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Abstract: This paper considers the continuous linearization method of the fourth
order for solving the convex programming problem Euclidean space. The sufficient
conditions for convergence are established.
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1. INTRODUCTION

Consider the following minimization problem

Ju)—inf. uelU={zelU;:g,(u)<0, 1=1...m}, (1)

where U is a closed, convex subset of real Euclidean space E", functions J(U), g;(u)
are defined, continucusly differentiable and convex on E*. The scalar product of two
elements u.v € E* will be denoted by: <u,v>; |ul=<u,u >Y2 is the norm of an element

ue B
Suppose that

J,=inf J(u)y>—=o, U,={uecU:J(u)=J, 0. (2)

uel’

In order to solve the problem (1), when m=0 (i.e. U=U ), the continuous
projection-gradient method of the fourth order

[34{f]uiu{t}+ Ba{t)u'ft}+ ﬂg{t]u'{.tH w(t)+u(t)= Py [e(t)—a(2)] (u(t)], £20,
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w(0)=u,, u'(0)=u;, u'(0)=u,, u (0)=u;g,

has been proposed and investigated in [2]. When the structure of set U is too
complicated for the projection operation, it is more convenient, instead of projecting
on U, to project on its linear approximation U(u)={zeU;:g;(u)+

+<g;(u),z-u><0,i=1,..,m}. This linearization idea is treated in this work.

2. THE METHOD

In order to solve problem (1) we will use the continuous linearization method
described by the following differential equation of the fourth order:

By ()™ + By (6™ + By(t)u” +u'+u=

= Py e - a®)'(w)], £20,

(3)

w(0)=uy, u'(0)=uy, u'(0)=u,, u (0)=ug, (4)

where
Uu)={zeUy:g;(u)+<g;(u),z-u><0,i=1,...,m}; (5)

Py (uey (2) denotes the projection of point z on the set U(u(?)); u; € E*, i=0, 1, 2, 3 are
given initial points; a(t),p,(t), i=23,4 are the parameters of the method (3) - (5);

u e u(t), u'(t)= - Ll t20, i=1234

1

We can remark that when m=0 the method (3)-(5) turns into the projection-
gradient method (see [2]). If U, is a polyhedral set, and U,= E* or

U0=£:={uel£":uiaﬂ. i=1,.,n}, projection problem (3) is a standard quadratic
programming problem. For p,(¢)=p5(¢f)=0, the method (3)-(5) becomes the
continuous linearization method investigated in [1].

Suppose that the Slater condition is satisfie , 1.e.

Huc EUo.. gi(uc){ﬁ. £=1,...,m. (6)

It is obvious that U(u(Z)) is a nonempty, closed, convex set at any fixed
moment ¢ 20, and the projection operation in (3) is correct. From the definition of the
projection (see [3]), equation (3) can be replaced by the following minimization
problem:

3 llz—[u(t)-a(e) (u(t)] |P—inf, zeU(u(t)), ¢

for every £ 2> 0. Under the given assumptions the Lagrangean functions for problems (1)
and (7) have the saddle points (z,,1"), (B4 (¢)x u" (£) +B3(t)u" () +B, ()’ () +u'(£) +u(t),
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Wt) eUyxAy, where Ag={LeE":A;20, i=1..m}. Then according [3], p. 237,
Lemma 2, they satisfy:

2;20,..,1,. 20, u, eU,, 8)
' < -
<d'(u,)+ 2Ngi(w,), v-u,>20, vel,, €)
=1
r:gi(w,)=0, i=1..m. (10)
v1(£)20,...,v,. (£)20, £20, (11)

<Bo ()" +Bg(t)e” + Byt +u’ +au ' (u)+

2V (D8 w), w-By (e + Byt +By(t)" (12)

=1

+u'+u)>20, wel,, t20.

v;(t) [g; ()< g} (u), By (™ + By ()" +
+|32(t)“'+“'+“:"]=ﬂ. t20, i=1,..,m, (13)

2 (uH < gi(w), B, (t)u" +Bg(t)u” + By () ><0,
120, 1=1...m, (14)

3. THE CONDITIONS FOR CONVERGENCE

Here we will establish the sufficient conditions for the convergence of the
method (3)-(5).

Theorem. Suppose that

1) U, is a convex closed set in Euclidean space E" ; the function J(u), g;(x)are convex
and differentiable on E" ; the gradients J'(u), g;(u) satisfy the Lipschitz condition

max {||J'(u)-J'()|; max|g;(x)-g;@}sL |lu-vl, (15)
1<ism

for all z, veE"; conditions (2) and (6) are satisfied.

2) parameters a(t), B;(¢),i=2,3,4 are such that
aft) € Cl04w), O<ag<a(t)sa,, t20;
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Bo(t)eC o+ 2) Bi)eC+x). BytyeCfo.+);
Bi(£)<0, PJ(£)20, i=234, ¢20;

()0, i=34: By (£)20, t20;
hm P, (6)=P,, >0, 1=234:

]'—.-,.;_1

Ba.(1-ayLg)+2 By, Pys >0, Boy—3B3s — Py Bys >0,
2
BZ.-: BS:ﬂ -3 B-h: = [52:- isam > 0.

m
where LB=L{1+2ZJ.:-] and L is defined in (15). Then for every initial points
1=1

Ug. Uy Us, Uy € E", there is a point u, € U, such that

4
Hm’{ZE' um{f} [l+|| u(t)—u H}: 0,

| um{s} “2+f(sJ” u(s)—-u,, rz}dS{ +a0,

E

where f(s)=p5(s)- Bg - Bi”(s}, foralls>0.

P r o o f. As we konw [3], for any convex differentiable function g(z) on E”,
the following is true

gy < g'(v), w-v><gw), vwekE", (16)

From (5) and (16), it follows U cU(u(t)cU,, ¢° . Setting v= B4{t}ui”+}33{:}u'+
+Po(t)” +w'=u in (9), w=u, in (12), and mul..plying the obtained inequalities,
respectively, by —(a(¢)) and (-1), and summing them up we have

<P 4(t)ui" + Pty +Py(t)u" +u'+

+2vi() g (w), By(tyu" +Pa(t)u” + Pyt +

1=1

m .
U vu—-u, > <alt) < Zl: g (u,), |34{tju“' +Pa(u” + (17)

i=]

Byt ' vu—u, > +a(t) <J'w)-J'(w,),u, -

By’ + Py + Po(W+u' +u) >, £20, u, U,
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Further, we will prove that

m ;
<2vi(t)gi () Pyt +Pg” + Byt +

=1

(18)

+u' +u-u)> t20, u,eU,.

From (11), (13), (16) and u, € U, c U, it follows that
O MO<Ew, Bt Byl By b uu, > =

=:.ﬁ{¢)'_[ <g(u), .B‘(tjfujﬁ"+’B§(t);¢'+ﬂz(t)u’+u,‘:.- +g.(u) ]_
| (o] <g.u -u>+g @ ]2y gw) =

—uo| g |20, 120, i=1.m.

Ll - *
1

From here, it is obvious that (18) is true. The first term on the right-hand side
owing way

LS By epyton™e (19)
s

nw #ﬂé‘ﬂr;]‘ﬂ'ﬂ Fctie

|
3

- Sl
a

h_lial-ll-i:;-: j ey

i § | Blcrd I|1! EENTAY S #
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l:-gl.(ﬁ‘(:)ui” + Byt + Byt +u' +u=1 [ gi(ﬂ4(f)ui" +
By ()" + By (O)u” +u' +u) - g (u)-< g} (u), By (e +

+Bg ()" +Py(t)u” +u'> J 2] g (< glu), B‘(”uiu 2
+Bg (O™ + Byt +u'> Jei, 5| By (O™ +By(t”+
Byt +u’ |°, i=1,..m, £20.

Relation (20) and the last inequality imply (19). Finally, we can estimate the second
term on the right-hand side of (17) using the inequality (see [3], p. 175, Theorem 16)

<J'(u)=J'(v), u—w:ﬂél u-w "2' u.u,wr—:E". (22)
Taking into account estimations (18), (19) and (22), from (17) we get
<Py’ +By(t)u”+ Byt +u, By(t)u™ +Py(t)u”+
+]32(t)u'+u'+n-u, >Sa(t)-%[4;-+ Zl:} || [14(1)11"" +
i=1

+Ba(t)u” + Bo(t)u” +u' Hz Sa(t) Ly [ Bf(t)" u' ﬂz +

I2+|I u "2 ], t20, u,eU,

+B§(£)’| u" uz - Bg(t)" u'
where Ly = [{1+2 E: 2:} . The obtained inequality can be written in the form:
i=1 .
[1-a 1, J{gio] o [ +8300] «” Fepzo] o [+
) w P 128, 0){ Ba(e) <t " > +By(t) < u" > +
+<u’u'> }+233(‘){ Bo(t) <u”u">+<u”u'> }+ (23)

+2B,(8) <u’,u' > +B, () < um,u-u_ >+B5(8) <uu-u, >+

+Po(t) <u’u-u,>+<u’,u-u,><0, t20, u, eU,.

Inequality (23) has the same form as (8) in [2]. Thus, the relations

lim | u(t)-u, |° <b,CoE.u.), Eci, u,eU,, (24)

=
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:ﬁﬂ uO) P <bCyen), E2F, u, U, i=1234 (25)
T Sl ) |2 2

2| u(s) |"+£(s)] uls)-u, [ dssm, u, U, (26)
0 Li=l

CoEte,) = B4 ®B3 ) &"®) | + 2B, @) { By(®) <u”®),u"(®) > +

+<u"@OUE> } [ By@B®-Bs® - (B@8,@) ]| v'® [+

+[ 285(8) - B4 (B - 2B, (®) J<u’'®)u'®) > +[ By(&) - 5By (®) +

+B, (B) - B3 () +BL(B®) ][| u'(E) ||2 + By () <u”(B),u(®)-u, >+ ]
+[ Bs®-B4(® 1<’ @u® -, > +[ B© - By(®+ ;@ Jx

x <u'@.u@-u, > +1[1-g,@+B3®-8;® ]| v®-u, [,

for £2¢, u, € U,, which are consequences of (23), can be proved in the same way as
(16), (18)-(21), (25) in [2]. Here the moment ¢ is large enough, b, = const.

Now we will show that

Vie{l..m} supv(t)sC <+ (28)
t20

Setting w = u, in (12), where u, is taken from (6), we get
< By (0" + Bg (D)™ + By ()" +1' + a(t) (), w, —(By () +
By(t)u™ +Py(t)u” +u' +u>2 Z\ei{t)-c g:(u), Bi{t)u"" +

i=1
+Ba (" +Py(t)u" +u' +u-u, >, t20.
From Condition 2) of the theorem, and (24), 25), it is obvious that the left-

hand side of the last inequality is bounded. Using (6), (11), (13) and (16), it can be
shown that

Cy 2 2v,(t)<gi(w), Bg(t)u™ +Bg(t)u”+Py(tu +u'+u-u, >=

=1

=Yy g <), Byt + Byt + Byt +u'> |-

=1
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*Z”,(“[ gilupr<g(u), u,—u> ]2- Zv,-{ﬂg,-luc)=
i=1 =1

m
= E'ﬁ"t{t]! g:{u':} |20

=]

Thus
m
0< Zt‘lffiﬂ CI[ min ] g{{uc} | Tl‘

=1 1zism

This proves (28). From relation (26) the following can be derived

tim {] @ [+] w”is) J+] wo J+] wior | J=o.

K —b 0

Let { 8 }; [0.+a:) be a sequence such that

tim {| u*(8) [+] u") |+] w9 [+] w1 || }=

R=rm

= tlim {| "w{*"‘,; ) [+ u"(s;) I+l wis,) |+1 :.t'lib‘d‘,-]I | }=0.

J'--i:ﬂ

From (24) and (28) it i1s obvious that trajectory u(f) and Lagrangean
multipliers v;(¢), i=1...m, are bounded. Since «({) is also bounded, there exist

u,€E", @, >0, v,20 t=1,.m and the subsequence {s;} < {s, } such that

lim ﬂ u(sy)-u, ||.-.0.

*—QJ’;

tim | u''(s,) |=0. i=1234, (29)

| -1

lim a(s, )=a_>0, lim vl[sk}-v: 20, $=L..am.

| — k—s»x
Setting ¢=g, in (12)-(14), when & —» « we have

m
a, <J'(u )+ 2vgiu,) w-u,>20, weU,,

=1

v:g;[u:n.}=ol gltu.ﬂ}g 0, l:=1“_”m_

According to [3], p. 237, Lemma 2, the obtained inequalities give u_eU,.
From (27), where u, =u_, E=s;. k2 k; (k,issuch that Sk, 2 t), and (29), we get
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lim Cy(s,,u_)=0.

k—x

The first statement of the theorem follows from here and (24), (25). Putting
u, = u, in (26) we get the second statement of the theorem.

4. CONCLUSION

As peinted out in [2], the importance of higher order projection-gradient
methods stems from their higher order of convergence in comparison with first order
methods of that type and from the fact that continuous methods give a large choice of
numerical integration methods to solve the corresponding differential equations. When
the structure of the feasible set U is too complicated it is convenient, instead of
projecting the gradient on U to project it on the appropriate linear approximation of U.
This paper shows that under suitable assumptions the method based on the
linearization idea has the same convergence properties as the continuous projection-
gradient method of the fourth order proposed in [2].
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