Yugoslav Journal of Operations Research
7 (1997), Number 1, 79-96

FORMAL SPECIFICATIONS IN
SOFTWARE DEVELOPMENT: AN OVERVIEW

Vojislav B. MISIC, Dusan M. VELASEVIC

School of Electrical Engineering
University of Belgrade
Belgrade, Yugoslavia

Abstract: Formal methods find increasing usage for system and software
specifications. In this paper, we discuss some benefits resulting from the use of such
methods, together with some properties shared by most of them. Some possible criteria
for classification are also presented, and a tabular overview is given of some of the most
well-known methods. A number of known formal methods are reviewed, and their
similarities and differences discussed.

Keywords: Formal specification methods, software specification, formal specification languages.

1. INTRODUCTION

Software development is generally understood to consist of several distinct,
yet interconnected phases: requirements analisys, specification, conceptual and detailed
design, implementation, verification and validation, evaluation and maintenance. Most,
if not all, of these phases may benefit from the disciplined and knowledgeable use of
formal methods. However, the term formal methods is often used in a rather narrow
sense to designate a number of mathematically based techniques for system
specification, i.e., for describing the structural and behavioral properties of software
systems. (The same holds for computer hardware, and computer systems in general, as
well as other systems.)

Although sometimes considered to be difficult to construct, validate, and use,
formal specification methods are beginning to find their proper place in the software
design process. The size and complexity of modern software systems has made it
painfully clear that software cannot be successfully designed, implemented and verified
without solid, systematic methodology. The lack of such methods results in what is
generally known as the software crisis, and the use of appropriate formal methods for
system specifications may help designers to overcome at least some of these problems

[13].

80 V. B. Misi¢, D. Veladevié / Formal Specifications in Software Development

In this paper we present an extended overview of formal methods and their use
for the specification of software systems. A number of similar surveys has been
published, including tutorial papers (e.g., [43]), historical surveys, and books (e.g., 8,
16]).

The rest of the paper is organised as follows: Section 2 discusses why formal
methods should be used, and what benefits may be expected from their use. The
subsequent section briefly presents some of the properties of formal methods regarding
mathematical foundation, executability, tool support, and other issues. Some
classification criteria are discussed in Section 4, and an informal treatment of some of
the well-known techniques in use today is given in the next section. Although some of
these are not being used for new development, their basic ideas were considered to be
interesting enough to justify their inclusion in this discussion. Finally, an informal
comparison of the methods presented is given in tabular form, and some directions for
future developments are outlined.

2. BENEFITS OF USING FORMAL METHODS

As defined above, the term formal technique denotes a mathematically based
technique for system specifications, i.e., for describing the structural and behavioral
properties of software systems. The description is most often expressed witn a special
notation, usually a complete formal specification language. The syntax of such a
language (as is the case with programming languages) defines a set of symbols and a set
of rules for combining those symbols into correct sentence. Symbols correspond to the
so-called specificand objects, the universe of which is sometimes called the semantic
domain of a formal specification language. The interpretation of syntactic elements is
provided (implemented) by the so-called satisfies relation [43]. A clear destinction

should be made, however, between a formal notation (which is used to describe the
system being specified) and a formal method, which is a development method using
some particular formal notation (and other tools as well). Some of the techniques
presented are merely formal notations with no associated development method, while
other techniques constitute part of a mature method; this will be noted whereever
appropriate.

Formal specifications let designers use abstractions, thus reducing the
conceptual complexity of the system being designed. They enahle the precise,
consistent, and complete definition of system properties, and facilitate system
decomposition into modules [29]. Precise mathematical definitions permit machine
analysis and manipulation. By analysis, we mean that the consistency and correctness
of specifications may be checked, thus revealing certain design errors and
inconsistencies which are have to find in later phases; some clases of errors may be
totally eliminated. By manipulation, we mean that one specification may be
mechanically transformed into another one, more detailed or more complex than its
predecessor, and (eventually) into an executable program. Note that this is exactly what
any assembler, or language compiler, does.

In addition, since the transformation is performed according to a set of well-
defined rules (otherwise it would not be possible to mechanize it), it may be proved to
be correct. What is also susceptible to mechanical verification is the consistency,
completeness, and correctness of the specifications. As most specifications have some
kind of mathematical foundation, applicable inference rules may be used to reveal
contradictions, missing definitions, and other flaws. Some of these errors may have a

V. B. Misi¢, D. Velasevi¢ / Formal Specifications in Software Development 81

significant impact on implementation, yet they may be very hard to find by classical
testing and debugging,

In general, since the initial user requirements for the system being designed
are always informal, it is not possible to prove that any specification satisfies user
requirements - that is something only the user can say. At most, we can expect to be
able to prove that one statement of user requirements is equivalent to another one, i.e.,
that the specification at one level is equivalent to the specification at another level.

Some authors claim that the use of formal methods can be beneficial even if no
formal verification is attempted at all [22]. The mere fact that a rigorous specification is
constructed forces the designer to do the job more thoroughly and reach a better
understanding of the problem, which must lead to a better solution. As stated in [43]:
"The greatest benefit in applying formal methods often comes from the process of
formalizing, rather than from the end result."

The application of formal methods for system specifications redistributes the
effort invested in system design phases: more effort (and the appropriate proportion of
the total budget) is invested early in the design cycle, where errors have more impact.
Since a lesser number of errors survive through the final implementation, testing and
debugging may be shorter (and cheaper), yet more effective. (Although the overall
project costs should be reduced, the redistribution of project costs is still somewhat
unpopular among project managers.) Formal methods may also be used to advantage in
designing testing methods and test suites, enabling more errors to be found and
eradicated in a systematic fashion.

Note that many informal or semiformal approaches do exist, and some of them
enjoy widespread usage. Examples of such methodologies include many variants of
Structured Analysis and Structured Design, Jackson Structured Design, SREM, HIPO,
and others. These methods give strong guidance to the designer in various stages of
requirements analysis, specification and software design. In addition, their use of
intuitive concepts and, in most cases, easy-to-grasp graphical formalisms, adds to their
popularity.

However, the increased size and complexity of modern systems make them far
less tractable by these methodologies, most of which evolved some ten or even twenty
years ago. Still, their main deficiency is that they allow inconsistent and ambiguous
specifications, either through the possibility of multiple interpretations of a concept, or
through use of some informal mechanisms for specification, e.g., by a natural language
text. Moreover, there is no way to prove that the specifications are satisfied by the
design. This does not preclude their use, but none of the aforementioned benefits,
inherent to formal methods, will result from it. Nevertheless, using an informal method
is still better than not using any method at all.

3. SOME PROPERTIES OF FORMAL METHODS

A majority formal methods rely on some well-known, or cafully designed,
mathematical foundations such as typed set theory (Z), logic of partial functions (VDM),
many-sorted first-order logic (I0TA, OBJ), initial algebras (Larch) and the like. Other
techniques adopt a less formal approach, their main objective being the possibility to
use the specification language as some kind of high-level programming language which
may be executed directly (i.e., after interpretation or compilation). A number of such
languages have been proposed, some of them not even attempting formal verification.

82 V. B. Misi¢, D. Velasevié / Formal Specifications in Software Development

Languages of this kind are often used for rapid prototyping in order to demonstrate
the behavior of the specified system; such prototypes are usually discarded in favor of
full-fledged applications [35]. This group of languages will not be covered in this paper.

From the mathematical point of view, specification(s) corresponds to language
module(s), and executing the specification means that we are able to prove
mechanically certain kinds of formulas of the theory defined by the specification [45].
In other words, one approach to executability follows the philosophy of stepwise
refinement, and implements one specification with another, more detailed one. Each
successive level of specification contains more design decisions made, until eventually a
specification is obtained which is sufficiently detailed to be considered a program. An
outstanding example of the refinement philosophy is the Ina Jo specification method.

More often, however, executability is taken in the sense that an algorithmic
procedure exists for transforming specifications into executable programs, without
intermediate refinement steps. This transformation may then be performed
mechanically, using an interpreter or a compiler. Interpreters and/or compilers exist for
a small number of methods only; often they implement only a subset of the language
[18].

A hybrid approach is exemplified by the two-tiered Larch specifications, where
specifications are first written in an implementation-independent, shared language.
These specifications are the implemented with more detailed specifications written in
an implementation-specific language, closely corresponding to the programming
language which will be used for actual coding.

It should be noted that most specification languages emphasize brevity and
clarity rather than executability. This facilitates both writing specifications and their
mechanical verification, usually with the aid of a manual, user-assisted, or partially
automated theorem prover (fully automated provers are not yet available).

The amount of information which must be maintained in today’s medium-and
large-scale software projects necessitates the use of automated assistence, e.g., syntax-
directed editors, code management techniques, version control systems, etc. Note that
the large amount of information is also the main reason for the inability of classical
structured methodologies to deal successfully with such software projects. Although
formal methods reduce the quantity of information to be handled, at least in the early
design stages, they would certainly benefit from having some form of machine support.

As most formal methods utilize some nonstandard symbols, a dedicated
documentation system may be considered a conditio sine qua non, although this need is
easily fulfilled by modern word-processing software and typesetting systems. The aid of
a syntax-directed editor is almost a necessity, and the next level of support could
involve sophisticated syntactic and semantic checkers, in which knowledge of both
aspects of the specification language used would be embodied. Theorem provers are
used for verification, either manual or with some degree of user interactive guidance.
Finally, code generators transform the specifications into executable code. At present,
most formal methods have only limited machine assistance, up to the level of theorem
proving, while only a few are supported by code generators. However, one may "benefit
from the use of formal methods without the use of sophisticated support tools. The
advantages of formality are too significant to await the development of a fully
supported method" [10].

As always, the integration and interoperability of these tools play a crucial role
in their effectiveness. If tools are designed separately, without proper communication
mechanisms built-in right from the start, their usability will be significantly reduced.

V. B. Misi¢, D. Veladevié¢ / Formal Specifications in Software Development 83

An integrated design environment should be equipped with dedicated tools
for performing various tasks. A simple collection of tools is hot enough: for maximum
effectiveness good coordination should exist among various tools, and the transition
between tasks should be smooth. Only then will the designer be freed of most, if not all,
housekeeping functions, so that she/he can concentrate on specification. An ideal design
environment should support all activities in each phase of software design; an
interesting attempt in that direction is described by Blum [11].

Support and coordination for team development is also a very important issue,
given the size and complexity of even modest projects today. This includes mostly
version control, and (to a lesser extent) some support for multiuser operation. Formal
specifications are still designed by rather small teams, hence the usual problems of
concurrency, recovery and the like are not too significant.

Reusability is one of the key issues in all modern software design
methodologies, and formal methods are no exception. Libraries of predefined
constructs, describing commonly used modules (whatever they may be called in any
particular language) enable the specifier to concentrate on the particularities of the
system being modeled - without having to reinvent the wheel each time. Moreover, as
specifications found in these libraries are usually written by the authors of the
language themselves, they are usually well designed and thoroughly tested. The
specifier may use them as examples of good style, after which her/his own specifications
may be patterned. This is often hard to find in classical software systems, since most of
the code written by experienced programmers is copyrighted and unavailable, while
textbooks contain mostly toy codes, unfit for real-size projects [42]. It should be noted
that a number of quite good formal libraries exist, but the organizations which have
these are unwilling to make them widely available because of commercial reasons.

4. GENERAL CLASSIFICATION OF FORMAL METHODS

Specification languages may be classified according to different characteristics.
One of the classification criteria, and possibly the most important one, is based on the
mathematical foundation of these methods. According to this criterion, we may
discriminate between model- and property-oriented languages. Model-oriented
languages provide a twofold description of system behavior: first, the data structures
(such as strings, numbers, sets, tuples, relations, sequences, etec) that constitute the
system state are described. Then, the operations that manipulate that state are defined
using assertions in a notatioh similar to first-order predicate calculus. These languages
are sometimes called constructive, and they include Z, VDM, Milner's CCS, Hoare's
CSP, and others.

Property-oriented methods define the system in terms of properties that must
be satisfied in some or all of the system states. The latter include the so-called
axiomatic approaches, such as those embodied in specification languages IOTA, OBJ,
Larch, and Anna, as well as the so-called algebraic approaches, e.g., the one used in
LOTOS. However, the data structures are described here as well, the most common
being sets, lists, sequences, and other structures with a straightforward mathematical
interpretation. The desired set of properties is usually expressed as a set of equations.
Equations may be interpreted as directional rewrite rules, which may be used to
simplify a statement by reducing it to some canonical form. Term rewriting is one of
the most important research directions in connection with formal methuds as
witnessed by several conferences and special journal issues.

In another classification, the distinction is made between specifications that

84 V. B. Misié, D. Velasevié¢ / Formal Specifications in Software Development

concentrate on internal structure of specificand objects (structural specifications), and
those that predominantly describe the observable behavior of these objects (behavioral
specifications). However, structural specifications often include some notions of
specificand behavior, and vice versa, thus blurring the distinction between the two
kinds of specifications.

As specification methods deal with large systems and data structures of
appropriate size and complexity, support for specification modularization and
structuring is essential. Some rather popular formal methods provide no such support,
or a limited amount only (as is the case with Z and VDM). This is often considered to be
their main defficiency, and extensions aimed to correct it have been reported, e.g., in
[38, 30]. Most other methods have some provisions for modularization, usually in the
form of one or more of the so-called specification-building operators. In its simplest
form, one specification can import another one as a subspecification, enriching it with
additional sorts and operators. The entire model is organized then in the form of a
hierarchy (or, more generally, a directed, acyclic graph) of specifications. This is
somewhat similar to the inheritance mechanism of object-oriented languages. Other
methods provide more sophisticated mechanisms for importing subspecifications,
offering the possibility to redefine some of its sorts, or further constrain their behavior
by redefining some of the applicable operators.

Another important mechanism is that of parameterization, "a process of
encapsulating a piece of software and abstracting from some names occuring in it, in
order to replace them in other contexts by different actual operators" [45]. Together
with structuring and modularization support, parameterization frees the designer from
reinventing standard specifications, letting her/him concentrate on the particulars of
the problem at hand. As is the case with other software components, standard
specifications may be distributed in the form of libraries, thus promoting reusability.
Such libraries are still not available for most specification techniques presented here;
instead, the specifier must resort to case studies and introductory or reference texts,
whatever is available.

Most specification languages contain only declarations and equations; if
imperative and/or applicative style statements are included as well, the language is
considered to be a wide-spectrum one [7].

A number of languages concentrate on functional properties of the system
being modeled, while dynamic concepts (e.g., concurrency, real-time behavior,
reliability, security, performance), cannot be easily accounted for in these
specifications. Other languages have been specifically designed for systems in which the
dynamic component is crucial. Most of these are based on some extension of the finite
state machine concept; among the most distinguished are the well-known CCS and CSP
formalisms, as well as a class of languages specialized for telecommunication systems,
such as LOTOS [2], Estelle [3], and SDL [1]. We should also mention Petri Nets, known
since the late 1960s, and their numerous variations (e.g., [31]). Petri Nets have been a
particularly successful formalism for real-time system specification and analysis, as
exemplified in both research and industrial projects. They have been coupled with other
formal notations in order to extend versatility to a wider class of systems (e.g., [41]).

Instead of designing a completely new language, some researchers have been
extending languages ~f the former group to incorporate some dynamic concepts.
Examples of such an ap, »ach (which we might call evolutive) are extensions of the Ina
Jo language with tempo. ! 'ogic [44], and the Maude language, which contains OBJ3 as
a functional sublanguage ' incorporates some novel concurrency concepts [28]. In ot-

V. B. Misi¢, D. Velagevié / Formal Specifications in Software Development 85

her words, these languages may be considered attempts to get the best of both worlds
by augmenting already existing specification languages with the desired properties.
These issues are still new and more experience needs to be gathered before some
definitive conclusions can be made; it seems a promising avenue anyway, and important
results are to be expected.

5. REVIEW OF SOME FORMAL SPECIFICATION TECHNIQUES

A brief description of the characteristics of some of the well-known
specification languages will be given in the following. We make no claim about the
exhaustiveness of our selection, as many other methodologies exist, some of which we
did not even mention. However, we believe our selection to be representative, in the
sense that most directions of past and current research have been given attention, and
that some of the most important and informative developments are covered. A notable
exception is methods for the specification of real-time systems, since they are deemed to
be still in their infancy, and that significant developments are yet to appear. The
languages selected are -ordered by decreasing degree of formalism utilized, and
increasing ease of transformation of specifications into executable code.

5.1.Z

Z is one of the most popular specification notations. It is based on typed set
theory, and uses familiar mathematical concepts like sets, relations, functions, etc.,
structured in the form of schemas. A schema consists of a declaration part, and a
predicate part. Variables are declared, in the former, and the latter defines predicates
relating these variables. Schemas are a convenient way of structuring the
specifications, since they may be combined using several simple operations, e.g.,
conjuction, disjunction, implication, component renaming, composition, piping, and
others as well. Operations which combine the declaration parts, or predicate parts, or
both, of two (or more) schemas facilitate the modular construction of Z specifications.
All of these operations, forming together what is usually designated as the schema
calculus, are defined in accordance with the well-known rules of propositional and
predicate calculi.

Z is able to define both deterministic arnrd nondeterministic functions, and Z
specifications are capable of encapsulating the state of a system (a model of a system, to
be precise). It has little or no provisions for incorporating time dependencies, although
some attempts have been made in that direction. Another promising avenue which is
currently being explored is to extend Z notation with the class concept, together with
the powerful encapsulation and inheritance mechanisms commonly found in object-
oriented systems. Important system aspects such as object integrity and interobject
communication can be formaliy specified. A number of techniques which extend Z with
object-oriented concepts are reported in [38].

Formal proofs are given for Z specifications only occasionally, since the clarity
of Z schemas contribute to their simplicity and expressive power without compromising
the necessary rigour. Instead of proving a formal relationship between specifications
and their implementations, Z specifications are used to explore the properties of those
specifications, often quite informally. It is found that even informal arguments may
lead to the detection of serious implementation errors, as witnessed in [23, 37].

86 V. B. Misi¢, D. Velasevi¢ / Formal Specifications in Software Development

However, "if it is difficult to reason about some expected property, it is usually
a sign that the specification is poorly structured, if not wrong" [19].

Although the Z notation is very popular, there is no single Z development
method rather quite a number of them (e.g., [5, 38]).

Z is extensively used for the specification of various software systems,
including specifications for a large part of the CICS transaction control system [23],
specification of the UNIX file system, specifications for several oscilloscope subsystems
(e.g., [19]), and even hardware specifications [6]. Several textbooks exist, among these a
reference manual [36], a collection of case studies [23], and a style manual [5].
Furthermore, work is under way to establish an ISO standard for Z.

A number of both research and commercial tools support Z, and it is worth
noting that Z was the first formal language to obtain an electronic distribution list,
with others to follow (some of which are listed in [13]). Z-related information currently
available on the Internet includes an extensive bibliography [12], a number of papers
and research reports, and a syntax checker.

5.2. VDM

VDM is one of the best-known formal methodologies. It is a constructive, or
model-based specification technique, based on propositional and predicate calculus and
the logic of partial functions which is used to circumvent the undecidability problem of
standard first-order logic.

A VDM specification consists basically of two components: a model of the state,
with whatever invariants must hold for it, and operations over the abstract data type
comprising the state. Operations are defined implicitly, i.e., an operation is given in
terms of its signature, the necessary pre-condition, and the post-condition which must
hold after the operation has been performed. Implicit functions are preferred to explicit
ones, mostly for reasons of clarity and ease of verification; explicit definition, however,
must be used in the implementation phase,

The post-condition is defined in terms of parameter values after (and before, if
necessary) the operation. An operation can access (and change) some external variables
which comprise the system state; the type of access must be noted for each variable
(i.e., whether it is modified - written, or just read), in each operation definition. The use
of external variables facilitates the distinction between parameters and variables which
are accessed by a side-effect; the choice is usually pragmatic.

State descriptions are defined at successive levels of abstraction, linked by
implementation steps. The implementation of an abstract state by means of a more
concrete one describe either a data reification or an operation decomposition. In the
former case, state variables of a more concrete state implement those of a more abstract
one, while in the latter, the operations of a more abstract state are implemented by
those of a more concrete one. A distinguishing feature of VDM is that state descriptions
and implementations must be formally verified; VDM provides rules to systematically
derive proof obligations from object descriptions. Proof obligations are required to
verify both the correctness of a specification, and its implementability. Correctness is
concerned with the transformation from an abstract to a concrete state, and
implementability ve “fles transformations from implicit functions to those defined
explicitly,

The data rei. «‘ion constructs allow the designer to use abstract data
structures in the speci. ion, without too much concern about their implementation;

V. B. Misi¢, D. Velagevié¢ / Formal Specifications in Software Development 87

final data structures may be determined later, after the specification phase has been
terminated. Again, proof obligations permit verification to be performed in a systematic
and rigorous fashion. Automated tools exist which are capable of generating these
obligations from the specification text. Actual proofs may be carried out either
manually or with the aid of a theorem prover, such as B [4], or the Boyer-Moore prover
[14).

However, VDM is not without its deficiencies. Some implicitly predefined data
types may have additional properties beyond those explicitly defined and even some
unwanted properties and side affects; other languages require all properties to be
explicitly stated. Although states and operations form a kind of hierarchy, VDM has no
explicit provisions for modularization. Therefore, when a proof obligation is
constructed for an object, it is often large, containing some subgoals which are trivial to
prove, as well as some subgoals which were already proved. This is particularly apt to
appear in cases when two arbitrary state descriptions are grouped, since all obligations
of both objects must be re-proved in order to account for the presence of the other
object. Some of the difficulties that arise would be easily filtered out by imposing some
visibility rules on variables, something which is not available in the current definition
of VDM. Existensions have been proposed to support modularity (e.g., [30]) and to
interface VDM with some complementary methodologies, such as Object-Oriented
Analysis and Structured Analysis (e.g., [40]), but no standard set of extensions has been
universally accepted yet.

VDM was initially devised for the specification of a large subset of PL/I
programming language, and subsequently used in the development of a number of
software and hardware systems. It is an established methodology with extensive
documentation including a number of textbooks, ranging from an introductory course
[24] to a collection of a case studies [25], and it has even been proposed as an official
British project, which includes both a full-fledget methodology and substantial tool
support [33].

5.3. IOTA

The specification language IOTA [32], although not a modern development,

presents an excellent example of modular programming with parameterization
mechanisms. IOTA specifications may be built bottom-up, starting from built-in
modules such as bool and int, and extending these declarations as necessary.
Declarations are grouped into modules which are themselves organized into a strict
hierarchy with violations and circular dependencies being detected by the IOTA model
Processor.

IOTA specifications are theories of a many-sorted first-order logic. Each sort is
associated with a so-called basic structure on that sort, consisting of a finite set of
functions and a finite set of axioms. These functions are defined in the interface part,
while axioms which characterize their properties (i.e., behavior) are grouped in the
specification part of the module. Functions thus defined are called primitive functions
on the underlying sort.

A primitive function whose range is the sort itself is called the induction rule
for that sort. A sort for which induction rules are defined is called a type. It is possible
to define sorts without induction rules, in which case the sort is called a sype. There are
other subtle differences between types and sypes, but they are of no concern to us. It

88 V. B. Misi¢, D. Velasevié¢ / Formal Specifications in Software Development

should be noted that within each sort the IOTA system automatically adds equality to
the primitive functions, and equality axioms to the sort’s basic axioms.

More functions may be added with a procedure module, which again has both
interface and specification parts. A procedure module defines, in effect, a procedural
abstraction and it may introduce several procedures. Functions defined in a procedure
module are considered non-primitive.

Finally, a realization part is provided, defining the 1mplementatmn of a module
in terms of other modules. The implementation language is syntactically similat to
CLU, but the semantics are different. In particular, recursive definitions are not
allowed to span multiple modules, in part because of the strict hierarchy imposed by the
IOTA system. However, recursive and mutually recursive functions may appear within
a single module. In a sense, the interface and specification part define an abstract view
of a function, while the realization part gives its concrete view.

IOTA modules represent theories, or parts of a theory defined by the entire
program. Verification of an IOTA specification consists of proving that the theory of
each module is satisfied by its realization. The Prover component of the IOTA system
reduces a goal formula into smaller subgoals, until they become small enough to be
effectivaly handled by an automatic simplifier and resolution prover. The proof system
necessarily relies on interactive guidance by the user, since even small module
definitions may result in long formulas to prove, and fully automated theorem proving
would take too long to terminate. Proofs are further complicated by the modularity of
IOTA specifications, which often leads to formulas with a large number of user-defined
axioms. Fortunately, a well thought-out modularity often results in the so-called proof
locality property: a number of proof steps tend to depend on axioms from only a few, or
even a single module. Hence, the interactive proof process can be made more efficient
by narrowing the selection of axioms at each step, thus facilitating the application of
reduction and simplification rules on a module. This is known as theory-focusirig
strategy.

Functions may be defined as specifications only, without the associated
implementation. Verification of these functions is not possible, therefore this practice is
generally discouraged since it may create "gaps" in consistency proofs. On the other
hand, the realization part may contain definitions of local functions which have no
abstract counterparts. The verification process is connected with another aspect of
modularization in IOTA: namely, sypes may be used t~ model some general pattern of
behavior, and utilized (included) within many differe types. If proof procedures are
developed for such sypes, they are readily available for proving appropriate properties
in all types based on these sypes.

The significance of IOTA lies mainly in the following:

* it is a complete specification methodology with facilities for specification at both
abstract and implementation levels (something which is absent in many other
approaches), and

* an integrated tool-set is available built-in order to facilitate the interacfive
development of specifications and their implementation in the form of executable
programs,

V. B. Misi¢, D. Velasevié¢ / Formal Specifications in Software Development 89

Automated support is made available in all phases of the development process.
Module text is entered via the Syntax-directed Editor, and various tools for syntactic
and semantic analysis are provided, in order to detect errors as early as possible.
Modules found to be correct are stored in a dedicated database (module base), and an
Executor subsystem translates them to object code. The verification is managed by the
Verifier, and the actual proofs are carried out by the Prover. The system supports
multiple-member programming teams, using the module base as a sophisticated data
dictionary. Modules have owners and visibility, which is controlled by the system under
user guidance. Furthermore, versioning is provided at both module and function levels,
in order to retain the consistency of declarations after modifications.

5.4. OBJ

OBJ is an algebraic specification language which resembles IOTA in many
details, both in syntax and semantics, yet some significant differences exist. OBJ has
been one of the most popular languages, with several variations developed over the
years (OBJ-T, OBJ2, OBJ3, etc.) [17, 18, 39]. An OBJ specification is a collection of
equationally specified sorts (which implement abstract data types), a collection of
operators defined in terms of these sorts, and a collection of algorithms designed using
these sorts and operators.

An object is declared by a textual unit, which defines the underlying data sorts
and their associated operations. Each sort name denotes a set of values, called the
carrier of the sort; sort names are available within the scope of the object in which they
were introduced. Operations are defined in terms of their signatures (syntax), and
equations describing their properties (semantics). The scoping rules for sorts apply to
operators as well. Necessary variables must be decalred in advance; they are considered
to be universally quantified over the whole equation in which they are used. Constants
of any sort may also be declared, while the TRUTH object with distinguished constants
T and F, is built-in; these constants may be accessed from any object defined by the
user. Each sort is automatically augmented with a boolean equality operator, much like
the IOTA approach. Generally, an OBJ object semantics is defined as the initial algebra
on the signature denoted by the sort and operator declarations.

Objects in an OBJ specification are structured in an acyclic graph structure, as
each object may be defined as a refinement (or extension) of an already existing one. As
OBJ objects are similar to the class concept of Simula and other object-oriented
programming languages, this process may indeed be viewed as inheritance. Several
import mechamisms exist (using, protecting, and extending), with different restrictions
on imported data sorts and operators, thus allowing precise tuning of specifications.
Not all versions of OBJ have all of these mechanisms available: at least two of them
provide only the simplest (using) import mechanism [18, 39]. Other modularization
mechanisms available in OBJ (again, not all versions support all of them) are the ability
to define subsorts of a data sort, parameter application, and renaming.

Several interpreters are available for OBJ, but they usually implement only a
subset of the full language [18, 39]. Nevertheless, the availability of these and their
associated provers makes the design of OBJ specifications easier and more comfortable.

OBJ has no provisions for specifying dynamics properties and/or temporal
behavior. It has recently been used as the basis for the language Maude, which may be
briefly (and somewhat incorrectly) described as the OBJ3 language with the addition of

90 V. B. Miéi¢, D. Velasevié¢ / Formal Specifications in Software Development

concurrent rewriting concepts [28). This area is gaining attention, and important
results should follow.

5.5. Larch

The Larch specification language forms just part of a larger project seeking to
build tools that facilitate the construction of formal specifications for modular
programs. _

Larch specifications follow a two-tiered approach, similar in spirit (if not in
detail) to the IOTA approach. Abstract specifications are written in the Larch Shared
Language and they are independent of any particular implementation. These
specifications are transformed to another language, the Larch Interface Language, in
order to describe program units (modules, functions, procedures, types, ...) used for
implementation in the chosen programming language. Several Larch interface
languages exist, each designed to make best use of the facilities available in the
appropriate programming language.

Larch Shared Language specifications are modularized in fraits which
introduce operators and specify their properties. Traits often correspond to abstract
data types; other traits capture some useful properties which may be shared by many
other traits, not unlike the concept of sypes found in IOTA. The operator set is declared
in terms of operator symbols and their signatures, while their properties are described a
theory: a set of theorems which may be derived from properties defined in the trait,
using axioms and inference rules of first-order predicate calculus.

Traits may be defined by importing (i.e. extending) the definition of one or
more previously defined traits, renaming some terms if necessary. As in OBJ, these
extensions come in various flavors; they may additionally constrain some of the
previously defined sorts and operators, while others are just used on an "as is" basis,
without further manipulation. This variety of extension mechanisms enables the
specification to exploit reusability to the fullest, yet retain the precision which would
otherwise be possible only through a dedicated specification, written from scratch.
Hiding or export mechanisms are not available in the shared language, being better
suited to interface specifications which are closer to the actual implementation
language.

The Larch Prover, a mechanical theorem-; 1ng tool, facilitates verification
of the correctness of specifications. It is based on t! same equational first-order logic
as the Larch Shared Language, with a number of built-in inference rules used for
rewriting. Additional proof mechanisms are included to help overcome certain
difficulties with completeness in a rewriting system, and to prevent the generation of
nonterminating rewriting sequences. An automatic mechanism for rule ordering is
available, although machine-assisted partial ordering is also provided. Proofs are
initiated by the user through an interactive dialogue and a number of inference
techniques may be applied; in most cases, strong user guidance is requested. Thus, the
Larch Prover may be used in the same way as an interactive debugger is used in
classical programming environments [20].

Larch interface languages are used to specify the interfaces between program
components in the form of information necessary to write a program unit and to use it.
The interface languages provide communication and exception handling, iterators, side
effects, and other mechanisms similar to those found in the implementation language.
The similarity between interface and implementation languages has a twofold advanta-

V. B. Misi¢, D. Velasevi¢ / Formal Specifications in Software Development 91

ge: it makes specifications shorter and more precise and it makes actual
implementation easier since the specification is closer, in form and function, to the final
program code. Interface languages are currently available for CLU, Pascal, and Ada, as
well as for other programming languages. Larch has been applied to various software
and hardware projects and a variety of reports are available, together with a library of
reusable specifications [21].

.6. FDM and the specification language Ina Jo

As noted above, one of the possible approaches to system specifications is
based on the process of successive (stepwise) refinement, where each formal
specification is transformed to the next level by adding more and more functionality
and/or implementation details. An example of such an approach is the Formal
Development Method (FDM) and its associated specification language Ina Jo [9, 26].

The process starts with an informal statement of system requirements, which
is gradually converted into a complete formal specification. Each formal specification is
named a level of refinement in Ina Jo terminology. Transformation to an executable
program is performed only when the final specification is obtained. This final
specification (i.e. level of refinement) is the only one that is required to be functionally
complete. The correctness of the transformation from one level of refinement to the
next one is checked with the aid of a machine theorem prover (ITP).

Ina Jo is based on an extension of first-order predicate logic: it treats the
system and its data as a state machine, with the internal data making up the state. A
machine, as described through its specification, is formed by a set of variables, each
capable of holding a value of some type. A type is a predefined set of values; it would be
called the carrier of a sort in OBJ terminology. A hierarchy of specifications contain
descriptions of the underlying state together with initial conditions, transforms, and
assertions.

A transform specification defines a set of preconditions (reference conditions)
and a postcondition (effect), much like in VDM. A distinction is made between
deterministic and nondeterministic transforms, the former having a unique ending
state for each starting state. Nondeterminism, which may be introduced through
reference conditions and through an effects clause, further complicates the Ina Jo proof
system. For simplicity, the implementation of each transform is assumed to halt except
at the final (code) level where this property must be verified. Modularization is partially
supported since transforms may use other, previously defined transforms.

Assertions state properties of various kinds. Axioms state global properties
which must hold in all states of all models. An assertion which holds in each state is
termed a criterion, while those that are valid for each pair of consecutive states in a
computation are termed constraints. (A computation is a sequence of states.) There are
also initial state assertions and named define assertions which can be used as macros.
In general, assertions should be provable, given the machine specifications and its
associated set of possible computations.

Like other specification techniques, Ina Jo suffers from a lack of dynamm
concepts and temporal modelling facilities; some extensions in that direction have been

reported in [44].

92 V. B. Misi¢, D. Velasevi¢ / Formal Specifications in Software Development

5.7. Anna

All the languages discussed so far have been designed without any reference to
any particular programming language, with the exception of Larch interface languages.
Thus, the designers had no need to worry about the idiosyncracies of any existing
programming language, at least at the abstract level. A rather different approach was
taken by the designers of the specification language Anna (ANNotated Ada) [27]. Anna

is an evolutionary approach, an attempt to extend the definition of Ada83 ! to support
the following:

» toextend and ameliorate activities of explanation,

« to add some new language constructs, mainly in the area of exception handling,
context clauses, and subprograms, and

e to add specification constructs, predominantly in package semantics, and composite
and access types.

Only the last group of extensions is relevant to our discussion. Since other
intended uses exist beyond specification, the Anna programmer is free to specify as
much, or as little as she/he wants - there is no requirement of completeness of
specifications. Nevertheless, axiomatic semantics may be defined by the Anna language
to be used later to verify the correctness of Ada programs vs. their original Anna
specifications. In other cases, specifications are used to generate additional code in the
form of run-time checks which may be used for testing and debugging Anna programs.

Annotations may be added for constraining sets of observable states of a
program or for constraining values of program variables within the scope of annotation.
They may also be used for specifying subprogram units independently of bodies that
implement them, e.g. by constraining the propagation of an exception condition.

A particularly interesting feature of Anna is the possibility to define package
axioms. These axioms state some properties of visible entities in the package which are
promised to hold within the scope of its declaration. They may also be used to constrain
local entities in the hidden part of the package.

It should be noted that extensions defined by Anna are designed to be upward
compatible with existing Ada syntax. Standard Ada compilers treat Anna constructs as
ordinary comments, hence all valid Anna programs are valid ordinary Ada programs as
well. Anna specifications are translated into excutable Ada code by special
preprocessors, while other tools (analyzers, theorem provers, etc) can be used for
verification and other purposes.

An interesting development is reported in [46] where Anna is used to bridge
the gap between Z and Ada. Initial specifications are written in Z and implemented by
Anna specifications; Anna specifications are in turn used to develop Ada programs from
which executable code is produced. It is argued that the process of refinement from
specification to implementation is eaiser when performed in two smaller steps rather
than in just one step (i.e. if Z specifications were directly transformed to Ada). This
research should also investigate the possibility of constructing automated tools to assist
in the refinement process.

! To the best of authors’ knowledge, there has been no attempt to provide a similar extension for
the latest Ada standard, Ada9X.

V. B. Misi¢, D. Velasevi¢ / Formal Specifications in Software Development

5.8. A rough comparison of the techniques presented

93

Some pertinent properties of the formal specification techniques presented in
this overview are conveniently summarized in Table 1. The Anna language is not
included in the comparison as it does not easily fit in these categories, being of a
somewhat different character.

Table 1: Comparative review of some specification languages.

mathematical model model theory model
orientation
theoretical typed logic of many-sorted initial first-order
foundation set theory partial first-order logic algebras logic-based
functions state-

machine
structural/ structure- both aspects supported behaviour-
behavioral inclined inclined
modularization weak, but numerous fully modular weak
support extensions exist
object ﬂ numerous weak inherent in weak
support extensions language
inheritance/ weak generic several variants limited
import concepts support
parameterized generic none (via sypes) fully
specifications concept supported
standards informal official none, or internal

as multiple versions exist
implementation || manual, or part of interpreted Larch from
via automated specification interface specification
tools languages

general numerous tools integrated interpreters available
tool support available environment
verification external theorem integrated theorem provers
tools provers

The methods and techniques are compared with respect to the following
properties which were discussed in more detail in Section 3:

e mathematical orientation, i.e. whether the technique is generally model- or
property-oriented (although the distinction is not always clear);

near future, for Z and VDM);
e how the specifications are transformed to more detailed and/or executable form, i.e.
either manually or with a specific tool,;
e general level of automated tool support, as of this writing;
e availability of verification tools, both specialized and general.

theoretical foundation upon which the technique is based;
relative predominance of structural vs. behavioral concepts;
modularization support provided by the technique;
compatibility with modern object-oriented methods;
support for reuse through inheritance and imports of other specifications;
capability for writting parameterized specifications;
existence of official or de facto standards (official standards exist, or will exist in

94 V. B. Misi¢, D. Velasevié / Formal Specifications in Software Development

6. CONCLUSION

In summary, we may safely conclude that formal specification methods are an
indispensable tool to aid designers in the software development process. Their main
objectives are to enhance the precision, consistency, and completeness of system
specifications, and to enable machine-aided analysis and manipulation of these
specifications. A representative, though far from exhaustive, list of methods and
techniques has been presented in some detail, and their pertinent properties compared.
However, these methods are not without problems: most of them lack serious dynamic
modeling caapabilities, In most languages, a significant gap still exist between formal
specifications and executable code. Finally, tool support is still inadequate and robust
integrated environments are yet to be developed. On the positive side, these
shortcomings are likely to be corrected in time, significant industrial experience has
been accumulated, and standards for some of the methods have been established, or
will be the near future. The use of formal methods offers benefits which cannot be
overlooked, and a working knowledge of at least one of these techniques may already be
considered as something that designers of modern software systems simply cannot do
without.

Acknowledgments: The authors would like to thank the anonymous reviewers for
valuable comments and suggestions.

REFERENCES

[1] CCITT/SGX/WP3-1, Specification and Description Language SDL, CCITT
Recommendations, Z.100-Z-104, 1988,

[2]) ISO, Information Processing Systems, Open Systems Interconnection: LOTOS - A Formal
Description Technique Based on the Temporal Ordering of Observational Behaviour, 1S
8807, 1989.

[3] 180, Information Processing Systems, Open Systems Interconnection: Estelle - A Formal
Description Technique Based on an Extended Finite State Transition Model, 1S 9074,
1989,

(4] Abral, JR., "The B tool", in: Bloomfield, R., Marshall, L., Jones, R. (editors), VDM'88 -
The Way Ahead. Springer, Berlin, 1988.

[5] Barden, R., Stepney, S. Cooper, D., Z in Practice, Prentice Hall International, 1994.

[6] Barrett, G., "Formal methods applied to a floating point number system®, IEEE
Transactions on Software Engineering, 15 (1989) 611-621.

[7) Bauer, F.L, Moler, B, Partsch, H, Pepper, P., "Formal program construction by
transformations - computer-aided, intuition-guided programing”, IEEE Transactions on
Software Engineering, 15 (1989) 165-180.

[8] Berg, HK., Boebert, WE., Franta, W.R., Moher, T.G., Formal Methods of Program
Vertfication and Specification, Prentice Hall International, 1982,

[9] Berry, DM, "Towards a formal basis for the formal development method and the Ina Jo
specification language", IEEE Transactions on Software Engineering, 13 (1987) 184-201.

[10] Bloomfield, R., Froome, P.K.D., "The application of formal method to the assessment of
high integrity software", IEEE Transactions on Software Engineering, 12 (1985) 988-993.

(11]

(12]
(13]

(14]
(15]
(16]
(17]
(18]

(19]

[20]
[21]

[22]
(23]

[24]
(25]
(26]
[27]
(28]

[29]
(30}

(31]

[32]
[33]

[34]

[35]

[36]

[37]
(38]

[39]

V. B. Misi¢, D. Velasevié / Formal Specifications in Software Development 95

Blum, B.I, "A paradigm for developing information systems”, IEEE Transactions on
Software Engineering, 13 (1987) 432-439.

Bowen, J.P., "Z bibliography,’Oxford University Computing Laboratory”, 1990-1995.
Bowen, J.P., Hinchley, M.G., "Seven more myths of formal methods”, IEEE Software, 12
(1995) 34-41.

Boyer, R., Moore, J., A Computational Logic, Academic Press, New York, 1979.

BSI, VDM Specification Language, Proto-Standard, 1ST, 5/50, 1989.

Cohen, B., Harwood, W.T., Jackson, M1, The Specification of Complex Systems, Addison-
Wesley, 1986.

Futatsugi, K., Gougen, J.A., Jouannaud, J.P., Meseguer, J., "Principles of OBJ2", in:
Proceedings of ACM Symposium on Principle of Programming Languages, 1985,
Gallimore, R M., Coleman, D., Stavridou, V., "UMIST OBJ: A language for executable
program specifications", The Computer Journal, 32 (1989) 413-421.

Garlan, D., "The role of formal reusable frameworks", in: M. Moriconi (editor), Proceedings
of ACM SIGOSOFT Workshop on Formal Methods in Software Development, Napa, CA,
1990, 42-44.

Garland, S.J., Guttag, J.V., Horning, J.J., "Debuging Larch shared language
specifications", IEEE Transactions on Software Engineering,16 (1990) 1044-1057.

Guttag, J.V., Horning, J.J., Wing, J M., "The Larch family of specification languages”,
IEEE Software, 2 (1985) 24-36.

Hall, A., "Seven myths of formal methods", IEEE Software, 7 (1990) 11-19.

Hayes, 1. (editor), Specification Case Studies, Prentice Hall, Hemel Hempstead, UK, 2nd
edition, 1993.

Jones, C.B., Systematic Software Development Using VDM, Prentice Hall, Hemel
Hempstead, UK, 2nd edition, 1990.

Jones, C.B., Shaw, C.F., Case Studies in Systematic Software Development, Prentice Hall,
Hemel Hempstead, UK, 2nd edition, 1990.

Kemmerer, R.A., "Integrating formal methods into the development process", IEEE
Software, 7 (1990) 37-50.

Luckham, D.C,, von Henke, F.W., "An overview of Anna, a specification language for Ada”",
IEEE Software, 2 (1985) 9-22.

Meseguer, J., "A logical theory of concurrent objects”, in: N. Meyrowitz (editor),
Proceedings of OOPSLA/ECOQOP Conference, Ottawa, Canada, 1990, 101-115.

Meyer, B., "On formalism in specifications”, IEEE Software, 2 (1985) 6-26.

Middleburg, C.A., "VVSL: A language for structured VDM specifications", Formal Aspects
of Computing, 1 (1989).

Murata, T., Petri Nets: "Properties, analysis and applications", Proceeding of the IEEE, 77
(1989) 541-580.

Nakajima, R., Yuasa, T. (editors), The IOTA Programming System, Springer, Berlin, 1983,
The RAISE Method Group, The RAISE Development Method, Prentice Hall International,
London, 1994.

Semmens, L.T., France, R.B., Docker, T.W., "Integrated structured analysis and formal
specification technique", The Computer Journal, 35 (1992) 600-610.

Sluizer, S., Lee, S., "Applying entity-relationship concepts to executable specifications”, in:
S. Spaccapietra (editor), Porceedings of the Fifth International Conference on Entity-
Relationship Approach, Dijon, France, 183-194.

Spivey, J M., The Z Notation: A Reference Manual, Prentice Hall, Hemel Hempstead, UK,
1989.

Soivey, J.M., "Specifying a real-time kernel", IEEE Software, 7 (1990) 21-28.

Stepney, S., Barden, R., Cooper, D. (editor), Object Orientation in Z, Workshops in
Computing, Springer-Verlag, 1992.

Tardo, J.J., "The design, specification, and implementation of OBJ-T: A Inguage for
writing and testing abstract algebraic program specifications", PhD Thesis, UCLA, Los
Angeles, 1981.

[40]

[41]

[42]
(43]
[44]

[45]

[46)

V. B. Midié, D. VelaZevié¢ /| Formal Specifications in Software Development

Toetenel, H., van Katwijk, J., Plat, N., "Structured analysis - formal design”, in: M.
Moriconi (editor), Proceedings of ACM SIGSOFT Workshop on Formal Methods in
Software Development, Napa, CA, 1990, 118-127..

van Hee, KM., Semmens, L.J., Voorhoeve, M., "Z and high level Petri nets’, in: S. Prehn
and, W.J. Toetnel (editors), VDM’91: Formal Software Development Methods, Vol. 551 of
Lecture Notes in Computer Science, Springer-Verlag, 1991, 204-219.

Weiser, M., "Source code", Computer, 20 (1987) 66-73.

Wing, J.M., "A specifier's introduction to formal methods", Computer, 23 (1990) 8-24.
Wing, J M., Nixon, M.R., "Extending Ina Jo with temporal logic", IEEE Transactions on
Software Engineering, 15 (1989) 181-197.

Wirsig, M., "Algebraic specifications”, in: J. van Leeuwen (editor), Formal Models and
Semantics, volume B of Handbook of Theoretical Computer Science, Elsevier, Amsterdam,
1990, 675-788.

Wood, W., "Application of formal methods to system and software specifications”, in: M.
Moriconi (editor), Proceedings of ACM SIGSOFT Workshop on Formal Methods in

Software Development, Napa, CA, 1990, 144-146.

