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Abstract: This paper presents algorithms for the computer generation of random
sampling values of a given random variable X (when its cummulative distribution
fun ction over its probability density function is known ) which can be used in reliability.
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1. INTRODUCTION

In order to estimate the reliability of any system it is necessary to know the life-time
distribution of its components.

A univariate probability distribution (pdf) can be a life-time distribution (i.e. can be
used in reliability) if its cummulative distr ibution function (cdf) F (x ) satisfies the
condition F(04)=O.

In reliability theory an important role is played by the failu re rate re t) = f (t) J RU ).
where fit ) is pdf and R ( t ) =1- F {t ) =P ( X c: t ) is the reliability function .

The problem cons idered here is to const ruct an algorithm to generate a random
sampling value when its pdfis known.

It is also posible to generate the failure rate r(t) when the cummulative failure rate (cfr)

defined by H (x )=1r ttsdt is given .
o

The algorithms have the property when they are cal led successively n times they
produce a sam ple X 1,X2, ... , X n over X (i.e. X ; is be independent and identically
distributed as Xl ,

2. SIMULATION OF A UNIVARIATE WEIBULL DISTRIBUTION

The Weibull distribution is one of the most important distributions in reliability.
The standard Weibull (v) distrihution with parameter v has pdf given by
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{ (X) =v x ,,- lexp ( - r " ), x o Il, v > O

A fast and accu rate algori t hm to gene rate a standard Weibull (v).v> 1 variable is based
on the ratio of uniforms [1).

O. Input v, v> 1.
1. Calculate e e I v -c l Jr v, b = {v+l) /v

ea =0 0 / 2 exp ( - b 12), va = bb/2 exp t - b 12)

2. Gen erate U a uniform (O,l) random variable and calculate U· = U2U ,

Gen erate Va uniform (0,1) random variable and calculate V· = v2V ,

3. Calculate R = V· nr .
If InU· + R" ! 2 - (v - l )/21 n R >O go to2.

4. X=R (The generated value ).

The failure rate is of the form

and the cu mmulative failure rate

The simplest method to gene rate T is the inverse method:

1. Input v
2. Generate U a uniform (O,l) random variable.
3. Calcu late T = exptln U 1vj.

The three-parameter Weibull (a , A, v) distribution has the pdf

g (y) =v /«y - u ) /),.)" - l exp«y - u) !A ), U e R; A,V> O; y z c

and its simulation is done as

Y = a + AX

where X is a standard Weibull (v).

In this case, the failure rate is

A particular case of the Weibull (u , A, v) distribution is the Rayleigh (0) distribution
which is Weibull (0 , 0 , 2).
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4. SIMULATION OF A UNIVARIATE GAMMA DISTRIBUTION

The standard Gamm (\') dist ribution with parameter v has the pdf given by

{ () 1 "- 1 (x ;::::; f( \, ) X exp - x l , x > O, v > O.

In order to generate a Gamma random variable with parameter \' (O< \,< 1 and v> 1) an
algorit hm based on t he reject ion met hod (2) was considered .

The case O<v<1

O. In put \' .
1. Calcu late a=(2\' · 1)2

u2=aof2 exp(a/2 )

vI;::::; r l (1- r l )o eXP(-(1 - r l)z /2 )

va "" r2 (1 - rz t exp(-O -r:j >/2 )

where "i- r 2 are the roots less than one of the equation 2r3 - 4 r z - 2( v - l )r + 2 ;::::; 0

2 . Generate U a uniform (0 ,1) random variable and calc ulate U · ;::::; uzU .

Generate Va uniform <0,1> random variable and calculate

V · ;::::;VI +(vZ-vl )U ,

3. Calculate R . W ' - V ' )/U'
If In U· - a In R + RZ / 2 > 0 go to 2.

4 . X =R2 (The generated value)

The case v< 1

O. Input v .

1. Calculate b=(v -1)/2

U2= (2b )b exp(·b )

VI "" r l (1 - r l )b exp [ ( rl - 1}f 2)

va ;::::; r2 (1 - r2)b exp«r2 - 1) / 2 )

where "r-"a are the roots of the equation r2 + vr - 2 "" O.

2 . Generate U a uniform (0 ,1) random variable and calculate U· = U2U ,

Generate Va uniform (0 ,1) random variable and calculate

V· ;::::; VI + (~ -VJ. ) V .

3. Calculate R . W ' - V ' ) IU'

If In U· - blnR +R / 2 > 0 go to 2.
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4. X=R (t he generated value).

The three parameter Gamma (0, I.• vj distribution has the pdf

{ (y;u , ' . ,V) =)." /r(V )(y -u ),,-lexp(-I. ( y -a »); y, ' ., v >O , a e R, y z u .
•

If X is a Gamma (0,1, v) standard random variable , then the Gamma (a , I., v) random
variable Y ca n be expressed as Y= u+XI). , therefore t he problem is reduced to
generati ng X.

The cdr F (x ; u , I., v) may be written as F (x ; a, t.,v) = 1{( y; (1 , )., vsdy
o

•
The failure rate is given by ( (t ;u , l. ,v) d he cummulati ' ·1r ( t) = an t e cummu alive tal u re rate

I -F(t ;a, J., \' )

H (x ) = 1r(t)dt

o

The algorit hm for generating X having H distribution is of the form :

1. Input pa rameters
2. Take X=H '(x).

In conclusion. the generation of random variables used in the reliability theory is a
difficult problem which is always open to new results.
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