has been
widely used during the last decade. Enslow [3] provides a dynamic definition of the
term by quoting five important properties that distributed systems should possess.
These properties include multiplicity of resource components, physical distribution,
existence of a high level operating system, system transparency and, finally, autonomy
within the frame of cooperation.

One of the major problems encountered in the operation of distributed systems
is the problem of allocating a number of processes to a network of processors, that is a
set of homogeneous or heterogeneous processors with a network of communication
channels connecting each processor to every other one. Every processor unit has its
own local memory in order to hold data, program code, work space ete. and is
constrained not to accept an excessive load of processes allocated to it. The software
run on such a distributed system is also modular and is made up of a number of special

248 S. Sofianopoulou / Assignment of Distributed Processing Software

programs, known as processes, which communicate by exchanging messages. Every
process when allocated to a processor occupies part of the processor’s available
resources (process resource requirements). It should be noted here that, certain types of
processes are used more often than others and thus there is a need to include replicates
of those processes that should be allocated to different procesors (replication
constraints).

The communication cost associated with the message passing between
processes residing on different processors is a significant criterion in the design and the
operation of a distributed system. We are assuming here that communication costs
between processes residing on the same processor (intra-processor communication) are
negligible compared to the costs occurring when they are on different processors (inter-
processor communication). Thus, it can be clearly seen that different allocations of
processes to processors result in a different amount of inter-processor overhead. Our
target, therefore, is to determine an allocation that has the minimum inter-processor
(or maximum intra-processor) message passing.

The purpose of this paper is to examine and compare two heuristic algorithms
for the solution to the process allocation problem. A brief presentation of the model
which describing the problem mathematically is presented. The simulated annealing
heuristic as well as the iterative transformation procedure are briefly described. The
two algorithms are compared and their performance is evaluated using two different
comparison methods. Conclusions are drawn in the last section.

2. MATHEMATICAL FORMULATION

The Process Allocation Problem (PAP) presented in [9] deals with the
allocation of a number N of communicating processes to a network of processors. Each
of the identical processors has its own dedicated memory and a complete network of
communicating channels that links it to all other processors. Different types of memory
constraints as well as capacity constraints on each processor are also present in the
model. Associated with the exchange of messages between processes ¢ and j is
communication cost c;, while the optimization criterion in the model is the
minimization of the message passing cost between processes residing in different
processors. The problem is formulated as following:

N-1 N
mimize z=), Zc,f{l-xu] (1)
=] =i+l
so that
k-1 N
Trapt Lrxy$sR-n k=1..N (2)

ta] J=k+1

S. Sofianopoulou / Assignment of Distributed Processing Software 249

xﬂ+x,~k-xjk <1

:c,}-.rm+xjk51 S (3)

1, if processes ¢ and j are assigned to the same processor

xi}-z

0, otherwise, i =1, N1, j=i+1,..N i

Constraints (2) refer to the resource limitations of the model. Assuming that R
is the resource availability (e.g. memory, capacity etc.) of each processor, then these
constraints ensure that the sum of the resource requirements r; of all processes i
connected to process k&, i.e. assigned to the same processor as process k, does not exceed
quantity R-r,, which is the spare capacity of the processor after having allocated
process k& to it. Constraints (3) are imposed to preserve the triangular structure of the
model. They ensure that if x;;=1 and x;=1, then processes j and k& should be also
connected, i.e. x;=1.

The exact solution to the integer programming problem (1) through (4)
provides the optimum allocation of processes to processors. However, obtaining the
exact optimum in an integer programming problem in practice is often either
impossible or simply unattractive. Since the optimal solution to the PAP becomes quite
expensive in terms of computing time, researchers have used different heuristic
approaches that produce suboptimal solutions. A survey of heuristic assignment
algorithms for the PAP and their performance analysis is presented by Price and
Krishnaprasad [8], while an efficient algorithm based on simulated annealing and
adapted to PAP has been developed by the author [10], and is briefly presented in the

next section.

3. SIMULATED ANNEALING METHOD

The simulated annealing algorithm is a heuristic method based on
randomization techniques. The method has been successfully applied to combinatorial
problems in computer systems design [5], the solution of the travelling salesman
problem [4], the solution of the quadratic assignment problem [2], the minimization of
message passing cost in the PAP [10] and the machine cell formation [11] in a

manufacturing context.

The basic idea is to generate random displacements from any current feasible
solution, and accept as the new current solution not only solutions which improve the
objective function, but also some which do not improve it; the latter ones are accepted
with probability exp(-Af/T), depending on the amount of deterioration Af of the

objective function and a tunable parameter 7' (the temperature).

The two major components required in the implementation of simulated
annealing are:

250 S. Sofianopoulou / Assignment of Distributed Processing Software

1. A perturbation mechanism for generating random neighbor solutions.
2. An annealing schedule consisting of

a) A finite decreasing sequence of values T, t=1,2,... for the control parameter T of
temperature; i.e. initial and final values and a rate of decrease.

b) The number of solutions L, attempted at each temperature 7, as temperature
decreases.

The algorithm iterates until the stopping temperature value is reached or no
feasible solution has been found during L, attempts.

In the present implementation, the neighborhood generation scheme consists
of randomly selecting and connecting two processes p and ¢ which are not
interconnected, i.e. the corresponding variable x,, which is 0, is made equal to 1. This
move has some implications which involve disconnecting process p from all processes to
which it was previously connected and connecting it to all processes to which g is
already connected (triangular constraints (3) of section 2). Obviously, this move is
carried out only if the capacity constraints (2) are not violated.

The initial (and final) value of T is determined using a small number of pilot
runs before the actual annealing process begins, at an appropriately high (low) value so
that almost all candidate solutions that deteriorate the objective function are accepted
as the current solution with a probability of 0.95 or more (0.05 or less). The cooling
schedule, i.e. the rate of decrease of temperature T is very crucial for the successful
application of the algorithm. If the rate of temperature decrease is too high then the
algorithm leads to local optimum solutions, while if it is too low, CPU time is wasted. In
this work the cooling schedule suggested in [1] is adopted where T, is updated by:

T,oy=T,/ 1+ [T, In(145)/ 30, (5)

where & =0.1 and O, is the standard deviation of the objective function values of the
solutions examined at 7',

The number of solutions L, attempted at each temperature 7, is set to
N(N -1)/2. This parameter setting is adopted taking into account that the number of
all possible moves that can lead a current solution to a neighboring one (i.e. making
variable x, . which is currently set to 0, equal to 1) is at most N(N -1)/2 (actually
there are much fewer since capacity and triangular constraints should be satisfied).

Having defined the above ingredients of the simulated annealing and an initial
feasible solution to the PAP, one can apply the algorithm. Obviously, the number of
iterations to be performed depends on the size of the problem. For the sake of
completeness it should be mentioned that a starting feasible solution to the PAP is
formed by randomly choosing processes and grouping them together until some
capacity constraint is violated. If this is the case, the next randomly chosen process

starts forming a second group and this procedure is continued until all processes are
grouped.

S. Sofianopoulou / Assignment of Distributed Processing Software 251

4. ADAPTED ITERATIVE TRANSFORMATION PROCEDURE

Another heuristic approach which has been used to tackle the PAP is an
“iterative transformation procedure" proposed by Price [6] and Price and Garner [7].
This improvement procedure is based not only on the communication costs between
processes residing on different processors, but also on the execution cost of each process
on each processor. Since this second kind of cost is not present in our version of the
PAP, the iterative transformation procedure has been properly modified. The method
begins with a feasible assignment of processes to processors. Then at each iteration all
possible reassignments of processes are evaluated taking into account the
communication costs, and every time the most advantageous one is chosen. The
procedure continues until no better reassignment can be found. The communication
cost of an assignment Y=|| y;; |[y.a 18 calculated as:

N-1 N N-1M N
Z Z Cik — Z Z Z CinYij Y (6)
1=1 k=i+l i=1 j=1 k=i+l

where N is the number of processes and M the number of processors. Actually, M
represents the number of processors used in the initial feasible assignment of
processes, i.e. in the assignment from which the iterative transformation procedure
starts. Obviously, M also represents the maximum possible number of processors to be
utilized. Perhaps, it should be emphasized here that in the formulation (1)-(4) proposed
in section 2 the number of processors to be utilized is not known a priori (refer also to

[9]).

The reassignment of processes to proccessors is attained by a transformation in the
assignment matrix Y, where:

0
Yii = {1 for all ¢,j (7
and
M
Zyu =1 forall: (8)
J=1

The element y; = 1 of the matrix Y denotes that process i is assigned to
processor j. The transformation T:A — A of the set of all assignments A is performed

as follows:

1. Given an assignment matrix defining an allocation of processes to
processors, every process is temporarily allocated to each one of the processors and a
penalty is computed. The penalty is equal to the communication cost of the particular
process with all other processes when they are assigned as indicated in the assignment

matrix Y.

252 S. Sofianopoulou / Assignment of Distributed Processing Software

2. The minimum penalty is determined for each process. If the minimum
penalty corresponds to the assignment of the particular process as it is in the
assignment matrix Y, then the iterative procedure stops. If, however, there is a process
which when allocated to a different processor (from the one that is currently assigned)
produces a smaller communication overhead in the total cost, a new solution-
assignment is determined. If there is more than one such process, then the one that
produces the smallest overhead in the total cost is chosen.

3. The assignment matrix Y is modified by relocating the process determined
in Step 2 and transformation T is repeated.

Finally, it should be noted that the iterative transformation procedure can be
modified and extended to guarantee convergence to a global optimum, but at a
considerable computational cost |6]. This modification consists (after completion of the
above described procedure) of the evaluation of all two-step transformations, that is, all
simultaneous reassignments of two processes. The procedure then continues with all
three step reassignments and so on until we reach the transformation that
simulataneously reassigns all N processes. Of course, this generalization of the
procedure corresponds to a complete enumeration of all possible solutions.

5. COMPARATIVE STUDY

The computational results presented concern fourteen test problems. These
data sets were randomly produced so as to resemble an original sample set of data
provided by a telecommunications laboratory. This sample data set refers to an
instance of the PAP with 12 processes, each having a particular occupancy, code- and
data-storage requirement. Results obtained with the annealing method are compared
with those of the "iterative transformation procedure”. The test problems used include
no replicates. Because of the absence of execution costs the initial feasible assignment
was obtained using exactly the same procedure we have employed in the annealing
method.

Two approaches where adopted in this comparative study. In the first, the
iterative heuristic of Price was run 520 times, which is approximately equivalent, as far
as CPU time is concerned, to ten runs of 1500 iterations of the annealing heuristic. The
corresponding best solutions and average gaps between the optimum (computed
employing an implicit enumeration method developed by the author [9]) and the
heuristic values produced are compared. As can be seen from Table 1, where the best
solutions found, the gap values, the CPU times, on a VAX 11/780 system, and the
optimum objective function values are presented, the annealing heuristic has a better
performance than the iterative transformation one. Out of the fourteen test cases tried,
the simulated annealing algorithm achieved the global optimum in thirteen, while the
iterative heuristic achieved it in only five. Also in almost every case with the annealing
heuristic the average gap did not exceed 2% (with the exception of only two cases out o

fourteen) while the corresponding average gap produced by the iterative transformation
procedure where more than 5%.

S. Sofianopoulou / Assignment of Distributed Processing Software 253

In the second approach the expected number of runs (and hence CPU time)
required in order to obtain at least one successful result with probability 95%, is
evaluated for both heuristics and compared. Note that any solution within 1% of the
optimum is considered to be a successful result. Assuming that for each test case the
probability of success of a single run is p (empirically estimated from a large number of
runs), the probability of performing N runs without a single success is (1-p)V. Setting
this probability equal to 0.05 (i.e. 1-0.95) the required number of runs N with at least
one success is given by:

N = log(1-0.95)/10g(1-p) (9)

Then, the corresponding total CPU time required for one success is computed
by multiplying N by the average per run CPU time. It should be mentioned that the
probability p of achieving a successful result and the average per run CPU time is
evaluated for the annealing heuristic and the iterative transformation procedure based
on 100 and 520 runs respectively,

Table 1

| Annealing Heuristic (*) | Iterative Transformation
| l Prucedure (%)

= rma
Data | Best | Gap | Gap Gap CPU Optimum
sat_§ Solution H_TH(%) | si Soul o) (scem) §

(*) 10 runs of 1500 iterations
(**) 520 runs

The calculated required number of runs and total CPU time for the annealing
heuristic for 1000, 1500 and 2000 iterations respectively and for the iterative
transformation procedure are demonstrated in Table 2. In all cases (but three) the
annealing heuristic required a smaller amount of CPU time in order to guarantee (with
probability 95%) at least one successful run out of N. It is interesting to note that one
expects to require a relatively lower number of runs in order to achieve one successful

264 S. Sofianopoulou / Assignment of Distributed Processing Software

result, as the number of iterations of the annealing heuristic increases. The three major
columns of Table 2 for the 1000, 1500 and 2000 iterations of the annealing heuristic do
exhibit in general such a behavior. There are, however, a few exceptions (e.g. data sets
8, 13 and 14) that are due to the probabilistic nature of the annealing heuristic. The
empty spaces in the last major column of Table 2 indicate that none of the 520 runs of
the iterative transformation procedure produced a successful result.

Table 2
F- neahng Heuristic (*) I rterative |
Transfnnnatmn |

| Data | 1000 iterations | 2000 iterations_
| Nu of CPU Nn uf

(secs) runs
(+)

1

2

3

4

o

6

i

8

9
10
11
12

—
= D

[= =00 BB oo

(*) results based on 100 runs
(“*) results based on 520 runs
(+) number of runs required to obtain at least one "success" with 95% probability

6. CONCLUSIONS

The assignment problem of distributed processing software has been briefly
presented. The simulated annealing algorithm and an iterative transformation
procedure adapted to the PAP have been examined and compared. Two different
approaches where used to compare the efficiency of the two heuristic algorithms. The

computational results obtained show the superiority of the simulated annealing
method.

[1]
(2]

(3]
(4]
(5]
(6]
(7]

(8]

[9]
[10]

[11]

S. Sofianopoulou / Assignment of Distributed Processing Software 25

&n

REFERENCES

Aarts, E., and Korst, J., Simulated Annealing and Boltzmann Machines, Wiley, Chichester,
1990.

Burkard, R.E., and Rendl, F., "A thermodynamically motivated simulation procedure for
combinatorial optimization problems’, European Journal of Operational Research, 17
(1984) 169-174.

Enslow, P.H., “"What is a 'distributed’ data processing system?", Computer, 11 (1978) 13-
21.

Golden, B.L., and Skiscim, C.C., "Using simulated annealing to solve routing and location
problems”, Naval Research Logistics Quarterly, 33 (1986) 261- 279.

Kirkpatrick, F., Gelatt C.D. jr., and Vecchi, M.P., "Optimization by simulated annealing”,
Science, 220 (1983) 671-680.

Price, C.C., "The assignment of computational tasks among processors in a distributed
system", Proceedings AFIPS National Computer Conference, 1981, 291- 296.

Price, C.C., and Garner, J. M., "Task assignment modelled as a quadratic programming
problem”. Report DMS-7, Dept. of Maths. and Stats., Stephen F. Austin State University,
Texas, 1983.

Price, C.C., and Krishnaprasad, S., "Software allocation models for distributed computing
systems”, Proceedings 4" International Conference on Distributed Computing Systems,
1984, 40-48.

Sofianopoulou, S., "Optimum allocation of processes in a distributed environment: a
process-to-process aproach", Journal of Operational Research Society, 41 (1990) 329-337.
Sofianopoulou, S., "Simulated annealing applied to the process allocation problem”,
European Journal of Operational Research 60 (1992) 327-334.

Sofianopoulou, S., "Application of simulated annealing to a linear model for the
formulation of machine cells in group technology®, International Journal of Production
Research, 35 (1997) 501-511.

