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Abstract: In this paper a subclass of line figures, which are finite unions of arcs, is
considered. We call such a figure a form. To each form a numerical sequence related to
the Euler characteristic of the underlying space of the form is attached, We prove that a
form can be decomposed into simple ones. On the basis of this decomposition, to each
form a matrix, as a way of arithmetization of the structure of the form, i1s attached.
Finally, this leads to a semi-topological classification of forms. Then, invariant
properties of this classification are taken as a basis for character recognition.
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1. INTRODUCTION

Each problem of recognition supposes an understanding of the relationship of
objects as equivalent to one another in certain ways. For instance, when we relate two
figures in the plane according to their geometrical shape, we compare properties which
are preserved under the action of the Euclidean group. And the set of properties upon
which we find that two figures represent the same numeral may be quite different,
much as two processes of comparison are different.

In interpersonal communication, a pattern is often transferred from a person
to another by means of its graphic realization. For example, the standard patterns of
letters and numerals, when freely realized (hand-written) may be more or less like the
followed pattern. Recognition of such realizations 1s the process of relating them to
their standard patterns. The process 18 based on structural properties of patterns and,
when hindered, the difficulties are due to the presence of noise (those properties which
are not structural).
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[s the vast literature on the character recognition problems, structural
properties of specific classes of characters are expressed in the form of different
analytical, geometrical or topological features of line figures. And, as the development
of mathematics reflects it, in the case of general, synthetic approaches, instead of
selecting properties, an idea of equivalence has to be taken as a classification criterion.

Having in mind the realistic model of a page with a piece of writing, and being
inspired by the current research (e.g. [1], [2], [3], [4], [5], [6], [7], [8], [14]), we
synthesize such an equivalence for a class of line figures on the basis of topological
ideas. Once we have a precise mathematical formulation of equivalence, we also have a
ground upon which we select those properties shared by all equivalent objects as being
structural ones.

Reflecting individual styles, handwritten characters may vary very much in
shape and magnitude. This makes a unique metrical comparison with the followed
standard patterns impossible. Thus, the researchers select some outstanding points and
features of line figures and those which depend on topological and positional properties
obtain a precise mathematical meaning in our approach. Being so semi-topological, this
approach requires consideration of a plane supplied by a given coordinate system (and
in such a plane we can define anthropomorphic ‘"left", "right", "east", "south", etc.).
Further, we select a subclass of line figures which are finite unions of arcs being either
graphs of continuous functions or vertical segments. When connected, we call such a
union a form. Each form determines a multi-valued function ¢+ F(¢). A sequence Tt

1s attached to a form F, registering the number of components F(¢) and discontinuity
points of the corresponding function.

This sequence can be considered as a refinement of the idea of crossing
counts, which is often present in the literature on character recognition problem [5],
[8]. It is shown that this sequence is related to the Euler characteristic of space F.
When the members of 1 are equal to 1, the form is called simple. Then a family A of

simple subforms of F is selected and the pair (F.A) is taken to be the structure upon
which the graphical meaning of F is based. When a homeomorphism h:F — F'

preserves the structure (maps simple forms of F upon simple ones of F', respecting
"left", "right", "up", and "down"), we say that two forms F and F'are equivalent. Some
invariants are treated, such as node points, the number of simple forms, equivalent
matrices, etc. The whole conceptualization permits a precise, semi-topological
definition of such symbols as numerals and letters of an alphabet. In order to make this
paper self-contained, we repeat several ideas and results first exposed in [12], but it
also includes a detailed treatment of the role and properties of node points.

Finally, we hope that our mathematically-oriented approach is interesting

enough for specialists in the field of pattern analysis and we expect their appreciation
of the involved topological ideas.

2. SELECTION OF A PROPER CLASS OF LINE FIGURES

A line figure is commonly understood to be a subset in the plane which

consists of lines. For instance, the letters of the English alphabet, as well as the words
written in that alphabet are line figures.
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A Euclidean plane is a topological space and a line figure as its subset inherits
the relative topology. Recall that a mapping f : F; — F, of line figure F| to line figure

F, is called a homeomorphism if f is bijective and both f and f 1 are continuous.

Then we say that F, and F, are homeomorphic or topologically equivalent, and we
write F, = F,. A property of a figure which is unaltered by homeomorphisms is called
a topological property.

If our purpose is to investigate the conventional symbols graphically - as being
line figures possibly deformed out of their regular shape, but still with recognizable
meaning, then topology may seem to be beyond this scope. The reason is seen in the
fact that a homeomorphism may cause a big distortion of the shape of a figure. For
example, an interval and a spiral are topologicaly equivalent. This situation entails a
classification of figures which would be stricter than topological equvalence and still far
from geometrical congruence.

Thus, we are led to consider a subclass of line figures which are constructed
from arcs as basic building blocks. Roughly speaking, we cannot be haphazard about
placing these blocks without respecting "left"” and "right", "up” and "down". In order to
express these positional properties formally, we also require that the plane is supplied
with a coordinate system.

Since we will associate some numerical sequences and matrices with a line
figure, we would not welcome a situation in which that figure in intersected by a
straight line in infinitely many separated parts. This leads us to suppose that the
number of building blocks is finite. So, we have gathered a clear motivation for the
following formal steps.

Let E* be the Euclidean plane together with a given coordinate system. A
realistic model is a page with its lower edge being x—axis and its left edge being
¥y —axis.

First, we define building blocks of the line figures that we want to select.

A stretching arc in E* is the graph of a continuous function defined on a

closed interval, A vertical arc in E- is a closed interval belonging to line x=a.

Now we define the subclass of line figures which will be convenient for our
considerations and which we will call forms. When we say "arc", we mean that the arc is
either stretching or vertical.

A form is a connected set in E”which is the union of a finite family of ares
which intersect only in end points. Note that the same form may be seen in many
different ways as a family of ares. For example, the forms represented in Fig. 1 are
three families of five, three and two arcs, respectively, where the heavy dots represent
the ends of ares. In all three cases we have, in fact, the same form.

A stretching arc is the graph of a continuous function f:[a.b] » R and the
point (a,f(a)) is called left and the point (b.f(b)) the right end of the arc. All its other
points are called interior points.

Among all representations of a form (as the union of a family of arcs), there
will be one having the fewest possible arcs. To see it, let us fix our attention on some
particular points.

The point of a form F which is of any of the following types:

1. end point of exactly one arc
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2. left or right end point of exactly two arcs
3. end point of three or more arcs
4. end point of exactly one vertical arc and possibly some stretching ones

we call a node of the form F. The drawings shown in Fig. 2a illustrate each of these
cases.

Notice that nodes are never interior points of the arcs of a form. Therefore, in
each possible representation of a form, a node must be the end of an arc.

On the other hand, if an end is not a node, then it is a point which is either

1. the left end of one arc and the right end of another one
2. the end of two vertical arcs

These two cases are illustrated in Fig. 2b. Notice that in both cases such an
end is the interior point of the arc wich is the union of two arcs ending at that point.
Replacing such two arcs by their union in a given representation of a form, we get
another representation having less arcs and ends. If we keep replacing such pairs of
arcs, then in a finite number of steps we shall reach the unique representation of a
form with its nodes as the only end points. We call this representation canonical. For
example, each of the forms represented in Fig. 3 has its canonical representation with

respect to the page as a model of E® and the coordinate system with the origin at the
lower-left corner. Loosely speaking, the concepts depend not only on the properties of a
figure, but also on the position of an observer. In the model of this page, two congruent
figures may have different canonical representations, as well as different sets of nodes
and families of arcs. This is easily demonstrated with the forms represented in Fig. 4,
with the reader as an observer.

The introduced concepts remain invariant under translation of the coordinate
system. Thus, given a form F, we can translate the coordinate system to a unique
position where F is a subset of the first quadrant and with the axes touching F. The
coordinate system in that position will be called the associated coordinate system of the
form F. Starting with this page as a model, the drawings shown in Fig. 5 represent two
forms with their associated coordinate systems.

Projecting a form F to the axes of its associated system, two intervals [ﬂ', a] and
[0.6] are obtained. We will call the interval [0,a] (on x -axis) the domain of the form F
and the rectangle [0.a]x [0.5] the frame of F.

3. CONTINUITY DISCRIMINANT OF A FORM

Suppose we have a form together with its associated coordinate system. Then,
we can look on the form as being the graph of a multi-valued function and, in that way,
we establish a correspondence between points of the domain and compact subsets of the
set R of real numbers.

Before a formal exposition, we shall use an example to illustrate this idea. Let
us consider two realizations of the numeral "8", one being standard and the other
contaminated with noise (Fig. 6). Projecting nodes to the x-axis, the following
subdivisions of domain are obtained:

(1):0<t <a {2):0-::;{{2{:;4:3'.
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Let us denote these forms by F and F', respectively. Then to each ¢ € [0.::1], the set
F(t)={y | (L.y) € F}

is attached. (F(#) is the projection to the y—axis of the intersection of the form F and
the straight line x=1¢). The attachement ¢+ F(¢) is a multi-valued function (as is,
similarly, the function ¢ - F'(1) ).

Let ¢ € (0.t)) and let ¢+ ¢;. Then, F'(¢) is a two point set which "stays far
from" the three point set F'(;). This means that the multi-valued function ¢ > F'(¢) is
discontinuous on the left at ¢, and, as it is easy to see, also discontinuous on the right
at ¢;. If the set F(f) "comes close to" the set F(f;), when t — ¢, we say that the

function ¢ F(f) is continuous at f,. By inspection, we see that s F(f) is
continuous at each point and ¢+ F'(¢) is discontinuous only at ¢; and #;.

Now, let us attach to a form a sequence of numbers of components of F(?),

when ¢ runs from 0 to the end of the domain. Such a number is the same for each ¢
belonging to the interior of a subinterval and we use brackets "( )" to point it out. In the
case of forms F and F’ (considered above), the sequences are

T =24)3(4)2, 1 =1(2),3(4)3(4)3,(2)1

where the asterisk denotes the place of discontinuity.

For the form represented in Fig. 7a, F(0) and F(a) are sets consisting of a
point and an interval, so the number of components is two. The sequence is
1= 2,(3)2(3),2. When unbalanced, this form becomes the form represented in Fig. 7b,

and the corresponding sequence is

t=1(2),3,(3)2(3)2,(1),1

Remark that according to the classification of forms which we are going to
define later, these two line figures will be of the same type (have the same meaning),
just as they will be the same in the case of two considered realizations of the numeral
"8". Thus, these sequences are not only dependent on structural properties of forms,
but, being also affected by noise, they register its presence.

To give a precise meaning to the figurative "comes close to", we need a metric

on the set of subsets of R. More generally, let (M.d) be a metric space and exp(M) the
set of all non-empty compact subsets of M. For A.B € exp(M), let

MA.B)=sup infd(x.y). p(B.A)=sup infd(x.y).
xeA yeB yeB xeA

Two numbers, p(A.B) and p(B.A), may be different and the bigger of them is
the distance between A and B. Write

oy

d(A.B)= max(p(A.B).p(B.A));
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and then, this metric on exp(M) is called the Hausdorff metric.
The following useful proposition deseribes the relation d(A.B) <.

3.1. d(A.B) <e if and only if for each x € A there exists an y € B such that
d(x.y) <& and for each y € B there exists an x € A such that d(x.y) <¢.

Now, it is easy to define the continuity of a multi-valued function. Let
(M,.d,)and (M,.d,) be two metric spaces and F: M, - M, a multi-valued function

such that for each x e M,. F(x) is a compact subset of M,. The function F is
continuous at x;,eM; if for each sequence (x,)inM; x, — x;, implies
F(x,)— F(x,) in exp (M,).

A thorough exposition of the material related to the Hausdorff metric and to
multi-valued functions can be found in Kuratowski [9].

Given a form F, let [0.a] be its domain. Correspond to each x €[0,a] the set
F(x)={y|(x,y)e F}.

Then, x + F(x) is a multi-valued function and the set F(x) is a finite union of

isolated points and closed intervals which are the components of connectedness of
Fix).
Projecting all nodes of F to the x-axis a subdivision

0=t0-:r1 <.<l,=a

1s obtained. For t € (¢,.¢,,,), F(t) is a finite set of the same number n: points. Let n,

t* e

denote the number of components of Fit,).

In order to register the points of discontinuity, let

n,  Fiscontinuous at ¢,

.1, Fis continuous on the right and discontinuous on the left at ¢,

L]

. n, . F is continuous on the left and discontinuous on the right at ¢ ;

My o Fis discontinuous on both sides at ¢,

Following the order of points of the subdivision

bg < b <<y,

we attach to the form F, in a unique way, the following sequence
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] T ES T e ~ k-1, ~
Tp=n, (n m,l---n,*{n,}n,“l~--nh_1{n, )n,..

which will be called the continuity discriminant of F.
Notice that the sequence 1 has an odd number 2k+1 of members and that

brackets could be omitted. If we look for a meaning, then notice that (n,) is actually a
constant function on (£.¢,,;) and 15 could be considered as a step function on [0.a].

On the other hand, 1, is related to the Euler characteristic of the form F'.

Forms are finite cell complexes of dimension one and for a form F, its Euler
characteristic is the difference y(F)= ;- p; of Betti numbers 3,.3, . If the number of
nodes of F is n and the number of arcs a, then y(F)=n-a also holds. For general
topological details, see for example, Maunder [10] or Munkres [11].

The following proposition, proved in [12], establishes the relation between 1
and y(F).

3.2. Let F be a form, and 1, its continuity discriminant, then

' k-1
R, ‘":‘*""”r +n, =y(F).

0
n, —n, +n
LTI L

4. SUBFORMS AND SIMPLE FORMS

According to the definition, a form F is the union of a family {a,| i € {1....n }}

of arcs (which are either stretching or vertical and which intersect only in end points).
Let J be a subset of {1....n}, then the union U{ﬂJle J }, if connected, is called a

subform of the form F.
For example, the forms F and F', represented in Fig. 8a, have for some of their
subforms the forms represented in Fig. 8b, and a, wa, is not a subform of F (being not

connected).

Notice that a subform is a subspace determined by the way we see a form as a
union of arcs. Suppose the drawings in Fig. 8a represent the same form seen differently
as a union of arcs. Then, no subform of F listed under Fig. 9b is a subform of F and
a,\va, is a subspace of F'which is a form in its own.

When we consider a form to be a graph of a multi-valued function, then its
intersections with straight lines parallel to the y-axis play a significant role.
Figurativaly speaking, then everything seems as we were looking at the form from a

point in infinity, and in the direction of the vector j. Thus, vertical arcs are seen as
"big" points which contribute a ", 1," to the continuity discriminant.

A form having all members of its continuity discriminant equal to one will be
called a simple form. Thus, one might view a simple form as being an arc having
possibly "big" points.

As a convention, let us denote the discriminant of the form consisting of a
single vertical line by ,1,. All forms in Fig. 9 are simple ones. A subform of a form F

which is a simple form will be called the simple subform of F. Of course, each arc is a
simple subform.
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The family of all simple subforms of a form F is finite and partially ordered by
inclusion. Since, then, each chain has the maximal element, which will be called
maximal simple subform, we derive the following proposition.

4.1. Each arc of a form is contained in a maximal simple subform

For illustration, consider the form represented in Fig. 10, where a, L@y \Jag 18

a simple subform, but not maximal. Subforms
a,va,vazua, and a,va,va,Uag

are maximal and they both contain ares a,. a,.a,.

Let us remark that the concepts of subforms, related to the canonical represen-
tation of a form, are also canonical.
Let a be a stretching (vertical) arc. Denote end_(a) its left (lower) end and by

end (a) its right (upper) end.

Combinatorially, a form F is the set N of its nodes, the family A, of its
stretching arcs and the family A, of its vertical arcs. We will use the ordered triple
(N.A;.A,) to express this structure of a form.

Inspired by the general idea of isomorphic simplicial complexes, we say that

two forms F and F' are combinatorially isomorphic if there exist bijections N — N,
A — Ai, and A, - A'2 such that whenever an arc a corresponds to the arc a', then
end (a) and end, (a) correspond to end_(a’) and end, (a'), respectively,

For example, the pairs of forms depicted in Fig. 11 are combinatorially
isomorphic and they still have some positional properties which we would like to
consider discriminating. Another classification, described in the next Section, will be
more satisfactory, and then the structure of a form will be seen through a family of
maximal simple subforms,

In the case of simple forms, this isomorphism is exactly what desirable
classification should be. Namely, let F and F'be two combinatorially isomorphic simple
forms. Then, there is a mapping & : F — F which is a homeomorphism and

hix.y) = (hl{x}.hf[y}}, where A' is a function increasing in x and, for each x, hi a

function increasing in y. (For all but a finite number of x's, the domain of hf is a one-

point set). Let us call such a mapping h homeomorphism of forms.
On the other hand, as it is easy to see, when & : F — F'is a homeomorphism,
then forms F and F'are combinatorially isomorphic.

The first two forms in Fig. 12 are homeomorphic (isomorphic) and the second
two are not.

5. CONTINUITY MATRICES

As has been fixed by definition, a form is a connected space. Leaving out this
assumption, then we have a finite union of arcs which intersect only in their end points,
Such a figure is the digjoint union of a finite number of forms. Consideration of such
objects is not motivated by our tendency for generality but by the procedure that we are
going to describe.
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Connectivity assumptions have not been used explicitely in the definitions of
concepts related to a form, so that they have the same meaning when applied to a
disjoint union of forms. The same remark holds for the validity of the already
formulated propositions (3.2 and 4.1).

Let S be a disjoint union of a finite number of forms. A maximal simple
subform L of S such that for each (x.y)e L and (x.y') € S\L, the inequality y > y
holds, we call a layer of S.

Roughly speaking, the layers of S are the lowest maximal simple subforms of
S.

Our definition of layers has a logical justification in the fact that they exist.
And their existence is based on the following proposition (proved in [12]).

5.1. Each disjoint union of a finite number of forms has at least one layer.

We have already exhibited a tendency to see those components of the value
F(x)which are intervals as they were "big" points contributing a ", 1,(,1.1,)" to the

continuity discriminant. Preserving our tendency, we also see the ends of an arc as "big"
points. Let us express it precisely.

Suppose a is a stretching arc of a form F (or of the union S of a finite family of
forms). The left end component of a is the connected subset of F (or S) containing the
point end_(a)=(u.v) and which lies on the line x=u. The right end component is

similarly defined.
The layers of the forms represented in Fig. 13 are a, for (i), a, for (ii) and

ayUay Va3 Ua \Jag Jag\Ja,\Jag\Uay, for (iii).
If we remove all stretching arcs of these layers and those arcs which belong to

their end components whenever they do not belong to the end components of the
remaining family of stretching arcs, we obtain the forms represented in Fig. 14.

As it is seen, in cases (i) and (ii1) the union of the remaining family of arcs is
not connected. The layers of these unions of forms are:

(i) ay; (i) @y uag; (i) agua Uay,Uaguaguay,.

Removing again, in cases (i) and (ii), we have the result represented in Fig. 15.
Thus, we have illustrated a procedure which leads to the decomposition of forms in
layers. In the examples we follow, these decompositions are the families in Fig. 16.

As it will be seen later, the family of layers in which a form is decomposed is
exactly the structure which carries the essential properties of that form. We would
mention also that when removing arcs of layers, an alternative way would be to remove
all arcs. As a matter of preference, we consistently treat end components as "big" points
and so we decompose a form as described.

In each step a sequence of layers is obtained and we attach to such a sequence
a row of a matrix. These rows are taken to be the continuity discriminants of these
sequences and they are written in order corresponding to the special position of the
layers. The already written 1’s corresponding to the end components are not repeated
(and 0’s are written instead). For example, in the case of the form under (i), the matrix
is
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I ) T ) 0 © 90 @®m 1 @ 1
0 (0) 0 (1) 1 () 1 (1) 0 (0) O
o (o) 1 a1 1 (O 1 (I 1 (0 0O

= 1(1)2(3)2(1)2(3)2(1)1

Notice that the sum of numbers in a column is equal to the corresponding
member of the continuity discriminant t of this form.

In the case of forms under (i) and (i11), their matrices are

(1 @ ol
0 () 0 () 0 (O 0 (1 0
(). 10" 1)y 1 (ii1)
| TR i S VR ( ) R (B8 M B g ) ER |
1 (1) 1]
T=2(3)2 t=1,(2)1(1),1.(D1(2).1

Examples (1), (i1) and (ii1) have served as recipes for the described procedure.
Now, we turn to the exact definitions in the case of arbitrarily given forms.

Let F be a canonically represented form and [0,a] its domain. Let

D=tﬂ-r.tl <.<t,=a

be the corresponding subdivision of the interval [0.a]. Each layer of F is a simple form

and let A, be the union of all of them. Then, TA, 1s the sequence of Ei, and [nin) as

defined in Section 3, with n, = 0 when the line x = ¢; does not intersect A, and n:”= 0

when there is no arc of A, stretching over [ ¢,.¢,,, ].
Let us remove all stretching arcs of A; and all those arcs which belong to their

end components whenever they are not end components of some remaining stretching
arcs. Thus, the subset S, of F' is obtained which is the union of forms. In addition, put

formally S, = F. Let A, be the union of all layers of S, and let ‘f“-:. be t % with 0’s in

place of 1's corresponding to the end components already included in A,. Put formally

T""I =Thl.

To proceed by induction, assume the sequences

have already been defined.
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Let A, ., be the union of all layers of S, ,,. 7,  ber, with0'sin place of

I's corresponding to the end components already included in A,u.wA, . Remove all
stretching arcs of A, ., and those which belong to the end components not being end
components of the remaining family of stretching arcs. Denote by S, ., the union of
remaining ares S, ,.Thus, S, .. A, ., and i‘*-.; are defined.

Since each S; contains at least one stretching arc of F, there exists a natural n
such that S, # @ and S, ,, = 0, (when this procedure stops). Call the number n height of

the form F. For example, simple forms have a height equal to 1.
The sequence

the continuity matrix of F,

6. CLASSIFICATION OF FORMS

Consider two realizations of the numeral "3", represented in Fig. 17a.
The continuity matrices of these forms are

= =

1 @ o] o @ 1 () 1 @) 1 () O
0 (1) 1 0 () 0 (0 0 () 1 (1) 1
1 () ol |0 (© 0 (0 1 (1) 0 (0 0©
1T m 1 b @1 @ 1@ 10 o

and their decompositions in layers are represented in Fig. 17b.

Comparing A=(A;.A5.A3.A ) and A'= (A}, A5,A3.A%) we see that the layers
A; and A’ are homeomorphic and they all are connected to each other in the same way.

Equalization of these forms, on the grounds of such a comparison, leads to the idea of
their eqiuvalence. Then, their different continuity matrices may be interpreted as a

result of the presence of noise.
In general, each member A; of the sequence A is the union of simple forms

having disjoint domains. This motivates us to call the sequence L,...L, of simple
forms having the domains [ a,.b, | for which
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a < bl <@, c:b",

arranged and to extend slightly the definition of homeomorphism given in Section 4.
Let A and A" be the unions of two arranged sequences of simple forms. Let

h:A = A" be a homeomorphism such that h[x.yjz{hltx}.hf{y]), where h'is

increasing in x and, for each x .hf increasing in y. Then, h will be -called
homeomorphism of the unions of arranged sequences of simple forms.

Now we fix the idea of equivalence in the form of a definition.

Let F and F' be two forms having the same height n and let

A =(Ay....A,) and A'=(A},....,A))

" n

be their decomposition in layers. Then, F and F'are called equivalent if there exists a
homeomorphism k : F — F' such that for each ¢ the restrictions

hlA+ A= A

are homeomorphisms of the unions of arranged sequences of layers. Then, we write
F' = F' and it is easily seen that "=" is an equivalence relation. Further, since for each

t: A =h[A,], we seée that such homeomorphisms preserve the structure of the form

understood as the pair (F,A). In order to be specificc we call the mapping h
homeomorphism of forms (and the term homeomorphism is used with its standard
meaning). We also say for two equivalent forms that they have the same type or that
they are of the same type.

Classification of various concrete realizations of forms entails recognition of
those having the same type and discrimination of those being of different types. In both
cases, invariants of classification may be used. A form invariant is a property unaltered
by homeomorphisms of forms. Thus, to show that two forms are not equivalent, it is
enough to find an invariant being the property of one of them and not being the
property of the other one. In general, to show that two forms are equivalent, we have to
find a proper homeomorphism. But in the case of a selected set of possible types,
invariants may be used as well.

The height of a form 1s evidently an invariant, as well as the number of
stretching arcs and the number of vertical arcs in its canonical representation.

Observe that the types of nodes listed in Section 2, under 1. and 3. are
preserved by any homeomorphism and those listed under 2. and 4. by homeomorphism
of forms. Hence, the numbers of nodes of each type are also form invariants, as well as
is the total number of nodes.

For example, numerals "2" and "3" have different types, because they have four
and five nodes, respectively. On the other hand, each of the following forms (Fig. 18) is
a realization of numeral "2" and they have the same number of nodes and all their
invariant properties are the same. The numeral "1" has one vertical arc and the
numeral "7" has no such arc. Thus, they are not equivalent.

If (F,A)and (F', A’) are equivalent, then for each & < n, the sets

AN, and  AjUL A,
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when connected, represent equivalent forms. On the opposite, if for some k, they are
not equivalent, then forms Fand F' are of different type. For instance, the numerals
'6" and "9" are not of the same type, because A, U A, is not equivalent to A UA.

Let us call two continuity matrices equivalent if they correspond to equivalent
forms, For example, the forms in Fig. 19 are equivalent and so are their continuity
matrices

= B = =

000 « 1. Q) 0 1 (B 0 O 0
0 1) 1 Yy cEl S 10 @) A (6] 0
1 ) 1 (I 1 1 ) 1 (1) 1

= =1

It is worth thinking of an algorithm by which any two equivalent matrices are
transformed to the canonical one being uniquely attached to each type of forms. In the
example above, two matrices are transformed into

Fezin
0 @ 1/,
L e

which corresponds to the type of numeral "2". Canonical matrices would also be form
invariant. We leave this matter with the remark that these matrices could be
important invariants, because they register a lot of the structure of a form.

7. IMPLEMENTATION

The above considerations, although theoretitally oriented, have been mainly
motivated by the idea to design a robust character recognition system, able to cope with
problems of practical applications to different character sets (numerals, isolated
handwritten characters, cursive text). Some of the corresponding results have been
described in [12], [13]; a complete presentation will appear elsewhere. In this section we
shall give only some ideas of how to apply the developed methodology in more realistic
environments.

7.1. Extraction of Line Forms

Real inputs to machine character recognition systems are not in the form of
ideal lines, but appear as pixel patterns, i.e. matrices with binary elements. Any
practical application of the developed concept is basically concerned with the problem
of correspondence between real pixel patterns and line forms.

One of the possibilities to connect line forms directly with given patterns is to
construct a polygonal line form, a sort of simplified skeleton. Fig. 20 depicts two
realistic, "heavy" patterns, representing numerals "2" and "3". The main idea is to
introduce "nodes" of the patterns, similarly as the nodes have been defined in the case
of line forms. Notice that, when a form is regular, the nodes are touching points of the
form with its frame (see Fig. 21) (include also the touching points with the horizontal
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lines of the frame), Consequently, in the case of a pixel pattern, touching points with a
frame will have the role of "nodes”. Expecting, in general, unbalanced forms, touching
points can be obtained by "moving” parts of the frame to the touching positions (see Fig.
20). The obtained set of points is the first "approximation” of the form. The next step is
to connect these points by admissible arcs. These arcs have the meaning given above by
the corresponding definition (see Section 2), and, in addition, they have to belong to the
body of the pattern. In such a way we correspond a line form to a pattern. Defining the
closeness of an interval and the body of the pattern, a polygonal form with straight
lines can also be constructed. The line forms obtained in such a way can be efficiently
subjected to the procedure based on the conceptualization presented in the paper.

Notice that the balancing of the line forms is now eaiser, and consists of fixing
possible discontinuity lines and of erasing the outer parts of the forms. The idea is
seggested 1n Fig. 22,

Details related to the machine realization of the described procedures are out
of the scope of the paper.

7.2 Decomposition of Forms

A form is simpler when its height, defined in the preceding section, is smaller.

Looking alternatively in the direction of the vector ¢ to the numerals represented in
Fig. 23, we conclude that all have smaller height, compared with the look in direction

J . Therefore, the i look makes these forms simpler. Observe that all A, (with respect
to j ) are one member families (and speaking descriptively then such forms are "even"),

and with respect to ¢ some are not. Decomposing the forms along the discontinuity
lines (which are structural), we obtain "sums" of more "even” forms (which are more
regular, and so more easily subjected to recognition). The "seen" structural
discontinuities are essential properties of forms here.

The above concepts can be related to pixel patterns in real recognition
procedures. The way is to consider a pixel pattern as a form drawn by heavy lines, A
column of the pixel matrix stays in the role of the line x = ¢. Their intersections consist
now of connectivity components, which are seen as points, and counted as 1’s. As a
result, a sequence of groups of numbers is obtained, If the form is not "too heavy", short
groups correspond to odd positions in T, and long sequences to even positions, i.e,

short long  short
et fa! L e I ey

a.a B.p y.yr.—=alP)y

We also have to respect the structure of the sequence; when a = [} the correspondence is

long short
e et

Q... Y. Y= ala)y....

and so on. The practical way of relating T to a pixel pattern is faced with difficulties

which have to be treated separately. Some ideas, such as the estimation of line width,
can be utilized,
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Continuity of line forms, when related to pixel patterns, takes the aspect, say,
of two nonapproaching components followed by one component, or of a sequence of one
component sets followed by a vertical element (Fig. 24). Remark that our approach
"sees" the vertical elements as "big points". This supposes specific methods for their
selection, which are not included in the above general considerations. Detection of the
discontinuities leads to decomposition of pixel patterns into "simpler” parts.

The above mentioned relations between ideal line forms and realistic pixel
patterns have been combined to make a computer program for the recognition of
numerals. The length of such a consideration requires a separate paper which is under
preparation by the authors.

8. CONCLUSION

In this paper the conceptualization of a semi-topological classification of line
figures has been presented.

The above-considered continuity sequences and matrices are attached to each
realization of a form, and not to its equivalence class. In this way they are sensitive to
the presence of noise existing in the realizations. It is quite natural to tend to find
algorithms leading to a canonical representative of a class (a well-balanced form) and to
obtain the corresponding sequences and matrices as being invariants of the class. It
would be also interesting to define invariantly a decomposition of forms into more
regular ones. Both aspects could be important for implementation purposes.
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