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Abst ract : In this paper a subclass of line figures, which art' finite unions of arcs . is
co nsi de red . We cal l such a fi gure a form . To ea ch form 11 numerical sequence related tn
the Euler characteristic of the u nderlying fipace of the form is a ttached . WI' prow that II

form can be decomposed into simple ones. On the basis of this decomposition . to each
form a matrix . as a way of arithmetization (If the structure of the form. IS attached
F inally , th is leads to a semi- topologi cal classificat ion of forms. Then. invariant
properties of this classi fication are Iak cn as a basis for ch nrncter re cognition .

Kt.')~·ordH Line figures , semi- topological class ification . characte r recognit ion

I. INTHODUCTlON

Each prublem of recognition SU PPOSl>S an u nders tand ing of the relanonsbip of
objects as equ ival ent to one a nother in cer tain ways. For ins tance. WIH'1l we rela te two
figu res in the plane accord ing to their geomet rica l shape, we co mpare properties which
art' preserved under the act ion of t he Euclidea n group . And the set of propertu-s upon
which we find that two figu res represent the same numeral may he quite different.
much as two processes of comparison CI Te di ffe rent .

In interpersonal com municat ion . il pattern is often tra nsferred fro m a pe rson
to anot her by means of its graphic realization . For exa mple , the sta nda rd pau cm s of
letters a nd numerals. when freely realized {ha nd- writ ten) rna)' he more or less like the
followed pattern . Recogru rion of suc h realizations is the process of relating them to
their s ta ndard patterns. The process is' based on st ruc tu ral propcruca of pnttcrus and ,
when h indered , the d ifficulties are due to the presence of noise uhose propcrties wh ich
a re not st ructu ral).
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Is the vast literature on the cha racter recogmnon problems, st ructural
properties of specific classes of characters are expressed in the form of different
an alytical, geometrical or topological features of line figures. And, as the development
of mathematics reflects it , in the case of general, synthetic approaches, instead of
select ing properties, an idea of equivalence has to be taken as a classification criterion .

Having in mind the realistic model of a page with a piece of writing, and being
inspired by the current research (e.g. [1], (2), (3), (4), (5), (6J, (7), (8), (14)), we
synthesize such an equivalence for a class of line figures on the basis of topol ogical
ideas . Once we have a precise mathematical formulation of equivalence, we also have a
ground upon which we select those properties shared by all equivalent objects as being
st ructural ones.

Reflecting individual sty les, handwritten characters may vary very much in
shape and magnit ude . This makes a unique metrical comparison with the followed
sta ndard pat terns impossible. Thus, the researchers select some outstanding points an d
features of line figures and those which depend on topological and positional propert ies
obtain a precise mathematical meaning in our app roach. Being so semi-topo logical, this
approach requires consideration of a plane supplied by a given coordinate system (and
in such a plane we can define anthropomorphic "left", "right", "east", "south", etc.).
Further , we select a subclass of line figures which are finite unions of arcs being either
graphs of continuous functions or vertical segments . When connected, we call such a
union a form. Each form determines a multi-valued function t H F (t ) . A sequence TF

is attached to a form F, registering the number of components F (t ) and discontinuity
points of the corresponding function .

This sequence can be considered as a refi nement of the idea of crossing
counts, which is often present in the lite rature on character recognition problem (5),
(8). It is shown that this sequence is related to the Euler characteristic of space F .
When the members of t F are equal to I , the form is called simple. Then a family 1\ of
simple subfo rms of F is selected and t he pair (F.I\) is taken to be the structure upon
which the graphical meaning of F is based. When a homeomorphism h : F --+ F'
preserves t he structure (maps simple forms of F upon simple ones of F' , respecting
"left", "right", "up", an d "down"), we say that t wo forms F and F' are equivalent. Some
invariants are t reated, such as node points, the number of simple fo rms, equivalent
matr ices, etc. The whole conceptualizat ion permits a precise, semi-topological
defin ition of such symbo ls as numerals and letters of an alphabe t. In order to make this
paper self-contained, we repeat several ideas an d results first exposed in (1 2J, but it
also includes a detai led treatment of the role and properties of node points.

Finally, we hope that our mathemat ically-oriented app roach is interesting
enough for specialists in the field of pattern analysis and we expect t heir appreciation
of the involved topological ideas.

2. SELECTION OF A PROPER CLASS OF LINE FIG URES

A line figure is commonly understood to be a subset in the plane which
consists of lines. For instance, the letters of the English alphabet, as well as the words
written in that alphabet are line figures.
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A Euclidean plane is a topological space and a line figure as its subset inherits
the relative topology. Recall that a mapping r:F1 -+ F2 of line figure Fj to line figure

Fz is called a homeomorphism if [ is bijective and both (and r' are conti nuous.
Then we say that F1 and F2 are homeomorphic or topologically equivalent, and we

write F1 "" Fz. A property of a figure which is un altered by homeomorphisms is called
a topological property.

If our pu rpose is to invest igate th e conventional symbols graphica lly - as being
line figures possibly deformed out of th eir regular shape, but still with recogni zable
meani ng, then topology may seem to be beyond t his scope . The reason is seen in th e
fact that a homeomorphism may cause a big distortion of the shape of a figure . For
example. an interval and a spiral are topologicaly equivalent . Thi s situat ion entails a
classifica tion of figures which would be stricter than topological equvalence and still far
from geomet rica l congruence.

Thus, we are led to cons ider a subclass of line figures which are cons tructed
from arcs as basic building blocks. Roughly speaking, we cannot be haphazard about
placing these blocks without respect ing "left" and "right", "up" and "down". In orde r to
express these positional properties formally, we also require that the plane is supplied
with a coordinate system.

Since we will associate some numerical sequences and matrices with a line
figure, we would not welcome a sit uation in which that figure in intersected by a
straight line in infi nitely many separated parts. This leads us to suppose that the
number of building blocks is finite . So, wc have gathered a clear motivation for the
following formal steps.

Let EZ be the Euclidean plane together with a given coordinate system. A
realisti c model is a page with its lower edge being x - axis and its left edge being
y- axIS.

First, we define building blocks of the line figures that we want to select .

A stretching arc in EZ is the graph of a continuous fun ction defined on a

closed interval. A vertical arc in EZ is a closed interval belonging to line .r = a .
Now we define the subclass of line figures which will be convenient for our

cons ide rat ions and which we will call forms. When we say "arc", we mean that the arc is
eithe r st retching or vertical.

A (arm is a connected set in EZ which is th e union of a finite family of arcs
which intersect only in end points. Note that the same form may be seen in many
different ways as a family of arcs . For example, the forms represented in Fig. 1 are
three families of five, three and two arcs, respectively, where the heavy dots represent
the ends of arcs. In all three cases we have, in fact, the same form.

A stretching arc is the graph of a continuous fun ct ion ( : [a .b] -+ R and the
point (a.(a» is called left and the point (b.(b)) the right end of the a rc. All its other
points are called interior points.

Among all representations of a form (as the union of a family of arcs ), there
will be one having the fewest possible arcs. To see it, let us fix our attention on some
particular points.

The point of a form F which i ~ of any of the following types:

1. end point of exactly one arc
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2. left or right end point of exactly two arcs
3. en d point of three or more arcs
4. end point of exactly one vertical a rc and possibly some stretching ones

we call a node of the form F. The drawings shown in Fig. 2a illustrate eac h of t hese
cases.

Not ice that nodes are never interior points of the arcs of a form. Therefore. in
each possible representation of a form. a node must be the end of an arc.

On the other hand. if an end is not a node, then it is a point which is either

1. th e left end of one arc and the rig-ht end of another one
2. the end of two vertical a rcs

These two cases are illu strated in Fig. 2b . Notice that in bot h cases such an
end is the inte rior point of the arc wich is the union of two arcs ending at that point.
Replacing such two arcs by their union in a given representation of a form, we get
another represen tation having less arcs and ends. If we keep replacing such pairs of
arcs, then in a finite number of steps we shall reach the unique representation of a
form with its nodes as the only end points. We call this rep resentation canonical , For
example. each of the forms represented in Fig. 3 has its canonical representa tion with

respect to the page as a model of }<; 2 and the coordinate system with the origin at the
lower-left corner. Loosely speaking, the concepts depend not only on the properties of a
figure, but also on the position of an observer. In the model of this page, two congruent
figures may have different ca nonical representati ons, as well as different sets of nodes
and families of a rcs. This is easily demon strated with the forms represented in Fig. 4,
with th e reader as an observer .

T he introduced concepts remain invariant under translat ion of the coord inate
syste m. T hus. given a form F, we can translate the coordinate system to a unique
posi~ion where F is a su bset of the first quadrant and with the axes touching F. The
coordinate system in that positio n will be called the associated coordinate system of t he
form F. Start ing with this page as II model. the drawings shown in Fig. 5 represent two
forms with their associated coordinate systems.

Projecting a form F to the axes of its associated sys tem, two intervals [0.0] and

[O.b] are obta ined. We will ca ll the interval [0,0] (on x - axis) the domain of th e form F
and the rectangle [O.a] )( [O.b] the frame of F.

3. CONTINUITY DISCRIMINANT OF A FORM

Suppose we have a form together with its associated coordinate system. Then,
we can look on the form as being t he graph of a mult i-va lued fun ction and, in that way,
we establish a correspondence betwee n points of the domain and compact subsets of the
set R of rea l nu mbers.

Before a formal exposition, we shall use an example to illustrate this idea. Let
us consider two realizations of th e numeral -8", one being standard and the other
contaminated with noise (Fig. 61 . Projecting nodes to the a-axis, the following
subdivisions of domain are obtained:
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Let US denote these forms by F and P , respectively. Then to each 1 e [O.a] , the set

F i l l = I Y I (I .yl e F l

is a ttached. ( F (t ) is t he projection to they - axis of t he intersection of the for m F and
the straight line x = I ). The attachement 1 H F (/ ) is a multi-valued function (as is,
similarly, the function t H F '( I) .

Let 1 e ( O , t~) and let 1 H t~ . Then, p (t) is a two point set which "stays far
from" the three point set F'(t ~ ) . This means th at the multi -valued funct ion t H p (t) is
discontinuous on the left at t ~ and, as it is easy to see, a lso discontinuous on the right
at I ; . If the set F (t ) "comes close toRt he set F (to >' when t -+ 10 we say th at the

function 1 H F ( t) is continuous at 10 , By inspection, we set' that t H F ( t ) is

continuous at each point and t H F '(t) is discontinuous only at t~ and t; .
Now, let us a ttach to a form a sequence of numbers of components of F I t) ,

when t runs from 0 to the end of t he domain. Such a number is the same for each 1
belonging to the interior of a subinterval and we usc brackets ~( r to point it out. In the
case of for ms F and F' (considered above), th e sequences are

tF = 2(4)3( 4)2. t F' = 1(2). 3(4 )3(4 13. (2 )1

where the aster isk denotes the place of discontinuity.
For the form represented in Fig. 7a , F (O) and F (a ) are sets cons isting of a

point and an interval, so the number of components is two. The sequence is

t = 2.(3)2(3l. 2. When unbalanced, this for m becomes the form represented in Fig. 7b,
and the corresponding sequence is

Remark that according to the classification of for ms which we are going to
define la ter, these two line figures will be of the same type (have the same meani ng),
just as they will be the same in the case of two cons idered realizations of t he num eral
"8". Thus, these sequences are not only dependent on st ruct ural properties of for ms,
but , being also affected by noise, t hey register its presence.

To give a precise meani ng to the figurative Reames close to", we need a met ric

on the set of subse ts of R , More general ly, let (M .d ) he a metric space and l: \p(Ml the
set of al l non -empty compact subsets of M . For A.a e c, pI M), let

pt A. B ) = sup inf d(x.y).
XEA y EB

J'B. A) = sup inf d (x .y ).
y EB rEA

Two numbers , rt A. B ) and rot B.A ), may he different and t he bigger of th em is
the distance between A and B. Write

•

dIA .BI = ma>(p(A.BI.P( B.A));
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and then. this metric on cx p(M I is called the Hausdorff metric.

The following useful proposition describes the relat ion d( A .Bl < L .

3.1. d IA .8) < (. if and only if for each x € A there exists an y E B such that

d (x .y ) < r; and for each y E B there exists an x e A such that d (x .yl < I:.

Now. it is easy to defin e the continuity of a multi-valued function . Let
(A/ ).d ) land (M2.d2) he two metric spaces and F : M , _ M2 a mul ti -valu ed fun ction

suc h that for each x E MI ' F(x ) is a compact subse t of M2 • The fun ct ion F is
continuous at Xo E M) if for each sequence (x,,) in M) . x n _ Xo implies

F (x 'i l _ F (xo ) in cvp (M 2 ) .

A thorough exposit ion of the material related to the Hausdorff metric and to
multi -valued funct ions can be found in Kuratowski [9].

Given a fonn F. let [O.a] he its domain . Correspond to each x E [O.a] the set

F i x ) =1 y I Ix.y) e P }.

Then. x I-t F i x ) is a mu lti-valued function and the set F IX) is a finite union of
isolated poin ts and closed intervals which arc the components of connectedness of
F(x ).

Projecting all nodes of F to the .r-nxis a subdivision

is obtai ned. For I e ( /, .1,. )). F I t) is a fi nite set of the same number n;
denote the number of components of FIt

l
) .

In order to register the points of discontinuity. let

Il t F is cont inuous lit I.,

points. Let nt,

• nt, F is continuous on the right and discontinuous on the len at t
l

-
tIt =, n". F is continuous on the left and discontinuous on the right at t,

."I,. F is discontinuous on both s ides at t,

Following the order of points of the subdivision

we attach to tilt' form F, in 11 unique way. the following sequence
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which will be called the continuity discriminant of F .
Notice that the sequence r F has an odd number 2k + 1 of members and that

brackets could be omitted. If we look for a meaning, then notice that (n; ) is act ual ly a

constant fun ction on (iI , t , ..I ) and t F could be considered as a step fun ct ion on [n.c] .
On the other hand , t F is related to the Euler cha rac terist ic of the form F.

Forms are finite cell complexes of dimension one and for a form F, its Euler
characteristic is the difference X( Fj = 1)0 - fl i of Betti numbers PO ,PI ' If the number of

nodes of F is n and the number of arcs a, then X(F) = n - a also holds. For gen eral
topological details, see for example, Maunder (10] or Munkres (II) .

The following proposition , proved in [12), establishes the relation between TF

and X(F) .

3.2. Let F be a form, and t F its continuity discriminant , then

o I 1,- 1
n - n + 11 "'+ 11 - 11 + " ' -11 + 11 = Y. I F ).

10 1 ' I ' , I I '.'

4. SUBFORMS AND SIMPLE FORMS

According to the definition. a form F is the union of a family {all i E ( 1.....11 II
of arcs (which are either st retching or vertical and which intersect only in end points).
Let J be a subset of {I,....n J. then th e union vi a i Ii E J I. if connected, is cal led a

sub{orm of the form F.
For example, the forms F and F' , represented in Fig. 8a, have for some of their

subfor ms the forms represented in Fig. 8b , and a2v a . is not a subform of F (being not
connected] .

Notice that a subform is a subspace determined by the way we see a form as a
union of arcs . Suppose the drawings in Fig. 8a represent the same form seen differently
as a union of arcs. Then, no subfor m of F listed under Fig. 9b is a subfor m of F ' and
a 1 v a. is a subspace of F' which is a form in its own.

When we consider a form to be a graph of a multi-valued function. then its
intersections with st rai ght lines parallel to the y-axis play a significant role.
Figurativaly speaking, then everything seems as we were looking at the form from a
point in infinity, and in the direction of the vector i . Thus, vertical arcs are seen as
"big" points which cont ribute a ", 1• • to the cont inui ty discriminant.

A form having all members of its continuity discriminant equal to one will be
called a simple form. Thus, one might view a simple form as being an arc having
possibly "big" points.

As a convention, let us denote the discriminant of the form cons isting of a
single vertical line by .1 • . All forms in Fig. 9 are simple ones. A subfor m of a form F
which is a simple form will be called the simple subtorm of F. Of course. each arc is a
simple subform.
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T he fa mily of a ll simple subforrns of a form F is fin ite and partially orde red by
inclusion . Since, then , each chain has the maxi mal element, which will be called
maximal simple subform , we derive the following proposition.

4.1 . Each are ofa form is contained In a max imal simple subform

For illu st ration , consider t he form represe nted in Fig. 10, where a1v a2vu3 IS

a simple subfo rm, but not maximal. Subforms

and

are maximal a nd they bot h con tain arcs al ' a2 - a• .
Let us remark that the concepts of subforms, related to the canonica l represen­

tation of a form , are also ca nonical.
Le t a be a st retc h ing (vertica l) arc. Denote end_< o ) its left (lower) end and by

end +(o ) its right (upper) end.

Combi natorially. a form F is the set N of its nodes, the fami ly Al of its

st retc h ing a rcs a nd the fami ly A2 of its vertica l arcs. We will use t he orde red t riple

(N .AI, A2) to express this st ructu re of a form .

Inspired by t he ge ne ral idea of isomorphic simplicia l complexes , we say that
two forms F a nd F' are combinctorially isomorphic: if there exist bijections N ..... N ' ,
AI ..... A; , and A2 ..... A; such that whenever an a rc 0 corresponds to the a rc 0 '. then

enc(lo) a nd end+(a) correspond to end_l a ') and end+lo ') , respectively.

For example, the pairs of forms depicted in Fig . 11 are combm ntorial ly
isomorphic a nd they st ill have some posi t ional properties which we would like to
consider d iscriminat ing. Another classification , described in the next Sect ion , will be
more satisfacto ry, and then the structure of a form will be seen through a family of
maximal simple subforms.

In the case of simple forms, this isomorphism is exactly what desirable
classificatio n should be. Namely, let F and F' be two combinatorially isomorphic simple
for ms. 'l'h en. there is a mapping h : F -. P ' which is a homeo mo rphism and

lI t x.y ) = (hl{x).h;ty )), where hi is a funct ion increasi ng in x a nd , for each x, h; a

•function increasing in y . (For all hut a finite nu mber of x's, the domai n of It; is a one-

point se t ). Let us ca ll such a mapping It homeom orph ism of forms .
On the lit her hand , as it is easy to see, when h : F ..... P 'is a homeomorphism,

then forms F und F' are combinatori ally isomorphic.
The first two forms in Fig. 12 a rc homeomorphic (isomo rphic) and the second

two are not.

5. CONTINUITY MATRICES

As has been fixed by definition, a form if; a connected space. Leaving out thi s
assumption , then we have a finite un ion of a rcs which intersect only in their end points .
Such a figure is t he d isjoint union of a finite nu mber of forms . Conside rat ion of such
objects is not motivated by our tendency for generality but by the proced ure that we are
going to describe .
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Connectivity assumptions have not been used explicitely in the definit ions of
concepts related to a fo rm, so that they have the same meaning when applied to a
disjoint union of forms. The same remark holds for the validity of the already
formulated propositions (3.2 end 4.1).

Let 5 be a disjoint union of a finite number of forms. A maximal simple
subform L of 5 such that for each ( x.y) E L and ( x.y') E S \ L , the inequ ality y' > Y
holds , we call a layer of5 .

Roughly speaking, the layers of 5 are the lowest maximal simple subforms of
s.

Our defin ition of layers has a logical just ification in the fact that they exist .
And their existence is based on the following proposition (proved in 1121 1.

5.1. Ea ch di sj oint union ofa finite number offorms has at least one layer.

We have already exhibited a tendency to sec those components of the value
F(x ) which are intervals as they were "big" points contribut ing a ". 1. (. 1.1.) ~ to the
continu ity discr iminant. Preserving our tendency, we also see the ends of an arc as "big"
point s. Let us express it precisely.

Suppose a is a stretching arc of a form F (or of the union 5 of a finite family of
forms). The left end component of a is the connected subset of F (or 5 ) containing the
point end_(a); (u. v) and which lies on the line x v u , The right end compone nt is
similar ly defined .

The layers of the forms represented in Fig. 13 arc a2 for (il, a2 for (ii ) and
aov a l v aa v a4v as v aa v a 7v as v a w for (iii).

If we remove all stretching arcs of these layers and those arcs which belong to
their end components whenever they do not belong to the end components of the
remaining family of stretching arcs, we obtai n the forms represented in Fig. 14.

As it is see n, in cases Iii) and (iii) the union of the remaining family of arcs is
not connected. The layers of these unions of forms are:

Removing again, in cases (i) and (itl, we have the result represented in Fig. 15.
Thus, we have illustrated a procedure which leads to the decomposition of forms in
layers. In the examples we follow, these decompositions are the families in Fig. 16.

As it will be seen later, the family of layers in which a form is decomposed is
exactly the structure which carries the essential properties of that form. We would
mention also that when removing arcs of layers, an alternative way would be to remove
all arcs . Ai3 a mat ter of preference, we consis tently treat end compone nts as "big" points
and so we decompose a form as described .

In each step a sequence of layers is obtained and we attach to such a sequence
a row of a matrix . These rows are taken to be the continuity discriminants of these
sequences and they are written in order corresponding to the special position of the
layers . The already written 1's corresponding to the end components are not repeated
(and O's are written instead). For example, in t he case of the form under (jil, the matrix
IS
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1 (I) 1 (I) 0 (0) 0 (II 1 (I I 1

0 (0) 0 (I) 1 (0) 1 (I ) 0 (0) 0

0 (0) 1 (I) 1 ( 1) 1 (I) 1 (0) 0

T = 1(1)2(3 )2(1 )2 (3)211)1

Notice that the sum of numbers in a column is equal to the corresponding
member of the continui ty discriminant r of this form .

In the case of forms under (i) and (BO, their matrices are

(i )

1 (I ) 0

o (I ) 1

1 (1) 1

t = 2(3 )2

(im [0
1.

(I ) 0 (0) 0

(I ) 1 (1 ) . 1.

(0) 0 (1)

(1 ) 1 (1)

Examples (il , (ii) and (iii ) have served as recipes for the desc ribed proced ure .
Now, we turn to the exact definitions in the case of arbitrarily given for ms .

Le t F be a canonically represented form and [O.a] its domain. Let

be the correspondi ng subdivision of the interval [O.u1.Each laye r of F is a si mple form

and let " I be the union ofu ll of them. Then, t is the sequence of iii a nd (tl:j )) as. , ,

defi ned in Section 3, with iii = 0 when t he line .r = 'I does not in tersect " I and 1l ~l) = 0,
whe n there is no arc of "I stretching over I t j .ti+t ] .

Let us remove all stretching arcs of " 1 and a ll those arcs wh ich belong to their

end components whenever they are not end components of some remaining stretching
arcs. Thus , the subset 8 2 of F is obtained which is the union of form s. In addit ion , put

formally 8 1 = F . Let " 2 be the union of all layers of 82 and let tIl, be r " 2 with D's in

place of I's corresponding to the end components al ready included in "I . Put formally-T = t
·\ 1 '\ 1·

To proceed by induction , assume the sequences

d - -an r ..... t ,
• I ' ..

ha ve a lready been defined .
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Let " m..1 be the union of all layers of S I " t f\. be t \ with 0'8 in place of
", .. ...., ' ..\

J's correspond ing to the end components already included in " IU...u A",_ Remove all
stretching arcs of "m.. l and those which belong to the end components not being end
components of the remaining family of stretching arcs. Denote by S nl+2 the union of
remaining arcs Sm"l " Thus, S ", .. 2' " m..1 and T., • are defined .

••
Since each S, contains at least one stretching arc of F. there exists a natural n

such that Sil ~ 0 and S,l+ l "" 0 , (when this procedure stops). Call the number n height of
the form F. For example. simple forms have a height equal to 1.

The sequence

will be called the decomposition in layers of the form F and the matrix

-r
\.

the continuity matrix of F.

6. CLASSIFICATION OF FORMS

Consider two reali zations of the numeral -3-, represented in Fig. 17a.
The cont inuity matrices of these forms are

1 (1) 0

o ( I) 1

1 (I ) 0

I (I) I

o (0) I til I (I) 1 (I) 0

o (0) 0 to) 0 (1 ) I (1 ) I

o (0 ) 0 (0) I (1) 0 (0 ) 0

1 (I) I tl) I (I) I (0) 0

and their decompositions in layers are represented in Fig. 17b.

Comparing ,,=("1-"2. A3.A4) and A''''' (A~.A 2. A3 .A~ I we see that the layers

Ai and A; are homeomorphic and they all are connected to each other in the same way.
Equalization of these forms, on the grounds of such a comparison, leads to the idea of
their eqiuvalence. Then, their different continuity matrices may be interpreted as a
resu lt of the presence of noise.

In general. each member A. o,f the sequence A is the union of simple forms
having disjoint domains. This motivates us to coli the sequence ~ .....Ln of simple
forms having the domains [ a r ' b. I for which
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a rranged and to extend slig-htly t he deflnitlon of homeomorph ism given in Section 4.
Le t A and A' he the unions of two a rranged seq uences of simple forms . Let

h i\ -+ A ' he a homeomorphism such that h(r.YJ 0= (h 1(r ). h; tYl), where hlis

increasing In r and , for each r .h; increasi ng in y . Then, h will he called

homeomorphism of the unIOns ofarranged sequences of sImple form s .
Now we fix t he idea of equ ivalence in the form of a de finit ion .
Let F and r he tw o forms havin g- the same height n and let

lw their decom posit ion in layers. Then, F and r are ca lled equwalent if then- ex ists a
homeomorph ism h : F _ 1'" such that for each I the restrictions

an- homeomorphisms of the unions of arranged sequences of layers . Then , we write
F ,. F' and it is easily seen that "e" is an equivalence relation . Further , s ince for eac h
I , \ ; 0= hI" , ), we see that such homeomorphisms preserve the st ructu re of the form
unde rstood as the pair IF,Al. In order to be specific, we call the mappin g Ii
homeomorphism of form s (a nd the term homeomorphism is used with its s ta ndard
meaning). We also SO) ' for two equivalent forms that they have the sa me type or that
they are of the sa me type.

Classifi cat ion of various concrete realizations of forms entails recognition of
those having the same type and d iscr imination of those being of different types . In both
case s, in varia nts of classifica t ion may be used . A form invariant is a property unaltered
by homeomorph isms of for ms . Thus, to show that two forms are not equivalent, it is
enough to find a n Invariant being the property of one of them and not be ing the
property of the other one. In general . to show that two forms are equivalent, we have to
lind a prop,:'r homeomorphism . But in t ho case of a selected set of possible types,
mvanants may be used as well .

'I'I n- height of II form is evide ntly an invariant , as well as t he n umber of
s t retchi ng nrcs and the nu mber of vertical arcs in its ca nonica l representation.

Ohserve that the types (If nodes listed in Sect ion 2, under 1. and 3 . are
p rese rved hy any homeomorphism and those listed under 2 . and 4 . by homeomorphism
of forms . Hence , the numbers of nodes of each type a re also form invariants , as well as
is the total number of nodes .

For example , numerals ~2~ and ~3~ have different types, because they have fou r
and five nodes, respectively. On the other huud. each of t he following- for ms l Fig. 18) is
II realisat ion of numeral "2" und t hey have the sa me n umber of nodes and all the ir
invaria nt properties art.' the sante. The numeral "1~ has one vertical arc and the
n umeral "7" bas no such arc. Thus, they arc not equivalent.

If IF, AI and tF" , A') are eq uiva lent, then for each k :s n , the sets

and • •
'\ IV...u A k '
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when connected, represent equivalent forms. On the opposite, if for some k , they are
not equivalent , then forms F and P' nre of different type. For instance, the numerals
"6" and "9" are not of the same type, because A I v Az is not equivalent to A'Iv '\~ .

Let us call two continuity matrices equivalent if they correspond to equivalent
forms. For example, the forms in Fig. 19 are equivalent and so are their cont inuity
matrices

o (0) 1 (1) 0

o (1) 1 (1) 1

1 (1) 1 (1) 1

1 (I ) 0 (0) 0

o (1) 1 ( 0 ) 0

1 (I) 1 (I) 1

It is worth thinking of an algorithm by which any two equivalent matrices are
transformed to the canonical one being uniquely attached to each type of fo rms . In the
example above, two matrices are transformed into

1 (1) 0

o ( I) 1

1 (1 ) 1

which corresponds to the type of numeral "2". Can onical matrices would also be form
invarian t . We leave this matter with the remark that these matrices could be
important invariants, because they register a lot of the structure of a form.

7. IMPLEMENTATION

The above considerations, although th eoretically oriented, have been mainly
motivated by the idea to design a robust character recognition system, able to cope with
problems of practical applications to different character sets (numerals , isolated
handwritten characters, cursive text). Some of the corresponding results have been
described in [12], [13]; a complete presentation will appear elsewhere. In t his section we
shall give only some ideas of how to apply the developed methodology in more realistic
environments.

7.1. Extraction of Line Forms

Real inputs to machine character recognit ion systems are not in the form of
ideal lines, but appear as pixel patterns, i.e. matrices with binary elements. Any
practical application of the developed concept is basically concerned with the problem
of correspondence between real pixel patterns and line forms.

One of the possib ilities to connect line forms directly with given patterns is to
construct a polygonal line form, a sort of simplified skeleton. Fig. 20 depicts two
realistic, "heavy" patterns, representing numerals "2" and "3". The main idea is to
introduce "nodes" of the patterns, similarly as the nodes have been defined in the case
of line forms. Not ice that, when a form is regular. the nodes are touching points of the
form with its frame (see Fig. 21) <include also the touching points with the horizontal
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line-s of the- Iramej. Consequently , in the case of a pixel pattern , touching points with a
frame will have the role of "nodes". Expecting, in general, un balanced forms, touchi ng
points can be obtained by "moving" parts of the fra me to the touching positions (see Fig.
20). The obtained set of points is th e fi rst "approximat ion" of the form. The next step is
to connect these points by admissible arcs . These arcs have the meaning given above by
the corresponding defin ition (sec Section 2 ), and, in addition , they have to belong to the
body of the pattern . In such a way we correspond a line for m to a pattern . Defi nin g the
closeness of an interval and t he hody of t he pattern , a polygonal form with straight
lines ca n also be constructed. The line forms obtained in such a way can be efficiently
subjec ted to the procedure based on the conceptualization presented in t he paper.

Notice that th e balancing of the line forms is now eaiser . and cons ists of fixin g
possible discont inuity lines and of erasing the oute r parts of the forms. The idea is
segges ted in Fig. 22.

Details related to the machine realiza tion of the described procedures are out
of the scope of the paper.

7.2 Decomposttiori of Forms

A form is simpler when its height, defin ed in the preced ing sect ion, is smaller.

Looking alternatively in the direct ion of the vector i to t he nu merals represented in
Fig. 23, we conclude that all have smaller height, compared with the look in direction- -i . Therefore, the i look makes these for ms simpler. Observe that all /\1 (with respect

to j ) are onu member families (and speaking descript ively then such forms are "even").

and with rE.'sJX'Ct to f some are not. Decomposing the forms along the discontinuity
lines (which are structura l), we obta in "sums" of more "even" forms (which are more
regular . and so more easily subjected to recognition I. The "seen" st ruc tural
discont inuities a re essent ial properties of forms here.

The above concepts can be related to pixel patterns in real recogmncn
procedures . The way is to consider a pixel pattern as a form drawn by heavy lines, A
column of the pixel matrix stays in th e role of the line x = t , Their intersections consist
now of connect ivity components, which are seen as points , and counted as 1'so As a
result, a sequence of groups of nu mbers is obtained. If the form is not "too heavy", short
gro ups correspo nd to odd positions in r • and long' sequences to even positions, i.e.

~hart.
a ...« fL.II Y...Y...I--I uH1IY

We also have to respect th e st ruct ure of the sequence; when a = p th e correspondence is

long short--U ...U y..:y...H l1(uI1....

and so on. The pract ical way of relating r to a pixel pattern is faced with difficulties
which have to be t reated separa tely. Some ideas, such as the esti mation of line width,
can be ut ilized .
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Continuity of line forms. when related to pixel patterns, takes the as pect . say.
of two nonapproaching compone nts followed by one com pone nt , or of a sequence of one
component sets followed by a vertical element {Fig. 24 1. Remark that our approach
"sees" the vertical elements as 'big points". This supposes specific methods for their
selection. which are not included in the above gene ral conside rat ions. Detection of the
discontinuities leads to decomposition of pixel patterns into "simpler" parts.

The above mentioned relations between idea l line forms and realistic pixe l
patterns have been combined to make a computer progra m for the recognition of
numerals . The length of such a considerat ion requi res a separate paper which is under
preparation by the authors.

8. CONCLUSION

In this paper the conceptualiza t ion of a semi -topologic..l1 classifica tion of lin e
figures has been presented .

The above-considered con ti nuity sequences and matrices are attached to each
realization of a form. and not to its equivalence class. In th is way they are se nsitive to
the presence of noise existing in the realizat ions. It is quite nat ural to tend to fmd
algorithms leading to a canonical representat ive of a class (a well-balanced form l and to
obtain the correspondi ng sequences and matrices as being invariants of the class . It
would be also interesting to define invariantly a decomposit ion of forms into more
regular ones. Both aspects cou ld be important for implementation purposes.
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