
Yugoslav J ournal of Operations Research
7 (1997), Number 1,79·96

FORMAL SPECIFICATIONS IN
SOFTWARE DEVELOPMENT: AN OVERVIEW

Vojislav B. MISIC. Dusan M. VELASEVIC
School ofElectrical Engineering

University ofBelgrade
Belgrade, Yugoslavia

Abstract: Formal methods find increasing usage for system and software
specifications . In this paper, we discuss some benefits resulting from the use of such
methods, together with some properties shared by most of them. Some possible criteria
for classification are also presented, and a tabular overview is given of some of the most
well-known methods. A number of known formal methods are reviewed, and their
sim ilarit ies and differences discussed.

Keywords: Fonnal specification methods, software specification, fonnal specification languages.

1. INTRODUCTIO N

Software development is generally understood to consist of several dist inct,
yet interconnected ph ases: requirements analisys, speci fication, conceptual and detailed
design , implementation , verification and validation, evaluation and maintenance. Most ,
if not all , of these phases may benefit fro m the disciplined and knowledgeable use of
formal methods. However, the term formal methods is often used in a rather narrow
sense to designate a number of mathematically based techniques for' system
specification, i.e., for describing the structural and behavioral properties of software
sys tems. (The same holds for computer hardware, and computer systems in general, as
well as other systems.)

Although somet imes considered to be difficult to construct, validate, and use,
formal specification methods are beginning to find their proper place in the software
design process. The size and complexity of modern software systems has made it
painfully clear that software cannot be successfully designed, implemented and verified
without solid , systematic methodology. The lack of such methods results in what is
generally known as t he software crisis, and the use of appropriate formal methods for
system specifications may help designers to overcome at least some of these problems
[13}.

80 v. H. Mi~i~, D. VelaAevic I Formal Specifications in Software Development

In th is paper we present an extended overview of formal methods and their use
for the specifica tion of software sys tems. A nu mbe r of similar surveys has been
published. including tutorial papers (e.g. , 143 jl , historical surveys, and books (e.g., [8,
16]J.

The rest of the paper is organised as follows: Section 2 discusses why formal
methods should be used, and what benefits may be expected from their use. T he
subsequent section briefly presents some of the properties of formal methods regarding
mathematical foundation, executability, tool support . and other issues. Some
classification criteria are discussed in Section 4. and an informal treatment of so me of
the well -know-n techniques in use today is given in the next sect ion. Although some of
these are not being used for new development, their basic ideas were considered to be
interesting enough to justify their inclusion in this discussion. Final ly, an informal
comparison of the methods presented is given in tabular form, and some directions for
future developments are outlined.

2. BENEFITS OF USING FORMAL METHODS

As defined above, the te rm formal technique denotes a mathematically based.
technique for sys tem specifica t ions, i.e., for describing the st ructu ral and behavioral
properties of software sys tems. T he description is most often expressed wit n a special
notation, usually a complete formal specifica t ion language. The syntax of such a
language <as is the case with programming languages) defines a set of symbols and a set
of rules for combining those symbols into correct sentence. Symbols correspond to the
so-called spec iflcand objects, the universe of which is sometimes cal led the semantic
domain of a formal specification language. The interpretation of syntactic elements is
provided (implemented) by the so-called satisfies relat ion [43). A clear destinction
s hould be made, however, between a formal notation (which is used to describe the
system being specified) and a formal method, which is a development method using
so me particular form al notation (and other too ls as well). Some of the techniques
presen ted are merely formal notations with no associa ted development method, while
other techniques cons titute part of a matu re method; thi s will be noted whereever
appropriate.

Formal specifi ca tions let designers use abstract ions, thus reducing the
conceptual complexity of the syste m being designed . They enable the precise,
consistent, and complete definition of system pro perti es , and facilitate system
decomposition into modules [29J. Precise mathemat ical definitions permit machine
analysis und manipulat ion. By analysis, we mean that the consiste ncy and correctness
of specifi ca tions may be checked, thus reveali ng certai n design errors and
inrcnsistenciea which are have to find in later ph ases ; so me clases of er ro rs may be
total ly e liminated. By man ipulation, we mean that one specifica tio n may be
mechan ical ly transformed into another one, more detai led or more complex than its
predecessor, and (eventual ly) into an executable program. Note that this is exactly what
ony assembler, or language comp iler, does.

In addition, since the transformation is performed acco rding to a set of well­
defined ru les <ot herwise it would not be possible to mechanize it), it may be proved to
be correct. What is also susceptible to mechanical veri fication is the consistency,
completeness, and correctness of the specifications. As most specifica t ions have so me
kind of mathematical foundation, applicable inference ru les may be used t o reveal
contradictions, missing definitions, and other flaws. Some of these errors may have a

V. B. ~i§i c. D. velesev te , Formal Specifications in Software Development 81

significant impact on implementation , yet they may be very hard to find by classi cal
testing and debugging.

In general. since the initial user requirements for the system being designed
are always informal. it is not possible to prove that any specification satisfies user
requ irements - that is something only t he user can say. At most , we can expect to be
able to prove that one stateme nt of user requirements is equivalent to an othe r one, i.e.,
that the specification at one level is equivalent to the specificat ion at another level.

Some authors claim that the use of formal methods can be beneficial even if no
formal verification is attempted at all [22]. The mere fact tha t a rigorous specificat ion is
constructed forces t he designer to do the job more thorou ghly an d reach a better
u nders tanding of the problem, which must lead to a better solution. As stated in [43]:
"The greatest benefit in applying formal methods often comes from the process of
formalizing, rather t han from the end result.~

The application of formal methods for system specifications redist ribu tes the
effort invested in system design phases: more effort (and the appropriate proportion of
the total budget) is invested early in the design cycle. where errors have more impact.
Since a lesser number of errors survive throu gh the final implementation, testing and
debugging may be shorter (and cheaper), yet more effect ive. (Although the overal l
project costs should be reduced, the redistribution of project costs is st ill somewhat
unpopular among project managers.) Formal methods may also be used to advantage in
designing testing methods and test suites , enabling more errors to be found and
eradicated in a syste matic fashion.

Note that many informal or semiformal approaches do exist. and some of them
enjoy widespread usage. Exam ples of such methodologies include many variants of
St ructu red Analysis and Struct ured Design. J ackson Structured Design, SREM, HIPO,
and others . These methods give st rong guidance to the designer in various stages of
requ irements analysis, specification and software design. In addition, their use of
intu itive concepts and, in most cases, easy-to-grasp graphical formalisms, adds to their
popularity .

However, the increased size and complexity of modern systems make them far
less tractable by these methodologies, most of which evolved some ten or even twenty
years ago. Still, their main deficiency is that they allow inconsistent and ambiguous
specificat ions, eithe r through the possibility of multiple interpretations of a concept , or
through use of some informal mechanisms for specification, e.g., by a natural language
text. Moreover, there is no way to prove t hat the specifications are satisfied by the
design. This does not preclude their use, but none of the aforementioned benefits,
inherent to formal methods, will result from it . Nevertheless, using an informal method
is still better than not using any method at all.

3. SOME PROPERTIES OF FORMAL METHODS

A majority formal methods rely on some well-known, or cafully des igned,
mathematical foundations such as typed set theory (Z), logic of partial fun ctions (VDM),
many-sorted first-order logic <IOTA, OBJ), initial algebras (Larch) and the like . Other
techniques adopt a less formal approach, their main objective being the possibility to
use the specification lan guage as some kind of high-level programming language which
may be executed directly (i.e., after interpretation or compilation). A number of such
languages have been proposed, some of them not even atte mpting fo rmal verification .

82 Y. B. Mi~ic. D. Velasevie I Formal Specifications in Software Development

Languages of this kind are often used for rapid prototyping in order to demonstrate
the behavior of t he specified system; such prototypes are usually discarded in favor of
full -fledged applications [35]. This group of languages will not be covered in this paper.

From the mathematical point of view, specificat ionts) corresponds to lan guage
mod ulets), and execut ing the specificat ion means that we are able to prove
mechanical ly certain kinds of formulas of the theory defined by the speci ficat ion [45].
In other words. one approach to executability follows the philosophy of stepwise
refinement, and implements one specification with anothe r, more detailed one. Each
successive level of specification contains more design decisions made, until eventually a
specification is obtained which is sufficiently detailed to be considered a program. An
outstanding example of the refinement phi losophy is the Ina J o specification method.

More often, however, executability is taken in the sense that an algorithmic
procedure exists for t ransforming specificat ions into executable programs, without
intermediate refinement ste ps. This transformation may then be performed
mechanically, using an Interpreter or a compil er . Interpreters and/or compilers exist for
a small number of methods only; often they implement only a subset of the language
[18J.

A hybrid approach is exemplified by the two-tiered Larch specifications, where
specifications are first written in an implementat ion-independe nt, shared language.
These specifications are the implemen ted with more detailed specifications 'Written in
an implemen tation-specific lan guage, closely corresponding to the programming
language which will be used for actual coding.

It should be noted that most specificat ion languages emphasize brevity and
clarity rather than executebility. This facilitates both 'Writing specifications and their
mechanical verification, usually with the aid of a manual, user-assisted, or partially
automated theorem prover (fully automated provers are not yet available).

The amount of information which must be maintained in today 's medium-and
large-scale software project s necessitates the use of automated assistence, e.g., syn tax­
directed editors, code management techniques, version cont rol syste ms, etc. Note that
t he large amount of information is also the main reason for the inability of classical
structured methodologies to deal successfully with such software projects . Although
form al methods reduce the quantity of information to be handled, at least in the early
design stages, they would certainly benefit from having some form of machine support.

As most formal methods utilize some nonstandard symbols, a dedicated
documentation system may be considered a conditio sine qua non, although this need is
easily fulfilled by modern word-processing software and typesetting syste ms. The aid of
a syntax-directed editor is almost a necessity, and the next level of support could
involve sophist icated syntactic and semantic checkers, in which knowledge of both
aspects of the specificat ion language used would be embodied. Theorem provers are
used for verification, either manual or with some degree of user interactive guidance.
Finally, code generato rs transform the specificat ions into executable code. At present,
most formal methods have only limited machine assistance, up to the level of theorem
proving, while only a few are supported by code gene rato rs. However, one may "benefit
from the use of fo rmal methods without the use of sophist icated support tools . The
advantages of formality are too significant to await the development of a fully
supported method" [10].

As always, the integration and interoperability of these tools play a crucial role
in their effectiveness. If tools are designed separate ly, without proper communication
mechanisms built-in right from the start, their usability will be significan tly reduced.

V. B. M iSic, D. VelaAevic l Formal Specifications in Software Development 83

An integrated design environment should be equipped with dedicated tools
for performing various tasks. A simple collection of tools is hot enough: for maximum
effecti veness good coordina tion should exist among various tools , and the tran sition
bet ween tasks should be smooth. Only then will the designer be freed of most , if not all,
housekeeping fun ctions, so that she/he can concentrate on specification. An ideal des ign
envi ron me nt shou ld support all activities in each phase of software design ; an
interesting attempt in that direction is described by Blum [11).

Support and coordination for team development is also a very important issue,
given the size and complexity of even modest projects today. This includes mostly
version control, and (to a lesser exte nt) some support for multiuser operation . Fonnal
specifications are still designed by rather small teams, hence the usual problems of
concurrency, recovery and the like are not too significant .

Reusability is one of the key issues in all modern software design
methodologies, and formal methods are no exception. Libraries of predefined
constructs, describing commonly used modules (whatever they may be called in any
particular language) enable the specifier to concentra te on the particularities of the
system being modeled - without having to reinvent the wheel each time. Moreover, as
specificat ions found in these libraries are usually written by the aut hors of the
language themselves, they are usually well designed and thoroughly tested. The
specifier may use them as examples of good style, after which her/his 0 w'0 specificat ions
may be patterned. This is often hard to find in classical software systems, since most of
the code written by experienced programmers is copyrighted and unavailable, while
textbooks contain mostly toy codes, unfit for real- size projects [42]. It should be noted
that a number of quite good formal libraries exis t, but the organizations which have
these are unwilling to make them widely available because of commercial reasons.

4. GENERAL CLASSIFICATION OF FORMAL METHODS

Specification languages may be classified according to different characteris tics.
One of the classification criteria, and possibly the most important one, is based on the
mathematical foundation of these methods. According to this criterion, we may
discriminate between model- and property -oriented languages. Model-oriented
languages provide a twofold description of system behavior: first, the data structures
(such as strings, numbers, sets, tuples, relations, sequences, etc) that const it ute the
sys tem state are described. Then, the operations that manipulate that state are defined
using assertions in a notation similar to first-order predicate calculus. These languages
are sometimes called constructive, and they include Z, YOM, Milner's CCS, Hoare's
esp, and others.

Property-oriented methods define the system in terms of properties that must
be satisfied in some or all of the system states. The latter include the so-called
axi omatic approaches, such as those embodied in specification languages IOTA, OBJ,
Larch, and Anna, as well as the so-called algebraic approaches, e.g., the one used in
LOTOS. However, the data structures are described here as well, the most common
being sets, lists, sequences, and other structures with a straightforward mathematical
interpretation. The desired set of properties is usually expressed as a set of equations.
Equations may be interpreted as directional rewrite rules, which may be used to
simplify a statement by reducing it to some canonical form. Term rewriting is one of
the most important research directions in connection with formal methods, as
witnessed by several conferences and special journal issues.

In another classification, the distinction is made between specificat ions that

8-1 V. B. MiSic, D. Velasevit I Formal Specifications in Software Developmen t

concentrate on internal structure of specificand objects <st ructu ral specifications), and
those that predominantly describe the observable behavior of these objects (be havioral
specifications). However. st ructural specifications often include some not ions of
specificand behavior, and vice versa, thus blurring the distinction betwee n the two
kinds of specifications.

As spec ification met hods deal with large systems and data st ructures of
appropriate size and complexity, support for speci fication modularization and
st ructuring is essential. Some rather popular formal methods provide no such support,
or a limited amount on ly (as is the case with Z a nd VDM). This is often considered to be
their mai n defficiency, and extensions aimed to correct it have been reported, e.g., in
[38, 30). Most other methods have some provisions for modularization , usually in the
fonn of one or more of the so-called specification-building operators. In its simplest
form, one specification can import another one as a subspecification, enrich ing it with
additional sorts and operators. The entire model is organized then in the form of a
hierarchy (or , more generally, a directed, acyclic graph) of specificat ions . This is
somewhat similar to the inheritance mechanism of object-oriented languages. Other
met hods provide more sophisticated mechanisms for importing subspecifications ,
offering the possibility to redefine some of its sorts, or further constrai n their behavior
by redefining some of the applicable operators.

Another important mechanism is that of parameterization, "a process of
encapsulating a piece of software and abstracting from some names occuring in it . in
order to repl ace them in ot her contexts by different actual operato rs" [45]. Together
with structuring and modularization support, parameterization frees the designer from
reinvent ing standard specifications, letting he rlhim concentrate on the particulars of
the problem at hand. As is the case with other software compone nts, standard
specifications may be distributed in the form of libraries, thus promot ing reusability.
Such libraries are sti ll not available for most specification techniques presented here;
instead, the specifier must resort to case studies and introductory or reference texts,
whatever is available.

Most specificat ion lan guages contain only declarations an d equations; if
imperative andlor applicative style statements are included as well, the language is
considered to be a wide-spectrum one [7].

A number of languages concentrate on functional properties of the system
being modeled. whi le dynamic concepts (e.g., concurrency , real- time behavior,
reliability, security, performance), cannot be easily accounted for in these
specifications. Other languages have been specifically designed for systems in which the
dynamic component is crucial . Most of t hese are based on some exte nsion of the finite
state machine concept; among the most distinguished are the well-known CCS and CSP
formalisms, as well as a class of languages specialized for telecommunication systems,
such as LOTOS [2]. Estelle [3J, and SOL [1J. We should also ment ion Petri Nets, known
since the late 19605, and their numerous variat ions (e.g., [31]). Petri Nets have been a
particularly success ful formalism for real-time system specification and analysis, as
exemplified in both research and industrial projects . They have been coupled with ot he r
formal notations in order to extend versatility to a wider class of syste ms (e.g., [41]).

Instead of de.signlng a completely new language, some researchers have been
extending lan guages t,r the fo rmer group to incorporate some dynamic concepts.
Examples of such an at , -ac h (which we might call evolutive) are exte nsions of the Ina
J o language with tempo. ' logic [44], and the Maude language, which contains OBJ3 as
a functional sub language I incorporates some novel concurrency concepts [28]. In ot-

v . B. Mg ic, D. Velasevic I Formal Specificatio ns in Software Development 85

her words , these languages may be conside red a ttempts to get the best of both worlds
by augmenting already existing specifica tion languages with the desi red properties .
These issues are still new and more experience needs to be gathered before some
definitive conclusions can be made; it seems a promising avenue anyway, and important
results are to be expected.

5. REVIEW OF SOME FORlV!AL SPECIFICATION TECHNIQUES

A brief description of the characterist ics of some of the well-known
specification languages will be given in the following. We make no claim about the
exhaustiveness of our selection, as many other methodologies exist, some of which we
did not even mention . However, we believe our selection to be representative, in the
sense that most directions of past and current research have been given a tte nt ion, and
that some of the most important and informative developments are covered. A notable
exception is methods for the specification of real-time systems, since they are deemed to
be still in their infancy, and that significant developments are yet to appear. The
languages selected are -ordered by decreasing degree of formalism utilized, and
increasing ease of transformation of specifications into executable code.

6.1. Z

Z is one of the most popular specifica t ion notations. It is based on typed set
theory, and uses familiar mathematical concepts like sets, relations, functions, etc.,
structured in the form of schemas. A schema consists of a declaration part, and a
predicate part. Variables are declared, in the former, and the latter defines predicates
relating these variables. Schemas are a convenient way of structuring the
specifications, si nce they may be combined using several simple operat ions, e.g.,
conjuction, disjunction, implication, component renaming, composition. piping, and
others as well. Operations which combine the declaration parts, or predicate parts, or
both, of two (or more) schemes facilitate the modular cons truction of Z specifica tions.
All of these operations, forming together what is usually designated as the schema
calculus, are defined in accordance with the well-known rules of propositional and
predicate calculi.

Z is able to define both deterministic and nondeterministic functions, and Z
specifications are capable of encapsulating t he state of a system (a model of a system, to
be precise). It has little or no provisions for incorporating time dependencies, although
some attempts have been made in that direction. Another promising avenue which is
currently being explored is to extend Z notation with the class concept, together with
the powerful encapsulation and inheritance mechanisms commonly found in object­
oriented systems. Important syste m aspects such as object integrity and interobject
communication can be formaliy specified. A number of techniques which extend Z with
object-oriented concepts are reported in [38].

Formal proofs are given for Z specifica tions only occasionally, since the clarity
of Z schemas contribute to their simplicity and expressive power without compromising
the necessary rigour. Instead of proving a formal relationship between specifica tions
and"their implementations, Z specificat ions are used to explore the properties of those
specifications, often quite informally. It is found that even informal arguments may
lead to the detection of serious implementation errors , as witnessed in [23, 37].

' ion cons tructs allow the designer to use abstract data
ion , without too mu ch concern about their implementation;

86 v, B. ~fiSic, D. Velasevic I Formal Specifications in Software Development

However , "if it is difficu lt to reason about some expected property, it is usually
a sign that the specifica tion is poorly structured, if not wrong" [19}.

Although the Z notation is very popular, there is no single Z development
method rather quite a nu mber of them Ie.g. , [5, 38H.

Z is extensively used for the speci fication of various soft ware sys tems,
incl uding spec ifications for a large part of the CICS transaction control sys tem (23],
specification of the UNIX file syste m, specifications for several oscilloscope subsystems
(e.g., (19)), and even hardware spe cifica tions (6). Several textbooks exist, among these a
reference manual [361, a collection of case studies (23J, and a style manual (5].
Furthermore, work is underay to establish an ISO standard for Z.

A number of both research and commercial tools support Z, and it isorth
noting that Z was the first form al language to obtain an electronic distribut ion list,
with others to folio..... (some of which are listed in (13]). Z-related information currently
available on the Int ernet includes an extensive bibliography [12), a nu mber of papers
and research reports, and a syntax checker.

5.2. VllM

YOM is one of the best-known formal methodologies. It is a constructive, or
model-based specifica tion technique, based on propositi onal and predicate calculus and
the logic of partial functionshich is used to circu mvent the undecidabi lity problem of
standard first-order logic.

A VOM specifica tio n consists basically of two components: a model of the state ,
with w hatever invariants must hold for It, and operat ions over the abstract data type
comprising the sta te. Operations are defined implicitly, i.e., an opera tion is given in
terms of its signature, the necessary pre-condition, and the post -cond ition which must
hold after the operation has been performed . Implicit functions are preferred to explicit
ones, mostly for reasons of clarity and ease of verification; explicit definition, however,
must be used in the implementation ph ase.

The post-co nditio n is defined in terms of parameter values after (and before, if
necessary) the operat ion. An opera tion can access (and change) some external variables
which comprise the sys te m state; the type of access must be noted for each variable
(i.e.,hether it is mod ified - written, or jus t read), in each operation definitio n. The use
of external variables facilitates the distinction between parameters and variables which
are accessed by a side-effect: the choice is usually pragmatic.

State descript ions are defined at successive level s of abstraction, linked by
im plementation steps. The implementation of an abstract state by means of a more
concre te one describe either a data re iflca ti on or an operation decomposition. In the
former case, s tate variables of a more concrete stat e implement those of a more abstract
one, while in the latter , the operat ions of a more abstract sta te are implemented by
those of a more concrete one. A disti nguishing feature of VDM is that state descr iptions
und im plementations must be formal ly verified : VOM provides rules to systematically
derive proof obligations from objec t descriptions . Proof obliga tio ns are required to
verify bot h the correctness of a speci ficat ion, and its implementability. Correct ness is
concerned With tho t ransformation from an abstract to a concrete state, and
implcmcntability ve "los t ransformations from implicit funct ions to those defi ned
explicitly .

The data Tf'1

st ructures in t he speci

V. B. ~1 iAic . D. Vela.sevlc I Formal Specifications in Software Development 87

final data st ructures may be determined later, after the specification phase has been
terminated . Again, proof obligat ions permit verification to be performed in a systematic
and rigorou s fashi on. Automated tools exist which are capable of generating these
obligations from the specification text. Actual proofs may be carried out either
manually or with the aid of a theorem prover, such as B [4J, or the Beyer -Moore prover
(14).

However, V01o.1 is not without its deficiencies . Some implicitly predefined data
types may have addit ional properties beyond those explicitly defined and even some
unwanted properties and side affects; other languages require all properties to be
exp licitly stated. Although states and operations form a kind of hierarchy, VDM has no
explicit provisions for modularization. Therefore, when a proof obligat ion is
constructed for an object, it is often large, containing some subgoals which are t rivial to
prove, as well as some subgoals which were already proved . This is particularly apt to
appear in cases when two arbitrary slate descriptions are grouped, since all obl igat ions
of both objects must be re-proved in order to account for the presence of the other
object . Some of the difficulties that arise would be easily filtered out by imposing some
visibility rules on variables, something which is not available in the current definition
of VDM. Existenslons have been proposed to support modularity (e.g., (30)) and to
interface VDM with some complementary methodologies, such as Object-Oriented
Analysis and Structured Analysis (e.g., [40]), but no standard set of extensio ns has been
universally accepted yet.

VDM was initially devised for the specification of a large subset of PLJI
program ming lan guage, and subseque ntly used in the development of a number of
software and hardware systems . It is an established methodology with extensive
docu mentation including a number of textbooks, ran ging from an introductory course
[24] to a collection of a case studies (25], and it has even been proposed as an official
British project, which includes both a full-Iledget methodology and substant ial tool
support [33].

5.3. IOTA

The specification language IOTA [32]. although not a modern development,
presents an excellent example of modular programming with parameterization
mechanisms. IOTA specificat ions may be built bot tom-up, starting from built-in
modules such as bool and int, and extending these declarations as necessary.
Declarations are grouped into modul es which are themselves organized into a st rict
hierarchy with violations and circular dependencies being detected by the IOTA model
processor.

IOTA specificat ions are theories of a many-sorted first-order logic. Each sort is
associated with a so-call ed basic structure on that sort, consist ing of a finite set of
functions and a finite set of axioms. These fun ctions are defined in the interface part.
whi le axioms which characterize their properties (i.e., behavior) are grouped in the
specifica tion part of the module. Functions thus defined are called primitive functions
on the underlying sort.

A primitive fun ction whose range is the sort itself is called the induction rule
for t hat sort. A sort for which induction rules are defi ned is called a type. It is possible
to define sorts without induction rules, in which case the sort is called a sype- There are
other subtle differences between types and sypes, bu t they are of no concern to us. It

88 V. B. MiSic, D. VelaSevic I Formal Specifications in Software Development

should be noted that wi t hin each sort the IOTA system automatically adds equality to
t he primit ive fu nctions, and equality axioms to the sort's bas ic axioms.

More fun ctions may be added with a procedure module, which again has both
interface and specification parts. A procedure module defines, in effect , a procedural
abst raction and it may introduce several procedures. Fu nct ions defined in a procedure
module are considered non-primitive.

Finally, a real izat ion part is provided, defini ng the implementation of a module
in terms of ot her modules. The implementat ion language is syntactically similat to
CLU, but the semant ics are different. In particular, recursive definitions are not
all owed to span multiple modules, in part because of the st rict hierarchy imposed by the
IOTA system. However, recursive and mutually recursive functions may appear within
a single module. In a sense, the interface and specification part define an abstract view
of a function , while the reali zation part gives its concrete view.

IOTA modules represent theories, or parts of a theory defined by the entire
program. Verification of an IOTA specification consists of proving that the theory of
each module is satisfied by its realization . The Prover compone nt of the IOTA system
reduces a goal formula into smaller subgoals, until they become small enough to be
etTect ivaly handled by an automatic simplifier and resolut ion prover, The proof system
necessarily relies on interactive guidance by the user, since even small module
definitions may result in long formulas to prove, and fully automated theorem proving
would take too long to terminate. Proofs are further complicated by the modularity of
IOTA specificat ions, which ofte n leads to formulas with a large number ofu ser-defined
axioms. Fortunately, a well thought-out modularity often results in the so-cal led proof
locali ty property: a number of proof steps tend to depend on axi oms from only a few, or
even a single module. Hence, the interactive proof process can be made more efficient
by narrowing the selection of axioms at each step, thus facilitating the application of
reduction and simplification rules on a module. This is known as theory-focusing
strategy.

Functions may be defined as specifications only, without the associated
implementation. Verification of t hese functions is not possible, therefore this practi ce is
gene rally discouraged since it may create "gaps" in consistency proofs. On the other
hand, t he realization part may contain definitions of local fun ctions which have no
abst ract counte rparts. The verification process is connected with another aspect of
modu larization in IOTA: namely, sypes may be used t ,.. model some general pattern of
behavior , and utilized (included) within many differ. types. If proof procedures are
developed for such sypes, they are readily availab le for proving appropria te properties
in al l types based on these sypes.

The significance of IOTA lies mainly in the following:

• it is a complete specification methodology with facilit ies for specification at bo th
abstract and implementation levels (something which is absent in many other
approaches),and

• a n integrated tool-set is available built-in order to facilitate the interactive
development of specifications and their implementation in the form of executable
programs.

V. B. MiSic, D. Velasevie I Formal Specifications in Software Development 89

Automated support is made available in all phases of the development process.
Module text is ente red via the Syntax-directed Editor, and various tools for syntactic
and semantic analysis are provided, in order to detect errors as early as possible.
Modules found to be correct are stored in a dedicated database (module base), and an
Executo r subsystem t ranslates them to object code. The verification is managed by the
Verifier, and the actual proofs are carried out by the Prover. The system supports
mul tiple-member programming teams, us ing the module base as a sophisticated data
dict ionary. Modules have owners and visibili ty, which is controlled by the system under
user guidance. Furthermore, versioning is provided at both module and function levels,
in order to retain the consistency of declarations after modifications.

5.4.0BJ

OBJ is an algebraic specification language which resembles IOTA in many
details, both in syntax and semantics, yet some significant differences exist. OBJ has
been one of the most popular languages, with several variations developed over the
years (OBJ·T, OBJ2, OBJ3, etc.I [17, 18, 39]. An OBJ specification is a collection of
equationally specified sorts (which implement abstract data types), a collection of
operators defined in tenns of these sorts, and a collection of algorithms desi gned usi ng
these sorts and operators .

An object is declared by a textual unit, which defines the underlying data sorts
and their associated operations . Each sort name denotes a set of values, called the
carrier of the sort; sort names are avai lable within the scope of the object in which they
were introduced. Operations are defined in terms of their signatures (syntax), an d
equations describing their properties (semant ics). The scoping rules for sorts apply to
ope rators as well . Necessary variables must be decalred in advance; they are considered
to be universally quantified over the whole equation in which they are used . Constants
of any sort may also be declared, while the TRUTH object with distinguished. constants
T and F, is built-in: t hese constants may be accessed from any object defined by the
user. Each sort is automatically au gmented. with a boolean equality operator, much like
the IOTA approach. Generally, an OBJ object semantics is defined as the initial algebra
on the signature denoted by the sort and operator declarations.

Objects in an OBJ specification are structured in an acyclic graph structu re, as
each object may be defined as a refinement (or extension) of an already exist ing one . As
OBJ objects are similar to the class concept of Simula and other object-oriented
programming languages, this process may indeed be viewed as inheritance. Several
import mechamisms exist (using, protecting, and extending), with different restrictions
on imported data sorts and operators , thus allowing precise tuning of specificat ions .
Not all versions of OBJ have all of these mechanisms available: at least two of the m
provide only the simplest (using) import mechanism {lS, 39]. Ot her modularization
mechanisms available in OBJ (agai n, not all versions support all of them) are the ability
to de fine subsorts of a data sort, parameter application, and renaming.

Several interpreters are available for OBJ, but they usually implement only a
subset of the ful l language [18, 39]. Nevertheless, the availability of these and their
associated provers makes the design of OBJ speci fications easier and more comfortable.

OBJ has no provisions for specifying dynamics properties and/or temporal
behavior. It has recen tly been used as the basis for the language Maude, which may be
briefly (and somewhat incorrectly) described. as the OBJ3 language with the addition of

90 V. B. Mi~ ic, D. VelaSevic I Fonnal Specifications in Software Development

concurrent rewriting concepts [28]. This area IS gammg attention, and important
results should follow.

5.5. Larch
•

The Larch specification language forms just part of a larger project see king to
build tools that facilitate the construction of formal specifications for modular
programs.

Larch specificat ions follow a two-tiered approach, similar in spirit (if not in
detail) to the IOTA approach . Abstract specifications are written in the Larch Shared
Language and they are independent of any particular implementation . These
specifications are t ran sformed to another lan guage, the Larch In terface Language, in
order to describe program units (modules, funct ions, procedures, types, ...) used for
implementation in the chosen programming language. Several Larch interface
languages exist, each designed to make best use of t he facilities available in the
appropriate programming language.

Larch Shared Language specifications are modularized in traits which
introduce operators and specify their properties . Traits often correspond to abstract
data types; other t raits capture some useful properties which may be shared by many
ot her traits, not unlike the concept of sypes found in IOTA. The operator set is declared
in terms of operator symbols and t heir signatures, wh ile their properties are described a
theory: a set of theorems which may be derived from properties defined in t he trait,
usi ng axioms and inference rules of first-order predicate calculus.

Traits may be defined by importing (i.e. extending) the definition of one or
more previously de fined traits, renaming some terms if necessary. As in OBJ, these
extensions come in various flavors; they may additionally constrain some of the
previously defined sorts and ope rators, whi le others are just used on an "as is" basis,
without further manipulation. This variety of extension mechanisms enables the
specification to exploit reusability to the fullest, yet retain the precision which would
ot he rwise be possible only through a dedicated specification, written from scratch.
Hiding or export mechanisms are not available in the shared language, being better
su ited to interface specifications which are closer to the actual implementation
langu age.

The Larch Prover, a mechanical theorem-; -ing tool, facilitat es verification
of the correctness of specifications. It is based on tl same equational first-order logic
as the Larch Shared Language, with a number of built-in inference rules used for
rewriting. Additional proof mechanisms are included to help overcome certain
diffi culties with completeness in a rewriting system, and to prevent the generation of
nonterminating rewriting sequences. An automatic mechanism for rule ordering is
available, although machine-assisted partial ordering is also provided. Proofs are
initiated by the user through an interactive dialogue and a number of inference
techniques may be appl ied ; in most cases, strong user guidance is requested. Thus , the '
Larch Prover may be used in the same way as an interactive debugger is used in
classical programming envi ronments [20]. .

Larch interface languages are used to specify the interfaces between program
components in the form of information necessary to write a program unit and to use it .
The in te rface lan guages provide communication and exception handling, iterators, side
effects, and ot her mechanisms similar to those found in the implementation language.
The similarity between interface and implementation languages has a twofold advanta-

V. B. MiSic, D. Vela.sevic I Formal Specifications in Software Development 91

ge : it makes specifications shorter and more precise and it makes actual
implementation easier since the specification is closer , in form and function, to the fi nal
program code. Interface languages are currently avai lable for CLU, Pascal , and Ada, as
well as for other programming languages. Larch has been applied to var ious software
and hardware projects and a variety of reports are avail able, together with a library of
reusable specifications [21].

5.6. FDM and the specification langua ge Ina Jo

As noted above, one of the possible approaches to system specifications is
based on the process of success ive (ste pwise) refinement , where each formal
specificat ion is transformed to the next level by adding more and more functionali ty
and/o r implementation details. An exam ple of such an approach is the Formal
Development Method (FDl\1) and it s associated specification langua ge Ina J o 19, 26].

The process starts with an informal sta te men t of system requirements, which
is gradually converted into a complete formal specificati on. Each formal specification is
named a level of refinement in Ina J o te rminology. Transformation to an executable
program is performed only when the final specification is obtained. This final
specification (i.e. level of refinement) is the only one that is requ ired to be fun ctionally
complete . The correctness of the t ransformation from one level of refinement to the
next one is checked with the aid of a machine theorem prover (lTP).

Ina J o is based on an extension of first-order predicate logic: it treats the
system and its data as a state machine, with the internal data maki ng up the state . A
machi ne, as described throu gh its specification, is formed by a set of variables, each
capable of holding a value of some type. A type is a predefi ned set of values; it would be
cal led the carrier of a sort in DBJ terminology. A hierarchy of specifications contain
descr iptions of t he underlying sta te together with in itial condit ions , transforms, and
assertions.

A t ransform specification defines a set of preconditions (reference cond itions)
and a postcondition (effect), much like in VDM. A distinct ion is made between
determin istic and nondeterministic transforms, t he form er having a unique end ing
state for each starting state. Nondeterminism, which may be introduced through
reference conditions and through an effects clause, further complicates the Ina Jo proof
system. For simplicity, the implementation of each transform is assu med to halt except
at the final (code) level where this property must be verified. Modularizat ion is partially
supported since transforms may use othe r , previously defined tran sforms.

Assertions sta te properties of various kinds. Axioms state global properties
which must hold in all states of all models . An assertion which holds in each state is
termed a criterion, whi le those that are valid for each pair of consecutive states in a
computat ion are termed constraints . (A computat ion is a sequence of states.) There are
also initial state assertions and named define assertions which can be used as macros.
In general , assertions should be provable, given the machine specifications and its
associated set of possi ble computations.

Like other specification techniques, Ina J o suffers from a lack of dynamic
concepts and temporal modelling facilit ies ; some extens ions in that direct ion have been
reported in [44).

92 V. B. "'M it . D. Velasevic I Formal Specifications in Software Development

5.7. Anna

All the languages discussed so far have been designed without any reference to
any particu lar programming language, with the exception of Larch interface languages.
Thus, the designers had no need to worry about the idiosyncracies of any existing
programming language, at least at the abst ract level. A rather different approach was
taken by the designers of the specifica tion language Anna (A1'J"Notated Ada) [27] . Anna
is an evolutionary approach, an a tte mpt to extend the definition of Ada83 1 to support
the following:

• to ext end and ameliorate activities of explanation,
• to add so me new language constructs, mainly in the area of exception handling,

cont ext clauses, and subprograms, and
• to add specifica tion constructs, predominantly in package semantics, and composite

and access types .

Only the last group of extensions is relevant to our discussion . Since other
intended uses exist beyond specification, the Anna programmer is free to specify as
mu ch, or as little as she/he wants - there is no requirement of completeness of
spec ificat ions. Nevertheless, axiomatic semantics may be defined by the Anna language
to be used later to verify the correctness of Ada programs vs. their original Anna
spec ifications. In other cases, specifica t ions are used to generate additional code in the
form of run-time checks whi ch may be used for testing and debugging Anna programs.

Annotations may be added for constraining se ts of observable states of a
program or for constrain ing values of program variables within the scope of annotation .
They may also be used. for specifying subprogram units independently of bodies that
implement them, e.g. by constraining the propagation of an exception condition.

A particularly interesting feature of Anna is the possibility to define package
axioms. These axioms state some properties of visible entities in the package which are
promised to hold within the scope of its declaration. They may also be used to constrain
local entities in the hidden part of the package.

It should be noted that extensions defined by Anna are designed to be upward
compatible with existi ng Ada syn tax. Standard Ada compilers treat Anna constructs as
ordinary comments, hence all valid Anna programs are valid ordinary Ada programs as
well . Anna specificati ons are translated into excutable Ada code by special
preprocessors, while other tool s (analyzers, theorem provers, etc) can be used for
verification and ot her purposes.

An interesting development is reported in (46) where Anna is used to bridge
the gap between Z and Ada. Initial specifications are written in Z and implemented by
Anna specifica tions; Anna specifications are in turn used to develop Ada programs from
whi ch executable code is produced. It is argued that the process of refinement from
specification to implementation is eaiser when performed in two smaller steps rather
than in just one ste p (i.e. if Z specificat ions were directly transformed to Ada). This
research should also investigate the possibility of constructing automated tools to assist
in the refinement process.

1 To the best of authors' knowledge, there has been no attempt to provide a similar extension for
the latest Ada standard, Ada9X.

V. B. Mill ie, 0 _Vel~evic l Formal Specrfice tion s in Software Development

5.8. A rough comparison of the technique s presented

93

Some pertinent properties or the form al specification techniques presented. in
this overview are conveniently summarized in Table 1. The Anna language is not
included in the comparison as it does not easily fit in these categories, being of a
somewhat different character .

T a b le 1: Comparative review of some specification languages.

ro rt. Z VD~I IOTA ORJ Larch Ina J o
mathemat ical modd model theory t heory theory model
o rionranon
theoret jcal I_ logtc of many-sorted init ial first -order
foundation set t heory part ial firs t-o rder logic algebra!! logic-based

funct ions sta te-
machine

st ruct ural/ st ruct ure- both as pects su pported bebavsoo r -
behavioral inclined inclined
medularraetjon weak. but numl'rous fully modular'eak
euooort extensjons ellLst
object nu m er ous ..ok inherent ineak
support extenalcns lancuace
inheritance/ week ge neric several var iants limited

~t concepts support
parameterized gen f."t1c none {via sypesJ fully
s lcations concept sunocrted
standards infor mal official none, or internal

as mult iple versscns exist
imptementancn manual, or part of mt erpeered Larch ' rom

via au tomated specification int erface specification
too ls lancuaces

ge ner al numerous tools in tegrated mterpreters availsble
tool su pport available envi ronment
vl'rdication external theorem intt"gt"ated t heeeem provl'rJ
too ls I orovers

The methods and techniques are compared with respect to the following
properties which were discussed in more detail in Section 3:

• mathematical orientation, i.e. whether the technique is general ly model- or
property-oriented (although the distinction is not always clear);

• theoretical foundation upon which the technique is based;
• relative predominance of structural vs. behavioral concepts ;
• modularization support provided by the techn ique;
• compat ibility with modern object-oriented methods;
• support for reuse through inheritance and imports of other specifications;
• capability forri tting paramete rized specifications;
• existe nce of official or de facto standards (official standards exist, or will exist in

near future, for Z and YOM);
• how the specificat ions are transformed to more detailed an d/or executable form , i.e.

either manually or with a specific tool;
• general level of au tomated tool support, as of this writing;
• availability of verification tools, both specialized and general .

94 v. B. " Iisic, D. Velakvic I Formal Specifications in Software Development

6. CONCLUSION

In su mmary, we may safely conclude that formal spec ificatio n methods are an
indispensable tool to aid designers in the software development process. Their main
objecti ves a re to enhance the precision, consistency, and completeness of system
specifica ti ons, and to enahle machine-aided analysis and manipu lation of these
specifica t ions. A representative, though far from exhaustive , list of methods and
techniques has been presented in some detail, and their pertinent properties compared .
However, t hese methods are not without problems: most of them lack serious dynamic
modeling caapabilit ies. In most languages, a signi ficant gap sti ll exist between formal
specifications and executable code. Finally. tool support is st ill inadequate and robust
integrated enviro nments are yet to be developed. On the posit ive side, these
shortcomings are likely to be corrected in time. significa nt 'industrial experience has
been acc umulated. and standards for some of the methods have been established. or
w; 11 be t he near future. T he use of formal methods offers benefi ts whi ch can not be
overlooked. and a wor king kn owledge of at least one of these techniques may already be
considered as somet hing that designers of modern software sys tems simply can not do
without.

Acknowledgments : The authors wou ld like to thank the anonymous reviewers for
valuable comments and suggestio ns.

REFERENCES

(1] CClTIlSGXI\VP3-I, Specification and Description Language SOL. CCITT
Recommendauons, Z.IOD-Z-I04, 1988.

(2) ISO, Information Processing Systems, Open Systems In terconnection: LOTOS - A Formal
Description Tec hn ique Based on the Temporal Ordering of Observational Behaviour , IS
8807, 1989.

(31 ISO, Information Precessin g Systems, Open Sys tems Interconnection: Estelle - A Formal
Description Techn ique Based on an Extended Fin ite State Tran sition ,\Jodd , IS 9074.
1989.

{41 Ahnet, J .R , "The B tool", in : Bloomfield. R.. ~ Iarshall, L., J ones. R. (editors], VD.\l '88 _
Tho! Way Ahrod . Springer , Berlin, 1988.

[5J Barden, R. , Stepney. S. Cooper, D.• Z in Practice, Prentice lI all International. 1994 .
(6J Barrett, G., "Formal met hods applied to a floating point number system", IEEE

Transactions on Softu-'Or~ Engineering, 15 (1989) 6 11-62 1.
(7) Bauer, F.L. ~to ler , 8., Partsch, II .• Pepper, P.• 'Formal program constructio n by

transformations - computer -aided. intuition-guided programing", IEEE Transactians on
Softumre Engineering, 15 (l989) 165-180.

[8] Berg, II K., Boebert, W E.• Franta. W.R., Moher, T.G., Formal s tetbode of Program
Verification and Specification, Prentice Hall International, 1982.

[9] Berry , O.M., "Towards a formal bas is for the formal development method and t he lna J o
specification language". JEEF. Tran sactions on Software Engineering, 13 (1987) 184-201.

[10) Bloomfield, R , Froome , P.K.D.• "The applica tion of formal method to t he assess ment of
high integrity sonware~ , IEEE Tran sactions on Software Engineering, 12 (1985) 988-993.

V. B. MiSic. D. Vela§evic I Formal Specificat ions in Software Development 95

(llJ Blum, B.I., ~A paradigm for deve loping information systems", IEEE Transactions on
Sofuoore Enginn ring, 13 (1987) 432-439.

(12J Bowen , J .P., "Z bibliography~Oxford University Computing Laboratory", 1990-1995.
(l 3J Bowen, J .P., Hinchley, M.G., "Seven more myths of formal methods", IEEE Softwar~, 12

(1995) 34-41.
(14J Boyer , R., Moore, J ., A Computational Logic, Academic Press, New York, 1979.
(I5J ES I, VDM Specification Language, Proto-Standard, 1ST, 5/50, 1989.
(16J Cohen. B., Harwood, \V.T., J ackson, M.I., The Specification of Compla Systems , Addison­

Wesley, 1986.
(17) Futatsugi, K , Gouge n, J A , J ouannaud, J .P., Meseguer, J ., "Principles of OBJ2~, in:

Proceedings of ACM Symposium on Principle of Programm ing Languages, 1985.
(l8) Gallimore, RM., Coleman, D., Stavridou, V., ~tJMIST OBJ: A language for executable

program specifications", The Compu ter Journal , 32 (1989) 413-421.
(l9] Garlan, D., ''The role of formal reusable frameworks", in : M. Moriconi (edito r), Proceedings

of ACM SIGOSOFT Workshop on Formal Methods in Software Deuelopment, Napa, CA,
1990,42-44.

(201 Garland, S.J ., Guttag, J .V., Horning, J .J ., "Debuging Larch shared language
specificatio ns", IEEE Transactions on Software Engineering,16 (1990) 1044-1 057.

(21} Guttag, J .V., Horning, J .J ., Wing, J .M., "The Larch family of specification languages",
IEEE Software, 2 (1985) 24-36.

(22] Hall, A., "Seven myths of form al methods",IEEE Software, 7 (1990) 11·19.
(23] Hayes, I. (edito r), Specification Case Studies, Prentice Hall , Hemel Hempstead. UK, 2nd

edit ion, 1993.
(24] J ones, C.B., Systematic Software Development Using VDM, Prentice HaU, Hemel

Hempstead. UK. 2nd edition, 1990.
(25] J ones, C.B., Shaw, c.r ., Cas~ Studies in Systematic Softwan Deuelopment, Prentice Hall ,

Hemel Hempstead, UK, 2nd edition, 1990.
[26] Kemmerer, R.A., "Integrating fonnal methods into the development precess", IEEE

Software, 7 (1990) 37·50.
[27] Luckham, D.C., von Henke, F.W., ~An overview of Anna, a specification language for Ada~,

IEEE Software, 2 (1985) 9·22.
[28J Meseguer, J ., "A logical theory of concurrent objects", in : N. Meyrowitz (editor),

Proceedings ofOOPS LAJECOOP Conference, Ottawa, Canada, 1990, 101·115.
[29] Meyer, B., "On formalism in specifications", IEEE Software, 2 (1985) 6·26.
[30} Middleburg, C.A., "VVSL: A lan guage for st ructured VDM specifications", Formal Aspects

of Computing, 1 (1989).
[31] Murata, T., Petri Nets: "Properties, analysis and appli cations", Proceeding of the IEEE, 77

(1989) 541-580.
[32] Nakajima, R , Yuasa, T. (editors), The IOTA Programming System, Springer, Berlin, 1983.
[33] The IWSE Method Group, The RAiSE Development Method, Prentice HaU International ,

London, 1994.
(34] Semmens , L.T., France, R.B., Docker, T.W., "Integrated structured analysis and formal

specification technique", The Compu ter Journal, 35 (1992) 600-610.
[35) Sluizer, S., Lee, S., "Applying enti ty -re lationship concepts to executable speciflcatio ns", in:

S. Spaccapietra (editor), Porceedings of the Fifth International Confere~ on Entity­
ReIaJionship Approach , Djjon, France, 183- 194.

[36J Spivey, J .M., The Z Notation : A Reierenee Man ual, Prentice HaU, Hemel Hempstead, UK.
1989.

[37J Scivey, J .M., -Specifying a real-time kernel", IEEE Software, 7 (1990) 21·28.
(38) Stepney, S., Barden, R, Cooper , D. (editor) , Objttt Orientation in Z, Workshops m

Computing, Springer-Verlag, 1992.
(39] Tardo, J.J., "The design, specification, and implementation of OBJ-T; A lnguage for

writing and testing abstract algebraic program apeeiflcatiens", PhD .Thesis, UCLA. Los
Angeles, 1981.

96 V. B. Mi!ic, D. v elesevie I Formal Specificat ions in Software Development

(40) Tcetenel , H., van Katwijk, J ., Plat , N., "Struct ured ana lysis - formal design", In : ~1

Moriconi (edi tor) , Proceedings of ACM SIGSOFT Workshop on Formal Methods In

Software Deuelepment, Napa. CA, 1990 , 118-127 ..
(41) van Hee, K.M., Se mmens, L.J ., v ocrbceve, M., "Z and high level Petri nets", in : S . Prehn

and, W.J. Toetnel (edi tors), VDM '91: Formal Sottuxsre Development .\fethods. Vol. 55 1 of
Lecture Notes in Computer Science, Springer-Verlag, 1991 ,204·21 9.

[42] Weiser, M., 'Source code", Computer , 20 (1987) 66 -73.
[43] Wing, J .M., "A specifier 's introduction to formal methods", Computer, 23 (1990) 8-24.
[44) Wing, J .M., Nixon, M.R., "Extendin g Ina J o with tem poral logic", IEEE Tra nsactions on

Software Engineering, 15 (1989) 181-197.
(45) Wirsig, M., "Algebraic specifications", in : J . van Leeuwen (edito r), Formal ,\foods and

Semantics , volume B of Handbook of Theoretical Compu ter Science , Elsevier, Amsterdam,
1990 , 675-788.

[46) Wood, W.o "Applicatio n of formal methods to system and software specifications", in : ~t.

~foriconi (editor), Proceedings of AC,\f SIGSOFT Workshop on Formal stetbods in
Software [HlJewpm.ent, Napa, CA, 1990, 144-146 .

