Yugoslav Journal of Operations Research
7 (1997), Number 1, 65-77

GUARANTEED SINGLE DISK ACCESS
FOR VERY LARGE DATABASE FILES

Dejan SIMIC
Mihajlo Pupin Institute
P.O. Box 15, 11000 Belgrade, Yugvslavia

Dugan STARCEVIC

Faculty of Organizational Sciences
Jove [lica 154, 11000 Belgrade, Yugoslavia

Emil JOVANOV
Mihajlo Pupin Institute
P.O. Box 15, 11000 Belgrade, Yugoslavia

Abstract: Interactive applications such as expert systems, CAD/CAM and multimedia
impose an increasing demand on a data management system that efficiently supports
basic operations on very large files and provides data retrieval with a guaranteed single
disk access. The synergism of a conventional B* tree and a hash function represents a
possible solution to the problem. We have developed a class of algorithms that allow a
single disk access. The purpose of the paper is to compare and contrast several fast and
simple hash functions suggested in the literature that can be used in such a class of

algorithms.

Keywords: Algorithms, file structures, B*-trees, perfect hashing, physical design.

1. INTRODUCTION

Disk and main memory data access time are significantly different. The
difference is about three orders of magnitude. At the same time the most often used
multimedia applications, expert systems and CAD/CAM applications are interactive by
their very nature. Because of that, we should provide the algorithms and data
structures with the smallest possible number of disk data accesses. The number of new
applications requiring single disk access data retrieval is growing rapidly. It is known
that for large files ranging from several hundred megabytes to several hundred
gigabytes, different internal organization makes a huge difference in performance [17],
as well.

66 D. Simié, D, Staréevié, E, Jovanov / A Guaranteed Single Disk Access

One of the most commonly used data access structures in commercial DBMS
applications is the B*-tree index [1, 5, 7, 18]. This structure allows fast access to a
record with a particular key value and efficient retrieval of a set of records within a
given range of key values. This is possible because of the order preserving access data
structure embedded in B*-tree algorithms. Moreover, contemporary multi-user
database systems often use it as a concurrent search structure [8]. In the B™-tree
structure the data are only in the leaves. The main disadvantage of this structure is the
unpredictable number of data accesses to very large database files, which is
unsatisfactory for the aforementioned class of interactive applications. In addition, the
associated index data structure may be too large to be resident in the available main
memory even in the case of moderate size data files.

Hashing is one of the most frequently used data access techniques suitable for
guaranteed time retrieval [4, 11, 12]. Although hashing resolves the problem of a single
key value retrieval, it is inappropriate for set retrieval operations. In order to guarantee
O(1) access time, perfect hash functions should be applied [10]. There are many
algorithms supporting large static file organization [3]. Nevertheless, applications that
use very large files with a time dependent number of records require dynamic hashing
schemes [2, 14].

Recently, a new class of algorithms based on the synergism of a conventional
B* algorithm and a hash function has been developed to efficiently support basic
operations on very large dynamic database files and to provide data retrieval with
guaranteed O(1) disk accesses [13, 16, 19]. One of the most important characteristics of
very large dynamic database files is the load factor that is defined as the number of
records in the file divided by the number of places for records. Since the load factor
influences the data unit storing cost it is desirable to achieve as high a load factor as
possible. However, a high load factor increases the record insertion cost for dynamic
database files. In practice, the folding function or its variation is often used for dynamic
files [10, 6, 19]. On the other hand, Pearson proposed a fast and simple hash function
specifically tailored to variable-length text strings [15]. Our goal is to investigate the
hash function impact on the load factor as a part of the modified B* algorithm [19].

Section 2 gives an overview of the modified B* algorithm that has been
proposed for data retrieval with a guaranteed single disk access for very large dynamic
database files. In Section 3 we present the modified folding function and two variants of
Pearson’s function that can be used in the modified B* algorithm. Section 4 contains
some important implementation notes. Section 5 presents the load factor experimental
results of simulated data with uniform key distribution. Section 6 discusses the
characteristics of the suggested hash functions applied to real data with a non-uniform
key distribution. In section 7 we conclude the paper.

2. THE MODIFIED B* ALGORITHM

We assume that the input file is a large collection of fixed-size records and that
every record has a unique key. The problem is to provide an algorithm that guarantees
data retrieval with the O(1) disk access where a limited amount of the main memory is
available. In addition to O(1) disk access, we are seeking an acceptable performance for

D. Simi¢, D. Staréevié, E. Jovanov / A Guaranteed Single Disk Access 67

insert and delete operations. In other words, the algorithm should work efficiently not
only with static files but also with dynamic files. It is well known that the B*-tree is the
most accepted method which can guarantee data retrieval in a single disk access when
the whole index structure resides, in the main memory. For the sake of simplicity, a B*-
tree of order 2 is used as a primary index as illustrated in Fig. 1.

'50

pR———

20 70| [90]

100 |15, |[20] |40 50, ' 70 |80 90 |95

! I | | !] |

Figuare 1. Primary B*-tree index structure

An algorithm based on a modified B* tree organization, which fulfils the
aforementioned requirements based on the limited main memory available, is
presented in [19]. Unlike the conventional B* -tree, the leaves in the proposed
algorithm may vary in size. Each pointer p addresses the contiguous set of m data
buckets in the leaf, that is, in the partition. The parent of the leaf node is a collection of
triplets (key, m, p) where m is the number of data buckets and p is a pointer to the
partition (Fig. 2).

Ky p
m
\.l[s0/9] || .\ poen-ofieatievei
main memory
disk 0 1 data buckets ~ m-1=8
30| [40] |[s0 60 . [70| |[s0

Figure 2. A fragment of a parent-of-leaf and leaf level of the modified B*t-tree

Here, we will explain the search algorithm (how to determine the data bucket
within the partition holding the requested record). We make use of the ordinary hash
function. The hash function generates an integer in a range [0, m-1], which determines
the data bucket containing the record with a given key value k. The input parameters
of the hash function are the key, the number of data buckets in the partition and the
key length (Fig. 3). The output value is the data bucket number in the range [0, m-1].

Therefore, to insert a record with a primary key, we determire a partition and
then the potential data bucket using the hash function at the parent-of-leaf level. If the

68 D. Simié, D. Staréevié, E. Jovanov / A Guaranteed Single Disk Access

data bucket in the main memory becomes full, rehashing of the corresponding
partition is necessary. Otherwise, the record will be instantly inserted. After that, we
have to write on the disk the data bucket or the partition in the case of the rehashing.

PARTITION i
buckets
¢ 0
key N
1
perfect
number m = /
of data . [
buckets e 2
{
key length "
m - 1

Figure 3. Key hashing into buckets at the level of one partition

3. USING DIFFERENT HASH FUNCTIONS
IN THE MODIFIED B* ALGORITHM

The modified B* algorithm ean be implemented using different hash functions.
As the modified B* algorithm is designed for dynamic database files, the hash function
should be simple, fast, intended for variable length records that achieve as high a load
factor as possible, while maintaining low record insertion cost. Many functions were
suggested in the literature, but the folding function has been implemented in the
hardware in some database processors [6, 19]. On the other hand, Pearson proposed a

fast and simple hash function specifically tailored to variable-length text strings [15].

In order to 1vvestigate the hash function’s impact on the load factor as a part
of the modified B* ‘'worithm, we have compared the performances of three hash
functions. Table 1 suy narizes the hash functions investigated in this paper and the
abbreviations we use tc ntify them.

D. Simi¢, D. Staréevi¢, E. Jovanov / A Guaranteed Single Disk Access 69

Table 1. Competing functions

full name > : G W
~ modified folding

- Pearson’s function with the addition of the MOD number of
- buckets in the partition .

- modification of Pearson’s function using dynamic change in
. _the size of Pearson’s table

.......................

The first hash function, MFOLD, is the modified folding hash function. In
addition to exclusive OR operation (XOR), this function uses right and left shifting on
the bit level and logical OR operation (see Algorithm 3.1). In our implementation a byte
string, partitioned into fragments of 1 byte, is taken as the key value. The first
fragment is XOR-ed with the second. Then the result is XOR-ed with the third
fragment, ete. Therefore, any key is folded into a positive 1-byte integer.

Bearing in mind that the original Pearson’s function is designed for a fixed
number of buckets in a partition, the other two functions are modifications of Pearson’s
function that support the variable number of buckets needed in the modified B*
algorithm. Therefore, the second hash function, PEARS MOD, is the original Pearson’s
hash function with the addition of the MOD number of buckets in the partition (see
Algorithm 3.2). Pearson’s hash function is specifically tailored to variable-length
strings. This function takes as input a word W consisting of n characters, C,, C,, ..., C,,
each character being represented by one byte, and returns an index in the range 0-255.
Pearson's hash function is implemented using an auxiliary table ptable of 256 randomly
distributed bytes.

The third hash function, DYNB, is a modification of Pearson’s function using
dynamic change in the size of Pearson’s table (see Algorithm 3.3).

Algorithms 3.1, 3.2 and 3.3 are given in the C code:

Algorithm 3.1: MFOLD function

h = key[0]; /* Take the first key fragment */
for (i = 1;i < key_length;i++) {
h= (h<<l)|(h>>17); /* Rotate left one position, rotate right
seven positions and OR operation oy
h = h" keyli]; /* XOR with the next key fragment i |

)
return h%m:

l

70 D. Simié, D. Staréevié, E. Jovanov / A Guaranteed Single Disk Access

Algorithm 3.2: PEARS_MOD function

h =0 /* initialization */
=0

in

do

-

h = ptable[(int) (h ~ key[i])]; /* implementation of Pearson’s function -/
i++;

} while (key[i] != "\0");

return (int) h%m; [*the addition of the MOD number of buckets in the partition */

Algorithm 3.3: DYNB function

h=0; /* initialization */
i=0k=0;
for (i=0;i <256;i++) {
if (m > ptable[i] { /* dynamic change in the size */
t[k] = ptableli]; /* of Pearson's table */
k++;
]
i
do {
h = t[(int) (h ~ key[i]) % m]; /* implementation of Pearson’s function */
i+

)
while (key[i] != "\0");
return (int) h;

|

4. IMPLEMENTATION NOTES

We investigated the performance of the three described hash functions under
the constraint of single user application. Another simplified assumption is that the file
is a collection of arbitrary fixed-size records. All the suggested modifications of the B*
algorithm were implemented in the C programming language. The modified B*
algorithm is designed in such a way as to occupy up to 7 KB of operating memory and
support up to 1000 partitions, but in our tests we used only up to 256 partitions. Also,
we limited the number of data buckets per partition up to 256 because we used hash
functions that generate 256 different values which is still enough to work with very
large datafiles,

We can speak about O(1) data disk access only when each partition is placed in
contiguous disk spac . It is much better to work with only one file descriptor, which is
the case when all par:\tions are part of one file with contiguous disk space. For the sake
of simplicity, in our . »lementation of the modified B* algorithm, we used files for
partitions. We used tw. 7 oups of test data to analyze the performance of all three des-

D. Simi¢, D. Staréevié, E. Jovanov / A Guaranteed Single Disk Access 71

cribed hash functions in the basic, incremental mode. The first group of tests worked
with very large database files with simuldted keys. The key length was 10B, because in
[20] it has been shown that the average key length in current databases is 9.5 bytes.
The second group of tests used an English-Serbian dictionary as the input file and the
key length was 16B.

We compared and contrasted the performance of the algorithms with respect
to the obtained load factor and the maximum number of buckets in a partition. The
simulation results are presented in Section 5 and Section 6.

5. SIMULATION RESULTS

Performance evaluation of the modified B* algorithm was performed using a
SCO UNIX System V 3.2.v.4.2. operating system on a PC 486 DX2/66 computer with 8
MB of main memory. CPU times were neglected. The standard random number
generator random () was used to generate the keys. The initial value for random ()
was obtained from the system time. Simulation parameters are given in Table 2.

Table 2. Simulation parameter settings

10 B
10 B
uniform
1 KB, 2KB, 4 KB, 16 KB

rds (N} 100, 200, 500, 1 000, 2 000, 5 000, 10 000, 100 000, 1 000 000

Efficient use of storage space is represented by load factor a. It is the ratio of
the number of hashed records and the available record places (slots) in the allocated
file. The load factor represents one of the most important hash characteristics. Fig. 4
shows the load factor a as a function of the number of records N for various bucket
sizes in the incremental mode. The hash function is the MFOLD. The load factor
oscillates for a small number of records N. The oscillations are due to fragmentation.
For a large number of records (N > 1000), the load factor becomes stable and close to In
2. For N > 10,000 the load factor becomes larger than In 2 due to rehashing,

Similar simulation results were observed when using PEARS MOD as the
hash function. As can be seen from Fig. 5, both MFOLD and PEARS MOD hash
functions offered better load factors than DYNB.

72 D. Simié, D. Staréevié, E. Jovanov / A Guaranteed Single Disk Access

100

L

0

A

D

F

A

C -0 -2KB

T bucket size
0 —a—4 KB

R —x— |6 KB
(%) 20 -

| 10 100 1000

NUMBER OF RECORDS (in thousands)

Figure 4. Load factor as a function of the number of records for various bucket sizes;
the hash function is MFOLD

_—

L
O
A
D
I."l
A
C
T 40 -
R 30 —&—PEARS MOD| hash function
% 1
) 20 — % DYNB
10 -
0 } ; :
0.1 | 10 100 1000

NUMBER OF RECORDS (in thousands)

Figure 5. Load factor as a function of the number of records for various hash
functions; bucket size C = 2KB

D. Simié, D. Staréevi¢, E. Jovanov / A Guaranteed Single Disk Access 73

Fig. 6 represents the performance of the MFOLD algorithm as a function of
the number of records. When the number of records is smaller than A, the modified B*
algorithm works almost identically to the standard B* algorithm. When the number of
reccrds approaches B, the maximum assiged number of partitions is reached. We have
to use the hash function again to perform rehashing. At that point the characteristics of
the standard B* tree are still dominant. When the number of records becomes larger
than C, the load factor becomes larger than 75%, and rehashing takes over.

o e R e = = 5.0 v o i w1 a1 R R W o =
90 -
80 -
70 4
60 -
50 ‘ : . '

40 - : + bucket size

30 + .' : : : 2 KB

20 - : : :

10 -

RWoOo=maOpm OpPpOCH

—
S

0.1 | 10 100 1000
NUMBER OF RECORDS (in thousands)

Figure 6. Load factor as a function of the number of records for bucket size C=2 KB;
the hash function is MFOLD

Bearing in mind that the modified B* algorithm is intended for very large
databases, it is interesting to compare the effect of using different hash functions for
large files (Fig. 7). It should be noted that MFOLD and PEARS MOD functions have
almost the same impact on a, while the DYNB function offers a lower load factor.
However, as the bucket size increases the load factor increases for the DYNB hash
function. For example, for € = 8K the load factor is nearly the same for all three hash
functions. Similarly, as the bucket size increases, the maximum number of buckets in
one partition for the three given hash functions becomes nearly the same (Fig. 8).

74 D. Simié, D. Staréevié, E. Jovanov / A Guaranteed Single Disk Access

87.3 86.8 84

100
90 4
80 J
70.
60 .
50 .
40 .
304
204

"mO=0>»m OP»OC

0 " C=8K
MFOLD PEARS_MOD DYNB C=2K

Figure 7. Load factor for different hash functions; N = 1 million
generated records, bucket size C'= 2K and C' = 8K.

MAX NUMBER OF BUCKETS

Figure 8. Maximum number of buckets in one partition for the three given hash func-
tions for a generated file of 1 million records; bucket size = 8K and ' = 2K

6. REAL DATABASE PERFORMANCE

We tested the performance of the modified B* algorithm implemented by the
three given hash functions in the incremental mode. The input file was an English-
Serbian dictionary with 35,638 records. The record size was 16 bytes.

D. Simi¢, D. Staréevi¢, E. Jovanov / A Guaranteed Single Disk Access 75

The dictionary load factor for all three hash functions in the incremental mode
is shown in Fig. 9. As the figure shows, the 68.9% result for the PEARS MOD function
is better than the 67.9% result for the MFOLD function and the 66.6% result for the
DYNB function.

' Fig. 10 shows the maximum required number of buckets in one partition for
simulated hash functions. It can be seen that our modification of Pearson’s function,

PEARS_MOD, requires the smallest number of buckets, while the MFOLD hash
function requires a slightly larger number of buckets.

1un-/

20.

;3’ 80
&
O 0,
0
= 40/
2
(s
|

PEARS_MOD

Figure 9. Dictionary load factor for various hash functions in the incremental
mode; bucket size C' = 2K

]
(=]
1

-
wn
L

MAX NUMBER OF
BUCKETS
°

MFOLD ' PEARS_MOD . DYNB

Figure 10, Maximum number of buckets in one partition for various hash functions;
bucket size C = 2K

When we increase the bucket size, the characteristics for all three hash
functions become nearly the same.

76

D. Simié, D. Staréevi¢, E. Jovanov / A Guaranteed Single Disk Access

7. CONCLUSION

A class of algorithms based on the synergism of a conventional B* algorithm

and a hash function could be the solution for efficient support of standard operations
on very large dynamic files, and provide data retrieval with a guaranteed single disk
access. We used the modified B* algorithm as a representative of the mentioned class of
algorithms. Also, in this paper we investigated three fast and simple hash functions
that can be used in the modified B* algorithm. Our simulation results showed that for
small bucket sizes, MFOLD and PEARS MOD offer superior performance over DYNB.
However, when we increase the bucket size the characteristics for all three hash
functions become nearly the same.

(1]
(2]

(3]
[4]
(5]
[6]
(7]
(8]

(9]

(10]

(11]
(12]

[13)
[14]
(15]
[16]
(17]

(18]

REFERENCES

Comer, D., "The ubiquitous B-tree", ACM Computing Surveys, 11 (1979).

Enbody, R. J., Du, H. C., "Dynamic hashing schemes", ACM Compufing Surveys, 20
(1988) 85-113.

Fox, E. A, Heath, L. S,, Chen, Q. F., Daoud, A. M., "Practical minimal perfect hash
functions for large databases” , Communieations of the ACM, 35 (1992) 95-121.

Gonnet, G. H., Larson, P.-A. "External hashing with limited internal storage”, Journal of
the Association for Computing Machinery, 35 (1988) 161-184.

Held, G., Stonebraker, M., "B-trees re-examined", Communications of the ACM, 21 (1978)
139-143.

Inoue, U, Satoh. T., Hayami, H., Takeda, H,, Nakamura, T., Fukuoka, H., "RINDA A
relational database processor with hardware specialized for searching and sorting", IEEE
Micro, December 1991, 61-70.

Jannink, J., "Implementing deletion in B*-trees”, SIGMOD RECORD, 24, (1995) 33-38.
Johnson, T., Shasha, D., "The performance of concurrent B-tree algorithms", ACM
Transactions on Database Systems, 18, (1993) 51-101.

Jovanov, E., Staréevié, D., Aleksi¢, T., Stojkov, Z. "Hardware implementation of some
DBMS functions using SPR", in: Twenty-fifth Hawaii International Conference on System
Sciences, Vol. 1, Kanai, Hawaii, 1992, 328-337.

Knuth, D.E., The Art of Computer Programming, Vol 3, Sorting and Searching, Addison
Wesley, Reading Massachusets, 1973,

Kronsjo, L., Algorithms: Their Complexity and Efficiency, John Wiley & Sons, 1987.

Lewis, G. T, Cook, R. C., "Hashing for dynamic and static internal tables", [EEE
Computer, October 1988, 45-56.

Lomet, D. B, "A simple bounded disorder file organization with good performance”, ACM
Transactions on Database Systems, 13, (1988) 525-551.

Matsliach, G., "Performance analysis of file organizations that use multibucket data leaves
with partial expansions”, ACM Transactions on Database Systems, 18 (1993) 157-180.
Pearson, P. K., "Fast hashing of variable-length text strings', Communications of the
ACM, 33 (1990) 677-680.

Ramakrishna, M. V., Larson, P., "File organization using Composite perfect hashing”, ACM
Transactions on Database Systems, 14 (1989) 231-263.

Salzberg, B., File Structures: An Aanalytical Approach, Prentice Hall, Englewood
Cliffs, New Jersey, 1988.

Sartori, C., Scalas, M. R, "Partial indexing for nonuniform data distributions in
relational DBMSs", [EEE Transactions on Knowledge and Data Engineering, 6 (1994)
420-429,

D. Simi¢, D, Staréevi¢, E. Jovanov / A Guaranteed Single Disk Access 7

[19] Staréevié, D., Jovanov, E., Large File Operations Support Using Order Preserving Perfect
Hashing Functions, Yugoslav Journal of Operations Research, 3 (1993) 171-188.

[20] Yu, P8, Chen, MS., Heiss, HU., Lee, S., "On workload characterization of relational
database environments”, IEEE Trans. on Software Engineering 18 (1992) 347-355.

