
Yugoslav J ournal of Oporations Research
7 (997), Number 1, 65-77

GUARANTEED SINGLE DISK ACCESS
FOR VEUY LARGE DATABASE FILES

•
Dejan SIMIC

Mihuj lo Pupin Institute
PO Box 15, 11000 Belgrade, Yugoslavia

Dusan STARCEVlC
Faculty of Organizational Sciences

Jove lliea 154. 11000 Belgrade, Yugoslavia

Emil J OVANOV
Mihajlo Pupin Instit ute

PO Box 15,11000 Be/grade, Yugo....levis

Abstract : Interact ive applications such as expert systems, CAD/CA.\ t and multimedia
impose an inc reasing demand on a data man agemen t system that efficiently supports
basic operations on very large files and provides data retrieval with a guaranteed single
d isk access. The synergism of a conventional B+ tree and a hash function represents a
possible solution to the problem. We have developed a class of algorithms that allow a
single disk access. The purpose of the paper is to compare and contrast several fast and
simple hash fun ctions suggested in the literature that can be used in such a class of
algorithms.

Keywords: Algorithms, me structures, B+-trees, perfect hashing, physical design.

1. INTRODUCTION

Disk and main memory data access t ime are significan tly different. The
difference is about t hree orders of magnitude . At the same time the most often used
mult imedia applications , expert systems and CAD/CAM applications are interactive by
their very nature . Because of that, we should provide the algorithms and data
struct ures with the smal lest possible number of disk data accesses. The number of new
applications requ iri ng single disk access data retrieval is growing rapidly. It is known
that for large files ran ging from several hundred megabytes to several hundred
gigabytes, different internal organizat ion makes a huge difference in performance (17],
as well.

66 D. Simic, D. Stari::evic, E. J ovanov I A Guaranteed Single Disk Access

One of the most commonly used data access structures in commercial DBMS
applications is the Bt -tree index (I, 5, 7, 18J. This structure allows fast access to a
record with a particular key value and efficient retrieval of a set of records within a
given ran ge of key values. This is possible because of the order preserving access data
st ructu re embedded in Be-t ree algorithms. Moreover, contemporary multi-user
database systems often use it as a concurrent search structure [8). In the B+-tree
st ructure the data are only in the leaves. The main disadvantage of this structure is the
unpredictable number of data accesses to very large database files, which is
unsatisfactory for the aforementioned class of interactive applications. In addition, the
associated index data structure may be too large to be resident in the available main
memory even in the case of moderate size da ta files.

Hashing is one of the most frequently used data access techniques suitable for
guaranteed t ime ret rieval (4, 11, 12]. Although hashing resolves the problem of a single
key val ue retrieval, it is inappropriate for set retrieval operations. In order to guarantee
0(1) access time, perfect hash functions should be applied [101. There are many
algo rithms supporting large stat ic file organ ization [3J. Nevertheless, applications that
use very large files with a time dependent number of records require dynamic hashi ng
schemes [2, 14).

Recently, a new class of algorit hms based on the synergism of a conventional
B+ algorithm and a hash function has been developed to efficiently support basic
operations on very large dynamic database files and to provide data retrieval with
guaranteed 0 (1) disk accesses (13, 16, 19). One of the most important characteristics of
very large dynamic database files is the load facto r that is defined as the number of
records in the file divided by the number of places for records. Since the load factor
influences the data unit storing cost it is desirable to achieve as high a load facto r as
possible. However , a high load factor increases the record insertion cost for dynamic
database files. In practice, the folding function or its variation is often used for dy namic
files [10, 6, 19). On t he other hand. Pearson proposed a fast and simple hash function
specifical ly tailored to variable-length text st rings [IS) . Our goal is to invest igate the
hash function impact on t he load factor as a part of the modified 8+ algorithm 119] .

Section 2 gives an overview of the modified 8 + algorithm that has been
proposed for data retrieval with a guaranteed single disk access for very large dynamic
database files. In Section 3 we present the modified fold ing funct ion and two variants of
Pearson's fun ction that can be used in the modified B+ algo rit hm. Section 4 contains
some important implementation notes. Section 5 presents the load facto r experimental
results of simulated data with uniform key distribu tion . Section 6 discusses t he
characterist ics of the suggested hash functions applied to real data with a non-uni form
key distribution. In section 7 we conclude the paper.

2. THE MODIFIED B+ ALGORITHM

We assume that the input file is a large collection of fixed-size records and that
every record has a unique key. The problem is to provide an algorithm that guarantees
data retrieval with the 0(1) disk access where a limited amount of the main memory is
available. In addition to 0(1) disk access , we are seeking an acceptable performance for

D. Slmit , D. Starc¥vic. E. Jovanov I A Guaranteed Single Disk Access 67

insert and delete operations. In other words, the algori thm should work efficiently not
only with stat ic files bu t. also with dynamic files . It is well known that the B+-t ree is the
most accepted method which can guarantee data retrieval in a single disk access when
the whole index structure resides, in the main memory . For t he sake of simplicity, a B+.
tree of order 2 is used as a primary index as illustrated in Fig. 1.

I 15°1 I
I

I
12°: 7°1 90

I I •

i J5 , IsO;

Figure 1. Primary B't-t ree index structure

An algorithm based on a modified. B+ tree organization. which fulfils the
afo rementioned requirements based on the limited. main memory available, is
presented in [19J. Unlike the conventional B+ -tree, t he leaves in the proposed.
algorithm may vary in size. Each pointer p addresses the contiguous set of m data
buckets in the leaf, that is, in the partition. The parent of the leaf node is a collection of
triplets (k ey. m, p) where m is the number of data buckets and p is a pointer to the
partition (Fig. 2).

Key P
m

main memory\.:.:.
180/9 ... pareru-cf-leoflevel

-------------------- ----- ------------------------ ---- --
disk 0 1 data buckets m-l=8

... 30 -lO 50 60 ... 70 80

F igure 2 . A fragment of a parent -of-leaf an d leaf level of t he modified B+-tree

Here, we will explain the search algorithm (how to dete rmine the data bucket
Within the partition holding the requested record). We make use of the ordinary hash
function . The hash function generates an integer in a range [0, zn-I], which determines
the data bucket containing the record with a given key value k. The input parameters
of the hash function are the key, the number of data buckets in the partit ion and the
key length (Fig. 3). The output value is the data bucket number in the range [0, m-l].

Therefore, to insert a record with a primary key, we determine a partit ion and
then the potential data bucket using the hash fun ction at the parent-or-leaf level. If the

68 D. Slmie, D. Staroovic, E. J ovanov I A Guaranteed Smgle Disk Access

data bucket in the main memory beco mes full . rehashing of the corresponding
partition is necessary. Otherwise, the record will be instantly inserted. After that, we
have to write on the disk the data bucket or the partition in the case of the rehash ing.

PARTITION;

key

number
of data

buckets

key length

buckets

I I 0
k

perfect ... I I I
m

hash
function I I 2

I

•

•

•

I Im - I

Figure 3 . Key hashing into buckets at the level of one partition

3. USING DIFFERENT HASH FUNCTIONS
IN THE MODIFIED B+ ALGORITHM

The modified B+ algorithm can be implemented using di fferent hash functions .
AB the modified B+ algorithm is designed for dynamic database files, the has h function
should be simple. fast , intended for variable length records that achieve as high a load
factor as possible, while maintaining low record inse rtion cost. Many functions were
suggested in the literature, but the foldi ng funct ion has been implemented in the
hardware in some database processors [6, 19). On the other hand, Pearson proposed a
fast and simple hash fu nction specifical ly tailored to variable-length text strings [is }.

In order to n-vestigate the hash fun ction 's impact on the load facto r as a part
of t he modified B+ 'eorithm. we have compared the performan ces of three hash
functions. Tabl e 1 SUI narizea the hash functions investigated in this paper and the
abbreviations we use to ntify them.

D. Simie, D. Startevic. E. Jovanov I A Guaranteed Single Disk Access

Tab le 1. Competing fu nctions

69

ebbrevmtion full name

modified folding
Pearson 's function with the addition of the MOD number of
buckets in t he partition
modification of Pearson's function using dynamic change in
t he size of Pearson's table

The first hash function, MFOLD. is t he modified folding hash fun ction. In
addition to exclusive OR operat ion (XOR). this function uses right and left shi ft ing on
t he bit level and logical OR operation (see Algori thm 3.1), In our implementation a byte
string. partitioned into fragments of 1 byte. is taken as the key value. The first
fragment is XOR·ed with the second. Then t he result is XOR-ed with the third
fragment. etc. Therefore, any key is fo lded into a positive I -byte integer.

Bearing in mind that the original Pearson 's function is designed for a fixed
n umber of buckets in a partition, the other two functions are modifications of Pearson's
function that support the variable number of buckets needed in the modified B+
algorithm. Therefo re, the second hash function. PEARS_MOD. is the original Pearson's
hash function with the addition of t he MOD number of buckets in the partition (see

Algorithm 3.2). Pearson 's hash function is specifically tailored to variable-length
strings. This function takes as input a word W consisting of n characters. Cl • C2• .•.• Cn'
each character being represented by one byte, and returns an index in the range 0-255.
Pearson 's hash function is implemented using an auxiliary table ptabJe of 256 randomly
distributed bytes.

The third hash func tion. DYNB, is a modification of Pearson 's function using
dynamic change in the size of Pearson's table (see Algorithm 3.3).

Algorit hms 3.1. 3.2 an d 3.3 are given in t he C code :

Algorithm 3.1 : MFOLD function

h ~ key[O];
for (i = 1; i < key_length; i+ +) {

h = (h«1l !(h»7);

h ~ h A key[i] ;

I
return h%m;

/* Take t he first key fragment

/. Rotate left one position. rotate right
seven positions and OR operation

,. XOR with the next key fragment

' /

' /
' /

70 D. Simic. D. Startev1C. E. Jovanov I A Guaranteed Single Disk Access

Algorithm 3.2: PEARS_MOD function

h = 0; /* initiali zation *j

i = O',
do {

h ::: pteblejfint) (h" key[i])J; r implementation of Pearson's function *'
i++ ",

I while (key(i] !~ \ 0');
return (int) h%m; ' · the addition oe thl' MOD number of buckets in the partition *'

Algorithm 3.3: OYNS fu nction

h - O',
1' = O ' k ~ O', ,
for {i ::: 0; i < 256; i + +) I

if (m > ptable[i} {
tiki = ptable(i);
k + + ",

I
I
do I

h ~ tl(in~) (h " key(i)) % m];
i+ + ;

I
while (keYli! !~ \ 0');
r eturn (int) h;

r initialization *'
'*dynamic change in the size . ,
r of Pearson's table */

r implementat ion of Pearson's fu nct ion *'

4. IMPLEMENTATION NOTES

We investigated the performance of the three desc r ibed hash fu nct ions under
the const raint of single user applicat ion. Another simplified assumpt ion is that the file
is a collection of arbitrary fixed-size reco rds. All the suggested modifications of the B+
algo rithm were implemented in the C programming language. The modified B+
algorit hm is designed in such a way as to occupy up to 7 KB of operating memory and
support up to 1000 partit ions, but in our tests we used on ly up to 256 partit ions . Also,
we limited the number of data buckets per partit ion up to 256 because we used hash
functions that generate 256 different values which is still enough to work with very
large datafiles .

We can speak about O(1) data disk access only when each partition is placed in
contiguous disk spec . It is much better to work with only one file descriptor, which is
the case whe n all par it ions are part of one file with contiguous disk space. For the sake
of simplicity, in our olementation of the modified B+ algorithm, we used files for
partitions. We used two "" ups of test data to analyze t he performance of al l three des-

D. Sirmc, D. Startevic. E. Jovanov ' A Guaranteed Single Disk Access 71

cribed hash functions in t he basic. incremental mode. The first group of tests worked
with very large database files with simulated keys. The key length was l OB, because in
120] it has been shown that the average key length in current databases is 9.5 bytes.
The second group of tests used an English-Serbian dictionary as the input file and t he
key length was 168.

We compared and contrasted the perfo rmance of the algorithms with respect
to the obtained load facto r and the maximum number of buckets in a partition. The
simulation results are presented in Section 5 and Section 6.

5. SIMULATION RESULTS

Performance evaluation of t he modified B" algorithm was performed using a
SCQ UNIX Syste m V 3.2.v.4.2. operating syste m on a PC 486 0X2/66 computer with 8
MB of main memory. CPU times were neglected. The standard random number
generator random () was used to generate the keys. The in itial value for random ()
was obtained from the system time. Simulation parameters are given in Table 2.

Table 2. Simulation parameter settings

i:NiuilbEi:f:ar~rda:(Nf1 100 200 500 1000,2 000 5 000, 10 000, 100 000, 1 000 000

Efficient use of storage space is represented by load factor a . It is the ratio of
t he number of hashed records and the availab le record places (slots) in the allocated
me. The load factor represents one of the most important hash character istics . Fig. 4
shows the load factor a as a function of the number of records N fo r various bucket
sizes in the incremental mode. The hash function is the MFQLD. The load facto r
oscillates for a small number of records N. The oscillations are due to fragmentation.
For a large number of records (N) 1000), the load facto r becomes stable and close to In
2. For N > 10,000 the load facto r becomes larger than In 2 due to rehashing.

Similar simulat ion results were observed when using PEARS_MOD as the
hash function. As can be seen from Fig. 5, both MFOLD and PEARS_MOD. hash
functions offered better load factors than DYNB.

72 D. Simic, D. Starcevic, E. Jovanov I A Guaranteed Single Disk Access

1000

bucket size

o

- 0- 1 KB

• - 2 KB

- o- 4 KB

• 16 KB

1 10 100

NUMBER OF RECORDS (in thousands)

•100 .--.----------------------,

90

L 80o
A 7'J
o

60
!'
A 50

C 40
T
o 30
R

(';1.) 20

10 ;..-_

04------+--------<------+-----~

0.1

Figure 4 . Load factor as a function of the number of records for various bucket sizes;
the hash function is MFOLD

I 10 100

NUMBER OF RECORDS (in thousands)

- .. - MFOLD

8 PEARS MOD hash function

- .·- DYNB

100

90
L
0 80
A
0 70

\60
!'
A SO
C
T 40
0

30R
I"') 20

10

0
0.1

-- . -- --- -

._- - - -!

1000

Figure 5 . Load factor as a function of the number of records for various hash
functions ; bucket size C = 2KB

D. Simic, D. Starcevie, E. J ovanov I A Guaranteed Single Disk Access 73

Fig. 6 represents the per formance of the MFOLD algorithm as a function of
the number of records. When the number of records is smaller than A, the modified B+
algorithm works almost identically to the standard B+ algorithm. \Vhen the number of
records approaches B, the maximum aesiged number of partitions is reached. We have
to use the hash function again to perform rehas hing. At that point the characteristics of
the standard B+ tree are still dominant. When the number of records becomes larger
than C, the load factor becomes larger than 75%, and rehashing takes over.

L
100

0 90 •

A 80 •• •

0 70 ----. ,
•----.._/ : • •

• •60 • •F •
A SO
C 40 bucket size
T 30 2 KB
0 20
R

(%) 10 :A : 8 : C
0

0.1 I 10 100 1000

NUMBER OF RECORDS (in Ihousands)

Figure 6 . Load. factor as 8 function of the number of records for bucket size 0=2 KB;
the hash function is MFOLD

Bearing in mind that the modified B+ algorithm is intended for very large
databases , it is interesting to compare the effect of using different hash functions for
large files (Fig. 7). It should be noted that MFOLD and PEARS_MOD functions have
almost the same impact on a, whil e the DYNB function offers a lower load factor .
However, as the bucket size increases the load factor increases for the DYNB hash
function. For example, for C ::: 8K the load factor is nearly t he same for aU three has h
functions . Similarly, as the bucket size increases, the maximum number of buckets in
one partiti on for the three given hash functions becomes nearly the same (Fig. 8).

74 O. Simi':. D. Startevit. E. Jovanov I A Guaranteed Single DISk Access

." 86.1 ..
100

L ..
0 ..
A

700
60,
60

A

"C
T 30
0 70
R

10,..
• MFCR.D PEARS_MOD DYNB

Figure 7. Load factor for different hash functions; N = 1 million
generated records, bucket size C = 2K and C = 8K.

DYN9MFOLO

.., r-----~ii1
~ ..
~ "
~ 35

· "o "•w 20m

• 15~

z 10

"< ,

• •.j...,,::::::::'

Figure 8 , Maximum number of buckets in one partit ion for the three given hash func
tions for a generated file of 1 million records; bucket size C = BK and C = 2K

6. REAL DATABASE PERFORMANCE

We tested the performance of the modi fied B"" algorithm implemented by the
three given hash functions in the incremental mode. The input file was an English
Serbian dictionary with 35,638 records. The record size was 16 bytes.

D. Slmic, D. Starcevie, E. J ovanov I A Guaranteed Single Disk Access 75

The dictionary load factor for all three hash fun ctions in the incremental mode
is shown in Fig. 9. As t he fi gure shows, the 68.9% result for the PEARS MOD function
is better than the 67.9% result for the MFOLD function and the 66.6% result for the
DYNB funct ion.

Fig. 10 shows the maximu m required number of buckets in one partition for
simulated hash functions. It can be seen that our modificati on of Pearson 's funct ion,
PEARS_MOD. requ ires the smallest number of buckets, while the MFOLD hash
function requires a slightly larger number of buckets.

100

-~ 80'-•0 60
~

U
4 eo~

c•0 "• C-2K
0

MFOLD PEARS_MOO OYNB

Figure 9 . Dictionary load factor for various hash functions in the incremental
mode; bucket size C = 2K

"
15

10

s

MFOLO OYNB

Figure 10 . Maximum number of buckets in one partition for various hash fun ctions;
bucket size C = 2K

•
When we increase the bucket Size, the characteristics for all three hash

functions become nearly the same.

76 O. Simic. D. Stareevie. E. Jovanov I A Guaranteed Single Disk Access

7. CONCLUSION

A class of algorithms based on the synergism of a conventional B+ algorithm
and a hash function could be the solution for efficient support of stan dard operations
on very large dynamic files, and provide data retrieval with a guaranteed single disk
access . We used the modified BoO algorithm as a representat ive of the mentioned class of
algorithms. Also. in this paper we investigated three fast and simple hash functions
that can be used in the modified B+ algorithm. Our simulation results showed that for
small bucket sizes , MFOL[) an d PEARS_MOD offer superior performance over OYNB.
However, when we increase the bucket size t he cha racter istics for all t hree hash
functions become nearly the same.

REFERENCES

(1) Comer, D., "The ubiquitou s Bctrae", A CM Computing Surveys, 11 (979).
(2J Enbody , R. J ., Du, IL C., "Dynam ic hashing schemes", ACM Computing S urveys , 20

(1988) 85· 113.
13] Fox, E. A , Heath, 1.. S. , Chen , Q. F., Daoud, A xt ., "Pract ical minimal perfect hash

functions for large databases", Communicanons of the ACM, 35 (1992) 95·121.
(.I] Gonner, G. H., Larson , P.-A. "External hashing-it h limited internal storage". Journal of

th~ Associahon for Computing .\fachin~ry, 35 (1988) 161 ·184 .
(5) Held, G , Stonebraker, ~t . , "B-trees re-examined", Commu nications of the AC.\f, 21 (978)

139-1 43.
[61 Inoue, V., Satoh. T., Hayami, H., Takeda, II., Nakamura, T., Fukuoka, II., "RINDA A

relat ional database processor with hardware specialized for searching and sort ing" , IEEE
Micro, December 1991.61-70.

(7) J annink, J.• "Implement ing deletion in B+-rrees", SIG.\fOD RECORD, 24, (1995) 33-38.
(8) Johnson, T ., Shasha , D., "The performance of concu rrent B-tree algorithms", .-IeJ/

Transachons on Database Syetems, 18, (993) 51 ·101.
19) Jovanov, E., Stareevic, D., Aleksic, T., Stojkov. Z. "Hardware implementation of some

DB~IS functions using SPR", in : Twenty-fifih Hauraii International Conference on System
Science~ , Vol. I , Kanui, Hawaii, 1992, 328-337.

(10] Knuth, D,E., The Art of Computer Programming, Vol 3, Sorting and Searching, Addison
Wesley, Reading Massachusets, 1973.

(11] Kron sjo, L., Algorithms: Their Compl~x i ty and Efficil'1lCY, John \Viley & Sons, 1987.
(12) Lewis, G. T., Cook , R C., "Has hing for dynamic and stat ic internal tables", IEEE

Computer , October 1988, 45·56 ,
(131 Lomet , D. B:, "A simple bounded disorder file organ ization w;th good performance", ACM

Transactions 0" Database Systemtf. 13, (1988) 525-55 1.
(lol l Matllliach, G ., "Performance analysis of file orgamzations that use multibucket data leaves

with partial expansions", A G.'\f Tran sactions on Database Systems, 18 (1993) 157-180.
(1 5J Pearson, P. K., "Fas t hashing of variable-length text st rings", Communications of the

ACM. 33 (990) 677-680.
(161 Ramakrishna, ~1 . V.• Larson, P., "File organization using Composite perfect hashing", ACM

Tran sactions on Databa.W! Systems, 14 (198 9) 23 1·263.
(17) Salzberg. B., File Structures: An Aanal)"tlcal Approocb , Prentice Hall, Englewood

Cliffs, New Jersey, 1988 .
(18] Sartori, C., Scalas, M. R, "Part ial indexing for nonuniform data distnbutions in

relational Dm.IS.!!~, IEEE Transactions on Knowledge and Data Engineering, 6 (1994)
,120-429 .

D. Simic, D. Starcevit, E. Jovanov I A Guaranteed Single Disk Access 77

(l9] Stareevic, D., Jovanov, K , Large File Operations Support Using Orner Preserving Perfect
Hashing Functions, Yugoslat! Journal ofOperations Research, 3 (1993) 171·188.

(20J Yu. P ,S., Chen, ~tS. , Heiss, II.U., Lee, 5., "On workload characterization of relational
database envi ronments". IEEE Trans. on Software Engineering 18(992) 347-355.

