
Yugoslav J ournal of Operation s Research
6 (1996). Num ber 2, 277-284

SOME NOTES
ON THE FORMAL DEFINITION OF STREAMS

DUSan MALBASKI, Dragan [VETIG

Faculty of Technical Sciences,
Trir D. Obrndovics. Nov; Sad. Yugoslavia

Abst ract : The paper considers t he language constructs that give a real meaning to the
st ructures makes applied methodology itself to be easy to understand and the program
becomes close to the way of thinking about the problem on hand. The concept of
streams is emphasized as a means for reaching the high quality of programs. Also, there
are given an informal and formal definitions of streams . Formal definition of the
stream consists of sixteen axioms based on the formulas of algorithmic logic and
abstract functions . The meaning an d the purpose of these axioms is that every
implementation that satisfies them is a stream.

Keywords: Streams, program qu ality, formal specificatio n, algorithmic logic.

1. INTRODUCTION

One of the main goals of software engi nee ring is the development of high
quality programs: programs that are readable and easy to understand, modify and
maintain . Program quality depends mainly on the methodology applied, and
consequent ly on how well the language constructs coverthe structu res of the
me thodology. The existence of such const ructs that give a real shape to t he st ructures
makes the methodology itself easy to understand and the program becomes close to the
way of thinking about the problem at hand. During the historical development of
programming languages many such constructs have been introduced, and Ilows
(sequences, collections) belong to an important class of t hem. There are several
languages that use flows, the most interesting being the following:

278 D.Me.lblclki, D. lveue I Some Notes on the Formal Definition of Streams

• CLU (6) which was introduced as an aid to the met hodology that
decomposes a problem to recogn izab le abst ractions. This language
incorporates data abst ractions, procedural abst ractions and con t rol
abstractions. CLU control abstraction de fi nes a method for seque ncing
arbitrary actions enabling the user to define different classes of con t rol
abstractions. For instance, CLU FOR expression defines an iterat ion
over the collection (flow) of objects of any type whereby the collection of
the next object is made on t he basis ofa user defined iterator. It provides
the manner of decom position to the se lection of t he next object (itera tor)
and to the part that executes the ope rat ion on the object selected.

• AIphard [II) provides the user with broad con trol of abst ract type
implementation in order to support known methodologies and to enable
precise specification of program behaviour, all in order to formally verify
its implementation . Two iterative const ructs are present, FOR
const ructs for iteration over the whole flow and NEXT for retrieval . Both
const ructs have rigorous definitions of control abst ract ions (especially
the algo rit hms for se lect ing the ne xt eleme nt and termination) thus
enabling formal verification .

• Lucid (2) is a non-procedural lan guage developed for formal proof of
program correctness. A Lucid program may be viewed as a collection of
commands that describe t he algorit hm throu gh assignments and cycles,
but at the same time a Lucid program can be interpreted as a set of
purely mat he mat ical statements abo ut the results and effects of the
program. A Lucid cycle is reali zed as an iteration over a seque nce of
values by unary ope rat ions of access to the first , current and next
eleme nt (first A, A and next A) and by the binary operation of ext ract ing
the element from t he seque nce (as soon as).

All these languages have a common property: the sequences of values play an
important role in the process of reaching the goal Ie.g. obeying the methodology rules
with readability, understandability and possibility of formal verification). However,
every implementation of the sequence requires specific mechanisms of cont rol
(selection . access and extraction) thus limiting the usc of these and similar languages
which resulted in the ir still being unconventional.

2. THE CONCEPT OF STREAMS

As 8 consequence these const ructs (sequences , flows, collections) evoluted in to
the ne w concept of STREAM which, together with ap propriate con trol mechanisms,
appears to be a powerful means to implement conventional programming languages.

Unformal ly a st ream is a sequence of values with the same type, e.g. it can be
viewed as a FIFO (first - in - first - out) queue in which the elementary load ope rat ion
pu ts eleme nts on its end, and the elementary unload operation takes an eleme nt from

< Xl . x2. · ··. eos >

(I)

279D.MnlbaAki, D. lvetic I Some Notes on the Formal Definit ion or St reams

next (X) : = q

then the load operation is denoted as

If stream X den otes a seque nce of values

< XO. Xl ,··· . eoS >

Some binary operations are also defined on streams: if X and Y are streams of
type (1) and if their elements are numbers then . for example. the sum of X and Y is

Relational operators (e.g. = <.~. >.~) are difuned similarly.

EXCEPTION Y (v) = > (. routine for processing ")

x + Y =< xo+ Yo. Xl + Yl, .. .veos >

EXCEPTION X (eos) = > (. routine for processing empty st ream X ·)

which changes the st ream into

q : = next (A)

and q has the value Xo. This operation is clearly destructive.

where v(q) is the value of element q . The special element eos is used to de note the end
of the stream and is automat ically put on its end. The unload operation of stream X is
denoted as

the front. The number of elements need not be known in advance, and the evaluation of
the element value may be postponed until it becomes necessary.

so after applying it to st ream (1) it becomes

Also. reaching an element with some special value v in the stream Y is denoted

where summation is done wherever possible and the end of the new st ream is
cont rolled by the special EXCEPTION mechanism. The other arithmetic operat ions are
defined in an analogous manner.

The operations mentioned are executed (under by control 00 the special
control mechanism for streams. Reaching the end of either stream X or stream Y or
trying to take a value from an empty st ream represents an irregular situation to which
the control mechanism reacts by generating an EXCEPTION. Such exception
interrupts the operation and transfers control to the except ion handler that handles the
situation . The handler for the end of stream X is denoted by

280 D.~talbaSki. D. Ivetic I Some Notes on the Formal Defi nition ofSt rearns

After the except ion handler finishess normal processing continues. The
exception mechanism enables the use of st reams in programs that arc decomposed into
networks of process because it provides their communica tion and synchro nizat ion. As
an illustration, consider a progr am R which is decomposed into two processes A and V
whi ch communicate t hrough st ream X. Process A forms st ream X which is at t he same
time an input to process V. Then. in process V an exception handler is defined for
handling the empty state X. as

EXCEPTION Xteos) = > (. wait for A to prepare 8 da tum *)

which provides the synchro nization. In the case of time-crit ical operations it is possible
to incorporate a time clause into the handler.

Among ot her t hings, st reams have shown to be a good replacement for
program loops . The loops are mostly used to execute act ion for one, so me or all
occu re nces of an abs tract object. They are the most common control mechanisms in
programming alhough they make programs less readable and u nd erstandable (often
leading to error) and. above all. the programmer is not always able to represent a real
object by a loop without antici pat ing its im plementation .

To illustrate this. consider the problem of su mming the positive e lements of
the set of integres S. (11), In the majority of modern programming languages the
program sequences would look like this :

A) sum +- 0;
for i +- I s tep I until 8 .si ze d o if 8 [t] > 0 then sum _ sum S lil

B> p e--B;
sum +- 0;
while p <> nil do if p.value > 0 then (sum _ su m + p.value; p _ p.next):

C) if the positive elements of S belong to [dg .. ggl it could be written

su m _ 0;

for i _ dg to gg d o if i > 0 then sum _ sum + i :

None of these sequences is satisfacto ry . Firstly, a ll of them suggest sequential
sum mation that is essent ial ly not the same as abs tract computat ion. Secondly,
sequence (AI assumes vector implementation and sequence (8) list implementation.
Sequence (C) does not sugges t either of the two, but can be highly inefficient for
cardi nality t hat is less then gg - dg + 1. In sequence (8) the selecti on of t he next
element is not separated from the action over the object, which can be a sou rce of error
(not including p _ p.next leads to an infinite loop), It would be mu ch better if we
simply write

su m +- 0 ;
for i e 8 d o if i > 0 t hen sum _ sum + i:

enable

(2)

28 11l.l\tlllbaSki, D. Iveuc I Some Notes on the Formal Definition or Streams

without anticipating the implementation of the set S.

sum to- 0; ,
for S such that S > 0 do sum (-- sum + S;
e xcep tio n Stees) = > exit .

The concept of stream is used in Pascal-like conventional lan guage in order to

1. increasing readability and understandability
2. reali sing the program as a set of modules which communicate t hrough

streams
3. reali sing concurrent programs, synchronized through st reams.

where i s.)1t S m and P (x } It) ::: T for each k e {l •.. . •n } and P (xp) ;; .l for every
p e {i, In} 1\ P oct) k .

The qualified st ream X while P (x) for X defined in (2) is defined as

a qualified stream X such that P (x) would he the stream

1) FOR X such that P(x) DO operation or
2) FOR X while P(x) DO operation

where P (XIt) ::: T for each k e{ i •. . .• j } and P (xJ..,) ::: .l. Qualified streams are used to

organize STREAM-FOR expressions in the following way:

The programmi ng loop that solves t he problem can be realized 88 an ite ration
over the st ream of integers. For such purposes we use two kinds of so-called quantified
streams. X such that P (x) and X w h ile p es) where P(x) is a predicate. For st ream X
defined as

St reams have also proven to be a very appropriate means to spec ify programs
as well as to au tomatize of all phases of their lifetime 14], [5]. In order to provide an all­
around mathem atical environment for such a use we need a purely fo rmal definition of
the stream as a mathemat ical object.

wh ich guarantees execution of the ope ration speci fied for every element for qualified
st reams . Thus. the sequence which solves the problem of summing the positive
elements of the set of integers S. where S is represented by stream S. an d using
STREAM-FOR expression, has the form

282 D.MalbaAki, D. lvetic I Some Notes on the Formal Definition of Streams

3. FORMAL DEFINITION OF THE STREAM

T here exist many methods for fonnal specification of a programming object .
For instance, it could be specified through a set of abstract fu nctions (see [8]) or may be
defined in terms of set-t heoretical approach (such as a priority queue in [1] and {IO» .
The first approach has a disadvantage tha t does not defi ne a state of the object in an
explicite way. whereas t he second approach ssuffe r form t he problems of essent ial
properties of a set, e.g. unorederness. We t ry to avoid those problems by introducing a
kind of mixed approac h, where a st ream is defined through its <abs tract) states and
operations over those states are given either in terms of conventional methematical
notation or by using the formulas of a lgorit hmic logic. The general form of the algorith­
mic-logic formula is

P ..., (AI Q (3)

where P and Q are predicates and A is an action (operation) . The meaning of such
formula is "starting from the state for whi ch predicate P is true, after applying
operation A, the object must and in a state which the predicate Q is t rue" . Specifically,

T..., (AI Q

means that whatever the starting state was, after applying A for t he resulting state
mud hold Q = T . Also,

P ..., (AI .L

means tha t in the state P the operation A is not applicable <thus avoiding t he so called
"universal error (state)" used in 181, {7)).

The formal definition of the stream must above all obey the fact that it is a
i"IFO queue, and second it must introduce the two most important qualifiers : such_t hat
and while.

We start with t he so me kind of signat ure- like st ructures whi ch consists of a set
of abstract states S, a set of elements D, a set B = (T,.11 and a set of operation names
which we defi ne together with their do mains and co-domains:

EM PTY, S B
IN: S . D_S
JUT, S ..., S
belongs: S .. D _ B
accessible: S • D • D -. B
such_that: S • pm) _ S
while: S)(P(D) _ S

where P(D) is a set of predicates defined over-the set of elements D.

D.MalbaAki, D. Ivetie I Some Notes on the Fonnal Definition of Streams 283

The first three of them actually define the stream to have a FIFO st ructu re ,
and the others are connected with qualifiers such_that and while. Note, also, t hat
instead of having an universal element eos (and "universal" means that it could be of
any type) we introd uce a state "empty" (theoretically could be even more than one such
state) for which the value of the fun ction EMPTY is T. Also, it is obvious that all
possible states can be reached from the statets) in which EMPTY is true. Thus, the first
axioms are

(AI) (38 E S) EMPTY (s) ~ T
(A2) Every state can be reached from the state s with EMPTY(s) = T by the use of

operation IN.

The next six axioms represent the FIFO structure of the stream. Note that , accordi ng
to the nature of expressions (3) we will not explicity write t he state as an argument of a
function, but for other kinds of expressions we will do so. Also, according to the
notation from [3] the seg:uence of operations A1 •...,An in an expression of the type (3) is
de noted by

Also the expression

means that the operation A is applied 0 or more t imes in order to make Q = T,

(A3) EMPTY IIN(a); OUT I EMPTY
(A4) ~ EMPTY (s) => OUT (!N(a, S)) = IN(a, OUT(s))
(A5) EMPTY [IN(a) 1(FRONT ~ a)
(AG) (FRONT = a) [IN(b) 1(FRONT ~ a)
(A7J EMPTY [OUT IL
(AS) EMPTY I FRONT 1.... .L

"
Finally, the following set of axioms provides the use of qualifiers such_that and

while:

(A 9)

(AlO)

belongs (a) [< OUT> I <FRONT ~ a)
accessible (a, b) [< OUT> I (FRONT ~ a) I < OUT > J (FRONT = b)

The axiom A9 means that in the ordinary 'interpretat ion the element a is somewhere in
the queue and AlO that the element a is nearer to the front of the queue than element b
(or that they are equal),

If P E P(D), e.g. P is a predicate than the following exioma complete the set

(A ll)

(A I 2)
(A I 3)

p ea) 1\ belongs (a) -+ [such_that (P)] belongs (a)
..... P ta) -+ I such_that (P) J belongs (a)
accessible (a, b) -+ [such_that (P) 1belongs (a) 1\ belongs (b) ~ accessible (a, b)

284

fA t 4)
fA t 5)
(A l B)

O.Malbaliki, D. Ivcnc I Some Notes on the Formal Definition of Streams

(3a) (-, pea) 1\ accessible (a. b)) -+ I while (P) I .., belongs (b)
accessible (a. b) -+ (while (P) I (be longs (a) 1\ belongs (b)~ accessible (a, b)
PCb) 1\ belongs (b) 1\ .., (3a) (-, PCa) 1\ accessible (a. b» -+

(while (P) J ~ belongs (b)

4. CONCLUSIONS

The se t of axioms Al ·A16 (provided that Al and A2 are purely theoret ical) are
used to define a stream in such manner to give some insight into it st ruct ure. The
meaning and the purpose of these axioms is that every implementation that satisfies
them is a st ream. It is also interesting to st ress that when const ructing the axioms we

did not mention the type of the clements of set 0 that opens an important possibility to
interprete them as ope ration thus leading to some new possibilities of analyzing
streams as automata which will be a topic of future research .

REFERENCES

(I) Agafonov, V.N.. Program Specification . Nauka, Novosibirsk, 1987 (in Russ ian).
(2) Aschrcft, E. A.. and Wedge, W.W., "Lucid, a nonprocedural language with iteration",

Comm. ofthf' ACM. 20 (1977) 5 19-526.
(31 Gries. D.. The Science of Programming, Springer Verlag, Ne..... York-Heidelberg

Berlin . 1981.
(4) Jvenc. D., and Malba!ki, D" "Using streams in program specification based on

temporal logic", Second Balkan Conference on Opt'rational Research , Thessaloniki,
Greece , 1993.

15) lveue, l) . "An approach to the formal speci fication as a base for program
development", M.Sc. thesis, Faculty of Techn ical Sciences, Nevi Sad, 1994.

[6) Liskcv, B., Snyder, A" Atkingan , R.. and Schaffer. C., "Abst ract mechan isms in CLU~,

Comm . of the AeM, 20 (1977) 564-576.
[7) Lu, X.M., and Dillon , 'I'.S., "An algebraic theory of object-or iented systems", IEEE

Trans . on Knoledge and Data Eng ., 6 (3) (1994).
(8) J oseph Martin, Data Types and Structures, Pren tice-Hall , 1986,
19] Nakata. I.. and Sessa, M., "Programmingith streams in Pascal-like language", IEEE

Trans . on Softuare Eng., 17, (19911 1-9.
UO] Selwicki, A., Algorithmic Theories of Dato Structures, Lecture Notes Computer Sci.,

1982.
Ill) Sha...... M., WuIf, WA., end London. R.L.• "Abst ract ion and verification in alphard:

defining and specifying iteration and gene rators", Comm. of the ACM. 20 (1977) 553­
564_

