Yugoslav Journal of Operations Research
7 (1997), Number 1, 97-107

APPLICATION OF THE
CONSTRAINED EDIT DISTANCE ALGORITHM
TO SEARCH PROCEDURES

Vladimir JOVICIC, Zora KONJOVIC
Faculty of Engineering Novi Sad
Computer, Control & Measurements Institute
21000 Novi Sad, Trg Dositeja Obradovic a 6
Yugoslavia

Abstract: Searching the sequential file to detect a given substring is a common
problem appearing, among others, in text processors and database search systems. One
possible approach is OOmmen's constrained edit distance algorithm. The paper
contains a brief description of this algorithm and some results of a simulation
experiment regarding accuracy and execution speed of the algorithm depending on the
probability of the insertion, deletion and substitution errors. The paper also presents
one possible practical application of the algorithm to search procedures. Application is
based on reduction of the dictionary size according to the probability of editing errors
and organization of the contents of the dictionary in a way to so as speed up the search
process. Some comparative simulation results are presented illustrating direct and
suggested practical applications of the constrained edit distance algorithm to search
procedures.

Keywords: Noisy subsequence, constrained edit distance algorithm, search procedures.

1. INTRODUCTION

A common problem in text processing and database search procedures is
detection of a given substring in a sequential file. A sequential file can be considered a
sequence of words in a finite dictionary without loss in generality. Searching for the
appearance of a particular string U by exact matching means determining all the words
in the dictionary containing U as a continuous substring.

98 V. Joviéi¢, Z. Konjovié / Application of the Constrained Edit Distance Algorithm

Unfortunately, very often one faces the problem that the given string U is a
noisy one, damaged usually by editing or spelling errors. Let’s denote by Y a noisy
version of string U. The result of a search using exact matching is a set of words
containing noisy string Y, or an empty set even if there exist some words in the
dictionary containing the original string U as their continuous substring.

Damareau [1] noticed that most of the errors appearing in strings are actually
caused by substitution, deletion, insertion or changing the position of the symbol. He
reduced the string comparison problem to edit transformation-based comparisons.
Since a position changing transformation can be expressed by a transformation
sequence consisting of one deletion and one insertion, decreasing drastically the
complexity of the comparison problem, most of the researchers in the field deal only
with substitution, deletion and insertion transformations.

Usage of Levenshtein's metrics brought significant improvement in this field
[3]. Levenshtein’s distance between two given strings is the minimal number of edit
transformations required to transform one string to another.

One of the papers based on Levenshtein’s distance is [4]. In the paper Oommen
considers the problem of noisy subsequences and formulates a correction algorithm
based on Levenshtein's distance. The paper contains certain experimental results
approving correctness of the algorithm. The same author suggests some improvements
to this algorithm in [5, 6] that are of quadratic computational complexity.

In designing and applying string comparison algorithms two basic requests
appear. The first one is the accuracy of the algorithm (robustness of the technique
concerning the number of errors in the noisy damaged string) that should be the
greatest possible. The second one, particularly in on-line processing, is the execution
time that should be the shortest possible. When two requests are in contradiction they
are resolved in practical applications by reasonable compromise.

The first part of the paper presents a brief description of the algorithm
proposed in [5,6] and its direct application to search problems followed by some
simulation results intended to illustrate its performances regarding accuracy and
execution time efficiency. The second part of the paper presents an improved
application of the same algorithm that increases time efficiency keeping accuracy at
the same level. :

2. DIRECT SEARCH FOR A NOISY SUBSTRING
USING CONSTRAINED EDIT DISTANCE

2.1. Constrained edit distance algorithm

The problem solved by the constrained edit distance algorithm can be
formulated in the following way. Let us select string X from limited known dictionary

H . First, some of its symbols are randomly deleted giving a subsequence of string X"
that we shall denote by U. Then string U passes through the communication channel
where some insertion, substitution and deletion errors occur giving the noisy version
of string U denoted by Y . The receiver receives string Y . The aim of the algorithm is

to recognize string X~ knowing string Y and dictionary H .

V. Joviéié, Z. Konjovié / Application of the Constrained Edit Distance Algorithm 99

The result of the algorithm is a real number corresponding to Levenshtein’s
distance between two strings under constrained editing. Executing the algorithm
supposes knowing some characteristics of the communication channel. These
characteristics are the probability of symbol insertion, the probability of symbol
deletion and the probability that some symbol is going to be replaced by some other
symbol from the limited alphabet over which the string is constructed.

In the algorithm a three-dimensional matrix W under constrained editing is
calculated using the dynamic programming method. From matrix W one can directly
obtain the value of the constrained edit distance for these two strings. The
computational complexity of the procedure directly calculating this matrix is cubic.
Applying some constraints obtained from the statistical characteristics of -the
communication channel leads to a modification of the algorithm reducing
computational complexity to a quadratic one without loss in accuracy [5,6].

Any modification of or damage to the string occurring over a single symbol can
be considered an elementary edit operation. These operations are insertion, deletion
and substitution of the symbol since the permutation of two symbols can be reduced to
successive deletion and insertion or two substitutions. Elementary edit distance (d) is
assigned to each elementary edit operation. Elementary edit distance is a function of
two variables and according to the number of possible edit operations it appears in
three forms

d(x;,y j)' Distance corresponding to replacing x; by ¥ j» Xy Y € A
d(x;,0) - Distance corresponding to deleting x;, x; € A
d(®,y;) - Distance corresponding to inserting y;, y; € A

The strings under comparison X and Y consist of symbols belonging to alphabet A,
while © is an empty symbol that does not belong to A. Indices ¢ and j represent the
position of the symbol in the strings. The symbol © is used to equalize the lengths of
the strings under comparison. All possible transformations of string X to string ¥ are
given by limited set I' (X,Y"). Its cardinality is

(1)

1 ¥l (x1+R)]
Ir(x.y)|= 2 | kA(Y]-R)(X|-|Y]+R)

k=Max[0 Y]~ X]

where | X| and |Y| are the lengths of strings X and Y respectively. It is easy to notice

that the number of elements in this set depends only on the lengths of the strings
under comparison. To each element of the set I' (X,Y) one can assign the value of the

sum of the constrained edit distances corresponding to the edit operations required to

transform string X tostring Y.

Since the general Levenshtein distance D(X,Y) between strings X and Y represents
the minimum of the sum of the edit distances assigned to edit operations reqmred to
transform X to Y, it is given by the expression

100 V. Jovidié, Z. Konjovié / Application of the Constrained Edit Distance Algorithm

D(X.Y)= Min [!)Er {aG..,)J @)

(Jf .,Y)E r (X Y) i=1

It is obvious that set ' (X,Y) contains a large number of elements. To
decrease the necessary computation one introduces some constraints. These
constraints can be classified in two categories. The first category covers the constraints
caused by the impossibility of carrying out some edit transformation due to a difference
in strings lengths. The second one contains the constraints imposed by the properties of
the communication channel and they represent the maximal number of specific
operations that can be performed on a string.

The final version of the algorithm based on constrained edit distances is
obtained after observing some important properties of matrix W that enable the
computation of four two-dimensional matrices instead of three-dimensional matrix

[5,6].
2.2. Direct search procedure using the constrained edit distance algorithm

The application of this algorithm to search procedures reduces naturally to
determining the string from the dictionary that has the minimal constrained edit
distance from the input string. The simplest and most direct application is given by the
following pseudocode.

Algorithm SearchForString

Input: (i) Limited dictionary H,L - expected number of insertions
occurring in transfer.
(ii) Y - noisy version of unknown string X from
dictionary H .
Output: String X~ with minimal edit distance from string X" .
Method:
For each string X € H do
Begin
If L is a feasible value Then
T=L
Else
T = closest feasible value L
ConstrainedDistance (X,Y,d,t,D,, }(X YY)

X =X
End
End of Algorithm SearchForString

The detailed algorithm of the procedure ConstrainedDistance is given in [2].

Some simula ions have been carried out using this program to indicate the
performance of this ai; rithm. According to practical requirements tests are related to
accuracy and execution e. The results of the first group of tests are expressed by the

V. Joviéi¢, Z. Konjovié / Application of the Constrained Edit Distance Algorithm 101

bounds of the maximal number of errors per string allowing the algorithm to produce
exact search results. The second group of tests relates to determining the dependency of
the execution time on the probability of a particular class of errors. Tests have been
carried out on a dictionary containing 100 strings representing words in the Serbian
language and using a PC486 computer.

Simulation results showing the accuracy of the algorithm for given examples
are summarized in Table 1.

Table 1. Accuracy of the algorithm

Test | Insertion Deletion | Substitution Average Number of | Accuracy
No | probability | probability | probability number of | "hits" in 500 (%)
errors/string tests
1 0.03 0.5 0.1 44.7680 491 98.20
2 0.03 0.1 0.5 44.9280 500 100.00
3 0.20 0.3 0.2 50.1640 496 99.20
4 0.03 0.6 0.1 52.2300 292 58.40
5 0.03 0.1 0.6 52.3755 493 98.59
6 0.03 0.1 0.7 58.9360 396 79.20
7 0.03 0.3 0.5 59.4000 247 49.40
8 0.03 0.2 0.6 59.7900 310 62.00

The results indicate that accuracy does not depend directly on the average
number of errors per string (see rows 4 and 5). From this experiment one could
conclude that the algorithm is more sensitive to the deletion than to the substitution of
symbols (see rows 4 and 5 as well as 7 and 8).

The general conclusion that could be derived from the above results is that the
algorithm works correctly when the string contains not more than 50% damaged

mbols.
=X Execution time is analyzed with respect to the influence of one of the following
probabilities: deletion probability, insertion probability and substitution probability-.
Experiments were carried out so as to vary one of these probabilities keeping the other
probabilities at minimal value 0.01. Relative execution times (with respect to execution
time for Py eertion = Pesubstitution = Pdeletion = 0.01) are presented in the following Tables.

Table 2. Dependence of execution time on deletion probability

P jotetion 0.01 | 0.05 [0.10] 0.15 | 020 [0.25 [0.30 [0.35 [0.40
Relative
execution 1.00 | 095 | 092 | 0.89 | 0.87 0.84 0.82 | 0.79 | 0.76
time
Table 3. Dependence of execution time on substitution probability
P oobatissbio 0.01 0.05 | 0.10] 0.15 | 0.20 0.25 0.30 | 0.35 | 0.40
Relative :
execution 1.00 | 095 | 092 | 0.89 | 0.87 0.84 082 | 0.79 | 0.76
time

102 V. Joviéié, Z. Konjovié / Application of the Constrained Edit Distance Algorithm

Table 4. Dependence of execution time on insertion probability

R e 001 | 0,05 | 0.10 | 0.15 | 0.20 0.25 0.30 | 0.35 | 0.40
Relative
execution 1.00 | 095 | 092 | 0.89 | 087 0.84 082 | 0.79 | 0.76
time

3. IMPROVED SEARCH PROCEDURE BASED ON THE
CONSTRAINED EDIT DISTANCE ALGORITHM AND ITS
PERFORMANCES

3.1. Improved search procedure

The basic assumption for the improved application of the constrained edit
distance algorithm is as follows.

The probability that a certain string from the dictionary is the original of the
noisy string decreases with increasing difference in the length between the noisy string
and the string from the dictionary. This assumption has an additional condition when
applying the constrained edit distance algorithm that allows a comparison of the given
string and a string from the dictionary only if the absolute value of this difference
belongs to a fixed interval. The bounds of this interval can be simply determined
according to deletion and insertion probabilities. The lower bound of the interval can be
determined as the average length of the strings from the dictionary multiplied by the
deletion probability and by a certain constant value. The upper bound of the interval
can be determined as the average length of the strings from the dictionary multiplied
by the insertion probability and also by a certain constant value. The multiplication
constant can be determined experimentally for a particular dictionary to satisfy the
compromise between accuracy and execution speed.

With these assumptions, it is possible to construct the search procedure so that
the number of strings to be compared (to compute the constrained edit distance) with
the noisy string is decreased, but this procedure still accesses all the strings in the
dictionary.

If the strings in the dictionary are sorted by length in ascending order, it is
possible to apply a binary search and find the shortest string in the dictionary satisfying
the condition stated by the first assumption. Then, all the strings below a the upper
bound are compared with the noisy string. The algorithm is given by the following
pseudocode.

ALGORITHM FindString (X[n]laver length,const,Y, Disisersion. Paatetion s Dsubstitiaions

(X orig)
Input: X[n) - Dictionary of n strings sorted by length in
ascending order
aver length - Average length of the strings in the dictionary

const - Experimentally determined constant

V. Jovici¢, Z. Konjovié / Application of the Constrained Edit Distance Algorithm 103

Y - Noisy substring

Pinsertion » Pdeletion * Psubstitution - Error probabilities
Output: X - Original string from the dictionary
Constants: MaximumDistance - Maximal expected distance

Method:L = aver_length*p, .

upper = const*aver_length*p ., .
lower = const*aver_length*p, .

Fori=1to n
distance[i] = MaximumDistance
By binary search find g - the first index satisfying:
length(X[q])=(length(Y)-upper))
For i = ¢ until length (X[i])<(length(Y)+lower)) do
StartForBlock
If L < length (Y) A (L > max (0,length(Y) - length (X[i])))
T=L
else
If L > length(Y)
T = length(Y)
else
T = max (0,length(Y) - length (X[i]))
distance[i] = ConstrainedDistance (X[i1.Y. p;..ertion+ Pdeletion s Psubstitutions T)
EndForBlock
X,rig = X[i] satisfying distance[:] = ﬂ»{ in]diﬂtance]
Jel0.n

End

END OF ALGORITHM FindString.

3.2. Performances of the improved search procedure

In order to apply the suggested search procedure it was necessary to determine
the value of the constant const to satisfy the compromise between accuracy and

execution speed.

In this paper we determined experimentally that this value should be within
the interval [2,2.5]. For the experiment we used dictionaries containing 200 strings
with a normal distribution. The average lengths of the strings in the dictionarieg —ore

104

V. Joviédié, Z. Konjovié / Application of the Constrained Edit Distance Algorithm

15 and 10 with standard deviation 1, 2, 3 and 4. The results of the experiment are
shown in following tables.

Table 6. Simulation results for P, . . = =P, cicution = Edetetion = 010,

Average string length = 15

Deviation | 1 3 § b 2 1 |
Const Correct | Strings Correct | Strings Correct | Strings Correct | Strings
| aﬂcessed__ accessed accessed | . accessed
| Original | 88.60% | 200 9350% | 200 927% | 200 88.8% | 200 I
1.00 52.20% 25.89 71.20% | 69.54 70.20% 91.50 43.10% 69.80
1.50 68.60% 50.46 73.00% | 69.59 71.50% 9251 65.80% 122.89
2.00 78.00% | 74.05 83.90% | 100.03 82.60% 124.39 78.80% | 162.83
2.60 87.40% | 94.54 90.80% 123.15 90.50% 152.08 85.50% 179.04
3.00 85.30% | 94.95 93.30% | 144.97 92,70% | 173.44 86.50% | 181.84
3.50 90.80% 112.73 93.10% 143.06 93.90% 17224 87.50% 193.30 |
4.00 89.90% 131.90 94 .40% 162.02 94 40% 183.37 89 50% 197.68 l
4.50 89.70% 147.24 93.00% 174.76 94 40% 190.64 87.70% 199.08
5.00 88.70% 147.22 93.10% 182.31 93.40% 195.31 88.70% 199 .44
1 5.50 89.60% 158.91 93.50% 184,16 93.90% 192.88 89.70% 199.90
Table 7. Simulation results for B, ... = P, s.sirusion = Paetetion = 015,
Average string length = 15
Deviation | 4 ! 2 1
Const Correct | Strings Correct | Strings | Urrect | Strings Correct | Strings
Lo _| accessed accessed accessed accessed
Original 86.80% | 200 86.50% 200 88.00% 200 88.5% 200
1.00 20.50% | 45.73 47 40% 57.68 49.50% 78.49 41.80% 99.01
1.50 70,.20% | 67.41 69.20% 84.81 70.30% 110.76 68.90% 142.60
2.00 J 81.40% | 89.67 82.30% 105.67 86.10% 159.24 80.60% 168.44
2.50 85.30% 108.06 87.50% 147.656 88.20% 174.47 88.10% 195.38
3.00 87.40% 140.57 87.80% 160.84 88.50% 187.13 89.10% 198.65
3.50 | 86.90% 151.71 86.70% 174.02 88.90% 193.47 89.20% 199.78
4.00 86.00% 163.64 85.70% 182.14 87.80% 196.60 89.00% 199.96
4.50 87.10% 172.31 87.80% 188.74 88.30% 198.77 86.90% 200.00
5.00 67.40% 178.76 87.30% 192.74 85.00% 199.74 87.60% 200.00
5.50 B5.10% 184.62 86.90% 19527 B7.20% 199.77 88.20% 200.00

V. Joviti¢, Z. Konjovié / Application of the Constrained Edit Distance Algorithm 105
Table 8. Simulation results for B, .. =P ;0 =P, ... =010,
Average string length = 10
| Deviation 4 i ¥ 3 2 1
Const Correct | Strings Correct | Strings Correct | Strings Correct | Strings
_| accessed accessed _% accessed % accessed |
Original 88.00% | 200 87.40% | 200 86.60% 200 86.00% | 200
1.00 | 4490% | 25.71 62.70% | 36.54 61.40% | 54.17 61.30% | 80.33
1.50 68.60% 49.68 62.90% 35.77 66.00% 55.78 63.50% 79.86
2.00 80.40% 73.70 79.60% 68.99 80.40% 100.05 79.30% 139.94
2.50 88.40% 95.47 80.60% 67.73 79.30% 9742 77.20% 135.20
3.00 86.50% 94.54 85.60% 98.90 84.30% 139.73 83.20% 174.80
3.50 88.30% 116.90 83.70% | 99.72 84 60% 138.15 85.10% 174.66
4.00 89.10% 132.81 87.50% 126.75 85.90% 164.75 87.90% 189.93
4.50 88.80% 147.45 88.20% 125.86 86.70% 163.94 89.00% 190.44
5.00 89.20% | 147.00 86.80% | 144.85 85.90% 180.15 88.60% 195.56
5.50 87.40% 156.36 E’?.B[]E 1 _14.41 - 87.90% 180.92 87.70% }9?.25
Table 9. Simulation resultsfor P, _ .. =P, ;.o viovn = Pipprion =015,
Average string length = 10
Deviation | 4 3 1 T
Correct | Strings Correct | Strings Correct | Strings Correct | Strings
| accessed accessed accessed accessed
| Original 75.80% | 200 77.60% | 200 76.00% | 200 76.30% | 200
1.00 40.80% 23.41 41.90% | 36.27 41.00% 4471 38.90% 72.93
1.50 55.60% 47.84 61.70% 73.62 57.60% 82.35 55.70% 123.97
2.00 69.00% | 68.89 71.40% 104.23 71.00% | 117.45 74.00% | 167.05
2.50 73.30% 88.68 75.20% 127.68 76.50% 144.19 77.80% 184.52
3.00 73.00% 89.80 77.50% 127.45 75.70% 143.34 75.30% 183.41
3.50 72.80% 106.07 77.80% 150.76 79.40% 164.66 78.10% 193.92
400 73.80% 124.32 78.50% 165.95 77.70% 178.58 75.60% 197.76
4.50 | 74.60% 126.33 77.40% 177.47 74.90% 187.97 76.20% 199.67
5.00 73.30% 139.52 77.60% 179.72 76.90% 187.58 75.70% 199.64
5.50 I 74.30% 155.54 75.50% 186.84 75.60% 194.33 78.30% 199.88

Since the main goal of the suggested application was to improve the time
efficiency of the search procedure based on constrained edit distance, some tests have
been carried out to illustrate the level of improvement in time efficiency keeping the
same level of accuracy.

To the indicate possible application of the search procedure, tests were carried
out on a dictionary containing 100 strings (Dictionary 1) and a dictionary containing
366 strings (Dictionary 2). Both dictionaries were constructed with no particular
attention paid to their statistical characteristics. For this experiment the value of the
constant was set at 2.5. The results are summarized in the following Tables.

106

Table 10. Dictionary 1 (100 strings, average string length: 71.2)

V. Joviéié, Z. Konjovié / Application of the Constrained Edit Distance Algorithm

Pins = 0.03 Pins = 0.03 Pins = 0.03 Pins = 0,05 |
Psub = 0.03 Psub /= 0.03 Psub = 0.056 Psub = 0.03
Pdel = 0.03 Pdel = 0.05 Pdel = 0.03 Pdel = 0.03
Strings | Accuracy | Strings | Accuracy | Strings | Accuracy | Strings | Accurac
accessed (%) acchssed (%) accessed (%) accessed (%)
| Direct 100 89.6 100 98.7 100 91.1 100 75.8
| Improved 53.73 95.3 56.94 90.0 48.6 85.9 64.29 80.4
L
Table 11. Dictionary 2 (366 strings, average string length: 45.6)
Pins = 0.03 Pins = 0.03 Pins = 0.03 Pins = 0.05
Psub = 0.03 Psub = 0.03 Psub = 0.05 Psub = 0.03
Pdel = 0.03 Pdel = 0.05 Pdel = 0.03 Pdel = 0.03
Strings | Accuracy | Strings | Accuracy | Strings | Accuracy | Strings | Accuracy
accessed (%) accessed (%) accessed (%) accessed (%)
Direct 366 69.5 366 78 366 77.4 366 68.9
Improved 34.0 90.5 46 849 _31.7 __853 45.5 82.3

From the presented results one can see that the suggested implementation
shows a significant advantage when applied to larger dictionaries, while application to
smaller dictionaries keeps performances close to direct application.

4. CONCLUSION

This paper presents one possible practical application of the constrained edit
based algorithm to search procedures. Some experiments were carried out to analyze
algorithm properties that are of particular importance in practical applications:
accuracy and time efficiency.

'From the simulation results we conclude tha. the algorithm is characterized by
very good properties regarding accuracy - the algorithm produces correct results in 99%
of the cases if the string contains up to 50% damaged symbols.

The main drawback of the algorithm is its computational complexity and quite
large memory requirements for large dictionaries.

Based on the performed analysis we suggest one possible practical
implementation of the algorithm in search procedures. The main idea of the application
is to reduce the size of the dictionary assuming that lengths of strings reflect their
similarity and to improve the search using that assumption and proper organization of
the dictionary.

An important problem that still exists is determination of the multiplication
constant used in the suggested application. In the paper this constant is determined by
simulation. Since both accuracy and efficiency strongly depend on this constant, one
should employ some more exact approaches in determining its value .

(1]
(2]
(3]

(4]
(5]

(6]

V. Joviéié, Z. Konjovié / Application of the Constrained Edit Distance Algorithm 107

REFERENCES

Damareau, F., J., "A technique for computer detestion and correction of spelling errors”,
Commun. ACM, 7 (1964) 171-176.

Jovici¢, V., "Constrained edit distance algorithm and its application in Library Information
Systems", Faculty of Technical Sciences, Novi Sad, 1994 (in Serbian).

Levenshtein, A, "Binary codes capable of correcting deletions, insertions and reversals",
Sov. Phy. Dok, 10 (1966) 707-710.

Oommen, B., J., "Constrained string editing”, Inform. Sci, 40 (1986) 267-284.

Oommen, B., J., * Recognition of noisy subsequences using constrained edit distances ",
IEEFE Trans. Pattern Anal. Mach. Intell, 9 (1987) 676-685.

Oommen, B., J., "Correction to ' Recognition of noisy subsequences using constrained edit
distances', IEEFE Trans. Pattern Anal. Mach. Intell., 10 (1988) 983-984.

