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Abstract: For the minimization problem with inaccurately specified objective function
and set, a regularization method based on the continuous linearization method of the
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1. INTRODUCTION

Consider the minimization problem
Jw)—inf, ueU={uelUjygu)<0.i=1..m}, (1)

where U, is a given convex closed set of a certain Hilbert space H and the functions
J(u). g (u)....g, (u) are defined and Frechet differentiable on H. The scalar product

of two elements u, v e H will be denoted by <u, v>; || u || = <u, u>"
an element u € H.

2 is the norm of

Suppose that

J.=infdu)> = U, =fuel: Ju=J.}29 (2)
uell
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As we know [1], [5], problem (1) is unstable with respect to perturbations of
the initial data J/(u), g,(u) and regularization methods must be employed to solve it. We

propose and investigate a regularization method established on the continuous
linearization method of the fourth order (see [4] for solving problem (1) with inaccurate

initial data). In practical problems the functions gl-{uLJ'[u].g;-[u} are known

inexactly, so instead of them we have only their approximations
g,—{u.t}.r}'[u.t}.g;{u.tj.ueH.i=1 ..... m, depending on the parameter (20. Let

w=u(t). t20 be the solution to the differential equation

Ba(t) " (8)+ Py(e) 2" (£) + Polt) ' (2) + u'(£) + u(t) =

(3)
= Pyruinyn [0 =1(OT (u(t).1)], £20,
with the initial values
w0 =u,, w0 =uy, u"0)=uy, u"0)=ug, (4)
where
Ulut)={zeUy g (ut)+ < g (ut),z-u>s
(5)

<it) (1+|ul), i=1....m};

Priuieyn(2) 18 the projection of point 2 on set U(u(¢).£); ug, 4y, ug, ug € H are arbitrary
points; T (u.t)=oJ (u.t)+a(t)u., ue H, t=0 is the approximation of the gradient
Q(u.t)y=oJ(u)+u(t)u of the Tichonov function Q(w,t)=d(x)+ 5 alt)l?; a(t). B,(t),

y(£0),0(t), are parameters of the method. The derivatives umuy. i=1.....4 of the
function w(t), ¢ =0, take the values in H, and are understood in the sense [2], Ch. 4.

2. THE CONDITIONS FOR CONVERGENCE

We will consider the behaviour of the solution wu(¢) of the differential equation
(3), (4) when t -« and prove that the method (3)-(5) has regularization properties.
Before that we can remark that the method (3)-(5) for m=0 in (b)) (ie.
U=Ulu(t).t)=U,) reduces to the regularized continuous projection-gradient method of

the fourth order treated in [10]; for m=0, Pa)=P,(4)=0 - to the regularized
continuous projection-gradient method of the second order presented in [9].

The following theorem gives sufficient conditions for the convergence of the
trajectory u = wu(t), ¢ =0 of the differential equation (3), (4).
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Theorem 1. Suppose that

1) U is a convex closed set in the Hilbert space H, the functions J(u). g(u)....g,, (u)

are convex, Frechet differentiable on H and their gradients satisfy the Lipschitz
condition

max {|| J'(w)—J'W)|; max |lg;(u)-g (v)}<
1<ism (6)

<L | u-v|l, u,veH,
and furthermore condition (2) and Slater’s condition

u.elU,. g,/(u)<0. i=1..m; (7)

2) the approximations g!-(u.r}.J'{u.u.g;[u.t] of the g,-tu}.J'{u}.g;{u) are continuous
in u for all £ =2 0, measurable in ¢ for all u € H and

max |g,(u.t)—g,(w) | <8(t)(A+||u|®), ueH,

1<ism r : ]

max{ || J(w.t)-dJ () [l max || g;(u.t)-g(u) || }< (8)
1<i<m

<d(t)(1+||ul|]), ueH. t20;

3) the parameters a(t). B4 (¢). P (). Bo(£), v(£).8(8), of the method (3)-(5) are such that

a(t). Pa(t). y(t) € CHOA4%), Pa(t) € C040).

By(t) € C3[040). 8(t), O(t) € C[04).

a(t)>0. v(t)>0. 8t)=0. )20, t=0.

a(t)<0, B,()<0. i=234, Y()<0, ' (9)
a'(6)20, B;'()20, 1=234, y'(1)=20.

(1) <0. PUie)<0. i=34, y"'()<0,

a?(t)=0. P20, yV@)20. t20:



220 F.P.Vasiljev, A Nedi¢, M. Jaéimovié / A regularized continuous linearization method

{
. g a(¢)
lim | aff)+ y(£)+0(t)+ XE)+ — [ =0,
ts=\ z)

“m( oy . lew| e ]
o\ at(t)y3 ) [Ty 01 ai()

=0, (10)

lim a{o) - () - |a (”i o IT {t}|}= A
t—x | aft) y(2) alt) y(t)

lim B;(6)=6; >0, i=234. 1-B,,>0.

{—x =

B2+ Byn—2P30>0. B, -2Bss B >0,
3 (11)
BZE_EB:!:.}G. By B3r =3 Bgs > 0.

o(¢) max {3+ 3|lu.ll: 5+ |lull} <20(¢), £20.

Then

4 .
lim [ > ([P @)+ a(t) -, | ]= 0. (12)

{ = i=1

where u, € U,. |lu.|l=1n f ||z is the normal solution to problem (1). The convergence
uel

in (12) is uniform with respect to the choice of approximations g, (u.¢).dJ (u.2). g:{u.t}
in (8).

First we will note that such parameters satisfying (9)-(11) can be chosen, for
example, in the following way

at)=(1+8) ", Bi)=Pim+[1+(1+)7']. i=234.
) =(1+6)". ) =1+t) ", ) =a(l+t)’. t20.

where a.a.v.8.0. 3, are positive real numbers, such that 4a+3y <0<3. a+y -c-%-. a is
small enough so that

a max {3+ 3||u.||l: SH|u.|l} <2,

and B, , 1=23,4 satisfy (11).
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Proof. Let us show that U(u,t)#@ for all t20. we H. As we know [8], for every
convex differentiable function g(«) on H, it is true that

g+ < gi(v)w-v><gw), wve H. (13)

Taking into account (7), (8), (11) and inequality (13), we have

gt < gi(u.t), u, —u>< gi(u)+ < giu), u, —u>+
+3(2) (1+fluel® ) + 8(e) (L+][ee])] et — e

< gi(ue) +8(8) [(+lu |+l 1 5 1+l |1) x

x(1+lu|® Hlee)® ] < 38(8) [(3+ 3l )+

+(5+][uee | [leel* 1 < O(2) (A+jae)?)

This means u, € U(u,t), so V20, Vue H, Uu,t)#@. Besides that, the set U(u.t) is

convex and closed, therefore for every 20 the right hand side of (3) is uniqually
defined, and under the established assumptions, satisfies the Caratheodory conditions
[6]. Thus the differential equation (3), (4) has the solution u(t) defined for small values
of ¢ and for any choice of the initial points ug.u,, u,, u; € H [5]. We will assume the

existence of the solution u(¢) on the half-line [0.4=x).

Let v_ € U be the solution to the minimization problem
Qu.t)—»inf., ueU={uelU, g,(u)<0,i=L...m}j. (14)

The Tichonov function @(w. 1) is strongly convex on H, so that for every 120, there is
a unique point v_ € U, such that (see [7]):

suplvli€lull. Lim|v,-ul=0. (15)

120 T —pat

Besides that, under the given assumptions, the Kuhn-Tucker theorem can be applied to
problem (14) for every 12 0. Therefore, there exist

hi(1)20,...,2,,(1) 20, (16)
such that
ni
<Q'(v,. 1)+ Lhj(Vgi(v,), v-v,>20, velU, 120, (17)

=]

A(t)gi(v,)=0. g;(v,)=0, r=l...m ‘20, (18)
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Furthermore, the Kuhn-Tucker theorem can also be applied to the problem

W z.t) = || z— [ult) - v(t) T'((t).t) | |’ > inf
ze Uu(t).t). t20,

which is equivalent to the problem of projecting the point w(¢)~y(¢£)x T'(u(t).t) on the
set U(u(t).t). Consequently, there exist

v (£)20,....0, (£)20, ¢20, (19)

such that

< Bylt) ' (£)+Pyltr " (t)+ Pyt ha(£) +1'(£) +

n ]
T ((t).t)+ 2u, () g w(t).t), w—[ Py’ )+ (20)

1=1

+Baq (") + Po () () +u' () +u(t) |>20, YwelU,.

V() [ g (u(t).t)+ < g (b)), Bty (t)+

+Bg (O)u'" (£) + Po (D" (£) + ' () > - (21)

~0(E)1+ || u{I}IFI =0, =1 2mi" v,

g, (u(£).0)+ < gLl ). ). B () 1™ (£) + Py (L) (£) +
(22)

Py (O (1) + 2 (£) > — 0(t) 1+ | w(t) [) > <0.

for i=1...m. Vitz0. Setting v= B_ﬂ:;u‘“{:)+113{z}u"'tt1+Bgttlu“{thu'{n+u{t1E
Ulu(t),t)c U, in (17), w=v, e Uc U, in (20), multiplying the obtained inequalities,
respetively, by (=y(¢)) and (-1), and summing them, we have

n ' ' ’
< Py +Pau'+Pou"+u [hu"" + Pgu""+Pou"+u +u—-v_>+

+y < T'(w) - Q (v, . x). Pyt +Pate " +Bote +1d' +u—v, >+

m
+ 200, < gilut), B + Pgu B+t +u—v, > - (23)

m F
. «,erl-{ﬂ < gi(v,). Bduw +Bau" +Poutu +u-v, > <0,
i=1
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for all £. t=20. Here and further, we will often omit the argument ¢ of the functions

o, ;. y.8, 0, u um. in order to shorten the expressions. Let

r=r(t)=|u"() |]2 g=q(t)= u"(®) lz.

(24)
12 i 2
p=p(t)= || w(t) || o X=alte)= E” u(t)-v, " :
Then
2<u,um >=r', 2<u"u">=q, 2<u".u >=p,
2<u' u">=q"-2r, 2<u’ u'>=p"-2q,
2<u' u>= p"-=3q', <u,u-v. >=x', (25)

<u"u-v,>=x"-p, <u",u-v, >= x"'-%p',

' ;
<u u-v,>=x"-2p"+q,

where x'V = %x{t, 1), t20, 1=0. Using (24) and (25) the first term in (23) can be

written as

<Py’ +Pau+Pou+u. Bau' +Pau+Pou+u' + u—v, >=

= B2 1™ I+ [B5 — 2B,y 17+ BBy’ + (B3 + By — 2By 1 g+ n)
+ [ByBy =3B, 1g'+ByBog"+[1-Py 1 p+ [By—3PBy 10+
+[B3 —2B4 |p" + qu"'+|34xw + BSJ:”'+BEI"+I'. t.t20,

According to [8], p.175, for any convex differentiable function g(x) on H, whose gradient
satisfies the Lipschitz condition (6), the following inequality 1s true

<d'w)-J'W).v-w><Elu-wl®. wvweH. (27)

Now we will estimate the second term in (23). Using (8), (15), (27) and
2|ab|£saﬂ+ﬁ_1b2.s>ﬂ,weget

< T'(u.t) - Q(v,. 7). Byt + P +Bou 1t +u~v, >=
=< J'(u.t)-J'(w), B.;um +Bau' Pt +u—v, >+ %
(

+<d'(w)-J'(v,), I34u'."+ Bau' 4Pt +u' +u—v, >+

+<a(f)u-a(t,, [34::'” + ﬂau'”+[32u”+u' U=V >
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> I i 1] 12
> = (14 [l =v, |l ) (I By + Bare'+Bou 2|+
L w i L -
+|lu—-v, ”‘T" ﬂ4" +[.13u +Pou u ||+

+a<u-v,. ﬂ4um +Pau +Pou v +u—v, >+

Ha(t)—a(1)) <v,. ﬂqum + {lau"‘+[32u"+u' +u-v, >2

> - S[2(L+ o, F)+ T Byu + By + e+ P+

+ 3w 1= I By + Bau+ By +u'| [+

+a By (x" —2p"+q) + Py (x5 p) 4 Polx"-p) + (28)
+x +2x ) —|a(t) —um|2||u.r I? -%IIB,,ui” +Pqu’'+

gt P~ et ~ o) o, |-

~ 2 v, (P2 ~[1+ L+ 25, ] (B3 ™ P+ +

+ﬂ§q + pl+u{ﬂ4lxi" ~2p"+q) + Py(x"-5 p) +

+Py(x"-p)+x +3(1-32)x) - Cy [5(6) +

2
+ﬁ-tu{t}—u{r]| }. Vitr=0.

where 5 _ = sup d(t), C, = max :2{1+||n:,,1|2 }:tl+umm}|!u,|[2: o =supd(t)= =a(0).
120 =0
Let us show that the third term in (23) is nonegative for all {2>¢, is a large enough

number. From (8), (13), (15), (19) and (21), we have

i :
V; < gilw.t). Pyu”’ + Pgue " +Pou i +u—v, >=

=v|-g;(u.t)+ < g;{u.tl.. u-v, >+ ,{1+||:.|';1|2 )2

> v, [-g;(u)- < g(u). v, —u > +8 (1+]u|)] - e

=8 (1 +[ue[* )= 8 (L +[uell) le ~ v |2
2 - v, g;(v,) +vi(1+ul®) $[2-2(5+
+2|ju,ID]120. Vet i=1l..m.

because lim %,%=0, according to (10). Finally, we will estimate the last term in (23).
t

_—

Using the inequality (see [8], p.93, Lemma 1)
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|gtu1—g{m-<g'{u}.u-u> IS'%‘-Ilu-ulz. uuveH,

and (13), (18), (19), (22), we get

A(T) < g, ). ﬂ;uw +Pau "+ P 1 + U~V >=

= (1) [gi(v, )+ < g:(v.). ﬂ‘um + Pau +Bzu"+u'+

+u-v, >|s lllr}gf{ﬂ4ui" + Pae " +Pou +u +u) <

S A1) %HB‘um + [33&'"+Bzu“+u'||2+li(t} [g;(u)+ .
r<glu). Pau + PauPou+u’ >]< A (1) Lip gt + v
+Bau'"+[izu“+u'|[2+l,~{r) [g;(u.t)+ < g;[u.n. ﬁ‘ui" -

+Pgu +Bou e’ > 0 (L+{ae]* )]+ 4, (2) (51 +u” ) +

(L +][ul) (1Bt + Bgte+Bore+1 |10 (1+[1ul*)].

o] u ] Bau™ +Baus
+Bou "+t H£{1+I v, ||+H u-v, |)|| I34ui"++[]3u"'+ +Pou'+u’ |S[1+ u u, I2]+%Iﬂ4um+

+Paus +Pou+id’ | +2x(¢) from (30), it follows that

Since 1+Hu|l251+2“ u-u, ]|2+2|l U, ||251+4x+2|| u,

hi(t) < gi(v,), [le“Ur + Pt "+ Pou +u +u—v, ><

& by (1) [(L+8) L 1By + Byt + Byt 41t | +(5+ 0) x

w(1+2 [, P +4x) + 81+l | ) + 22)] < (31)

< (1) [2 (L 4+ ) (B2l [P+B3r + Bog + p) +

+6(6+0)x+Cy(6+0)]. VL2 0. i=Ll...m.

C, = max | 1+2|§u,||2; (1+ ||u,]]]2}. Let us prove that

I

0s 2 A(1)sC,=const, V120 (32)
i=1

From (17), where v = u_, and (13) we have
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2 m
J[v1]+%u{t]l| v, || “‘Z l!-['r}gl-[ut}ﬂJ(u‘__}-r
i=1

1 2 <
+1am | u, [+ X n0gw,).

1=1

Using the last inequality and (7), (13), (15), (16), (18), we get

m m
min | g(u,) | 2 A1) <-2 A(v)g ) < J(u,)-J (v, )+
1si=m =1 =l

+%ﬂ{ﬂ" u, ||2 s<d'(u,) u.-v, >+%u{r] || u, "2 <

sh oo [l ue B w1+ g | w I

which proves (32). From (31), (32) follows the necessary estimation for the last term in
(23):

m .
()X 1 (1) < (v, ). Bgu' + P+ Pt +u'+
=1

+u—-v, >2-v(t)C, I2[L+ﬁmn][Bil[u'"il2+ﬂgr+ (33)

+B3g+ pl+6(6+0)x+Cy(5+0)). Vtr20
Putting the estimations (26), (28), (29), (33) in (23), we find

By [1=y(£)Cq |+ () +L(Ba (L= y(£)Cyq) ~ 2B4Py) I +

+BaByr+] (B (1= 1()Cq)+ Py (1+ay) - 2By Jq +[ ByBy -

=3B 1g+P4Boq" +[ (1= y(£)Cq) - P (1 +ay) | p +B, -
3 3 (34)
—2 Bg(1+ay) | p+[Bg - 2P (1 +ay)] p "+ p""+ay (5 -

-C, %ﬂ]x + (L4 ay)[x'+Pox " +Bax " +B,x" 1< Cs [% |a(t) -

—a(t) F+y(t) (B(8)+ ()], ¥£20, V>0,

inequality (34) has the same structure as the inequality (22) in [10]. Therefore the
equality
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lim { [ we)=v, [+] @) [+] wecoy |+ w@r [+] «"eer | }=o.

t—x

which follows from (34), can be obtained in the same way as the equalities (34), (35) in
[10].

3. THE STOPPING CRITERION

In practice the error of the initial data 1s usually greater than a certain fixed
positive number. A more realistic condition than (8), with lim &(¢) = 0, for considered

f—ro

problem (1) is as follows: for each fixed u € H , instead of computing the exact values of
g;(u), J (n). g;(u), it is possible to compute their approximations g;;(u), J5(u), g;5(«)
such that

max ] 8is(u)— g, (u) |£E(1+I| u ﬂz}. ue H,

l=si=m

max {I Ji(w)—-J' II; max I g5(u)— g, (u) ” }E (35)
1<i=m

56[1+||u||], ueH,

where 6 > 0 is a known positive number. Then, instead of process (3) - (5), we have the
process

By (O™ (£)+ B3 ()" (8) + By (£ (8) + w'(£) + w(t) =

(36)

= Py [w() = (1) (J5(w(2)) +a(t)w(t))].
w(0) = uy, w(O0)=1u. w'(0)=uy, w"(0)=u,, (37)
Uw.d)=1lzeUy: gswh<gyw), z-w><

. 4 (38)
<oty (+|wlf’). i=1..m).

which will be continued up to the moment ¢(8) defined by the following condition

t(d)=sup{t:d(s)>0, 0<ss<st}. (39)

Since 8(¢) — 0 when t — +=. 8(0) > 8, the required moment of time #(5) can be found
with certainty . The parameters a(t), B;(2). y(£).6(¢).£2 0, in (36) - (39) satisfy the
conditions (9) - (11), and do not depend on the number & from (35).



228 F.PVasiljev, A Nedié¢, M. Jaéimovié / A regularized continuous linearization method

The justification for using the criterion (39) to stop the process (36) - (38) is
given by the following theorem.

Theorem 2. Let all the conditions of Theorem 1 be satisfied, apart from (8), and let the
approximations  g;(u), Ji(u). gs(u) of g(u).J'(u), g(u) satisfy condition (35).
Suppose that the trajectory w(¢), 0<¢ < #() has been obtained by the method (36) -

(38), where the moment #(3) is determined in accordance with the stopping criterion
(39). Then

lim || w(t(d)) - u, '= 0.

50

This theorem can be proved in the same way as Theorem 2 in [10]. From
Theorem 2, it follows that the operator R; which sets the point w(#(3)), defined by the

method (36) - (39), in correspondence with (g,5(u), J(u). g;5().8) from (35), is a
regularizing operator in the sense [1], [5].

4. CONCLUSION

The paper shows that the continuous linearization method of the fourth order
proposed in [4] can be regularized and applied to minimization problems with
inaccurately specified objective function and set. The proposed regularized method (3) -
(5) for m = 0 in (5) reduces to the regularized continuous projection-gradient method of
the fourth order treated in [10], while for m =0.p,(#)=p;(¢£)=0 it reduces to the

regularized continuous projection-gradient method of the second order presented in [9].
As pointed out in [3], the advantages and the importance of higher order continuous
methods stem from their higher order of convergence and from the fact that
continuous methods give a large choice of numerical integration methods to solve the
corresponding differential equations.
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