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RANDOM PHENOMENA
AND SOME SYSTEMS GENERATING WORDS
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Abstract: The process of the generation of words by a generative system is considered
from a stochastic point of view involving Markov chains. Because the sequences of
intermediate words (called derivations) bu which the words are generated are finite, it
results that finite Markov chain: will be connected to the process. In this paper a very
general generative system from those constituing the Chomsky hierarchy is considered,
frequently called a phrase-structure grammar. In Section 1 the basic definitions and
notations relating to this type of generative system and some notions relating to
Markov chains are given, according to [3] and [4]. Then, the random variable giving the
number of derivations by which a eord can be generated is defined and its characteristic
are determined according to [9]. Finally a new procedure to generate words is
introduced and the property of invariance of the transition matrix is established: also a
problem of the "reflecting barriers” type is discussed.
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1. INTRODUCTION

In order for our discussion to be as general as possible we consider generative
systems free of any restrictions. The model of such systems is offered by the most
general class of formal grammars from the so-called Chomsky hierarchy, namely phrase-
structure grammars.

The novelty that we have proposed consists of organizing the process of word
generation by considering the set of all the derivations according to such a system
divided into equivalence classes, each of them containing sequences of intermediate
words (that we shall call derivations) of the same lenght. In this way characterizations
of the process up to an equivalence can be obtained.
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For a good uderstanding of the facts considered below we shall first give the
concept of a phrase-structure grammar.

A finite nonempty set is called an alphabet and will be denoted by £ . A word
over I is a finite sequence u=u,..u; of elements . The integer k = 0 is the length of

the word u and is denoted by |u|. A word of length zero is called an empty word and is
denoted by . If £ is an alphabet let us denote by £* the free semigroup, with identity,
generated by £ (L' is considered in relation to the usual operation of concatenation).

A phrase-structure grammar (psg) is a system G (V, £ P,c) where:

(1) Vis an alphabet called the total alphabet;
(i) £c V is an alphabet the elements of which are called terminal symbols (or letters);

(iii) P is a finite subset of the cartesian product [ V\X)"\{e} |xV". Its elements are

called productions (they are the rules of the grammar);
(iv) o e(V\ X) is said to be the initial symbol. The elements of V \ X are called variables
(or nonterminals).

For y and z in V', it is said that y directly generates 2, and one writes y = z. If
the words ¢, 5, u and v exists such that y = t, u ty ,z = ¢, v t, and (wv) € P

(alternatively written u — v). Then, y is said to generate z, and one writes y =" z, if

either y = z or a sequence (wy,wy,...,w;) of words in V'exists such that y = wy, z = w;

and w; = w,,, for each i (we write —" for the reflexive-transitive closure of =). The

1+l
sequence (wy,wy,...,w;) is called a derivation of length j and will be denoted by D{)).
Obviosly, many derivations of the same length according to G may exist.

The subset of £*, written L(G), such that L(G)={w eX’|c =" w} is called

the phrase-structure language (psl) generated by G. It is known that the family of psl’'s
coincides with the family of recursively enumerable sets studied in mathematical logic.

Because a derivation of length to 1 is just a production, from now on we shall
suppose that the length of a derivation isj = 2.

Now the notion of Markov chain can be defined as follows, We can imagine
that we have a sequence of trials in each of which one and only one of & mutually

exclusive events A;® A ..., A"’ (where the superscript denotes the number of the
trial) can occur. We say that the sequence of trials forms a Markov chain, or more
precisely a simple Markov chain, if "the conditional probability that events A:-ﬂ.

(z=1,2,....,k) will occur in the (s+1)st trial (s=1,2,...) after a known event has occurred in
the sth trial, depends solely on the event that occurred in the sth trial and is not
modified by supplementary information about the events that oceurred in earlier
trials".

For Markov chains, the probability of passing to some state A;(i=1,2,..., k)
at time 1(f; <1 <1,,,) depends only on the state the system is in at time #(f,_; <t<t,)

and does not change if we learn what its states were at earlier times. Homogeneous
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Markov chains are those in which "the conditional probability of the occurrence of an
event A;““ in the (s+/)st trial, provided that in the sth trial the event Af” occurred,

does not depend on the number of the trial". This probability is called the transition
probability and is denoted by p;; ; in this notation the first subscript always denotes the
result of the previous trial, and the second indicates the state into which the system
passes in the subsequent instant of time.

The total probabilistic picture of possible changes that occur during a
transition from one trial to the immediately following one is given by the matrix

Pii Pig 't P
Py Pgp ** DPay
L Pr1 Pr2 " Ppgl

compiled of the transition probabilities. This matrix is called the transition matrix (or
matrix of transition probabilities). Its elements being probabilities, they must be
nonnegative numbers, i.e. for all i and j

UEPQ'S]--

Also, from the fact that in the transition from AE*”J prior to the (s+{)st trial the system
must definitely pass to one and only one of the states A;‘"” after the (s+[)st trial,

there follows the equation

k
Y p;=1, (i=1,2,..,k).
j=1

Thus, the sum of the elements of each row of the transition matrix is equal to
unity. But the first problem in the theory of Markov chains consists of determining the

transition probability from state A}*” in the sth trial to state A}s” " after n trials. This
probability is denoted by p;(n) and is referred to as the transition probability after n
steps. It is given by the formula

k
pij(n)= 3 py(m) pj;(n-m).
h=1

By means of this formula we shall obtain in Section 4 the two-step transition
matrix in some special cases of word generation.

2. THE CONDITION FOR A WORD TO BE GENERATED
INTO A CLASS OF DERIVATIONS

Let us denote by Q the family of all the derivations accordding to G and let D;
be the class of all the derivations of length j. Evidently, Q splits into equivalence clases,
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each of them being represented by one of its arbitrarily chosen elements. Let D(j) be
the representative of class D,.

Now let y, be the number of derivations into the equivalence class in Q of D(x),
x 2 2, by which a word w is generated. Obviously, w can or cannot be generated into the
equivalence class of D(x). Thus, if w is generated into the class D, then, the probability
that it will be generated again into class D, is denoted by y; but should w not be

generated into class D, the probability that it will be generated into the class D, ,, is
denoted by [}. Hence we are in the case when the equivalence classes of the derivations

are connected into a simple Markov chain. We assume that both y and [} are different

from 0 and 1 (these cases are of no particular interest). But each term of a derivation is
the result of the application of an only production on the precedent term. Furthermore,
w can or cannot be generated by a production (that is P can or cannot contain an
element (o, w)), such that the probability that w is or is not generated by a production
i8 unknown to us. (In other words if we agree to denote the class of productions by D,,
it means that there is no equivalence class preceding class D, ). Thus, we denote by p;
the probability that w will be generated into ); and by ¢, = 1~ p, the probability that w

will not be generated into D, .

We now refer to some main problems discussed in [9], First, we propose to
determine the probability that a word w will be generated into class D,. Let p, be the
probability that w will be generated into the class D, and then we have g, =1-p,.

Clearly w can be generated into D, in two mutually exclusive ways: 1° w will be
generated into DD, ; and will be generated again into D,; 2° w was not generated into
D_ , but will be generated into D,.

Theorem 1. The probability that a word be generated into class D, , x > 2, 1s given by
the formula

p.=(p-p 4 p (1)

i
where 8 =y - [} and =i—.
Y- p s

Proof. By the above conditions we have

Pe= P ¥+ Q4B
or
P, =Py (Y=Pr+p.

Denoting now y - [ = we obtainp_ = p__ 8+ (). But p_ can be developed as follows
X=2

p; = p,ﬁ’hl . B{1+ﬁ+62+...+h )
50 that we get

B axat P
pxz[pl-*-—"]ﬁx1+— (2)
1-6 1-8
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From the previous conditions imposed on y and P it results that 5| < 1 so that

B

Py = T3 as x — @, On the other hand x being the length of a derivation it must be

finite such that this situation corresponds to the case when the word cannot be
generated into class D, . But the constant to which p, tends does not depend on
probability p, ; because it plays the role of a limiting probability it is natural to

‘ . ) -
introduce the notation p = IL_E' and g=1-p= % Now the theorem is proved.

3. THE MAIN CHARACTERISTICS OF THE RANDOM VARIABLE

We now return to p, giving the number of derivations into the class D, , x 2 2,
by which a word is generated. It is a random variable that takes the values 1 and 0 with
probabilities p, and g, = 1-p, respectively. Then, the number of derivations in n-1
equivalence classes, by which a word is generated is

i
n= 2, (3)
=2

We propose to determine the expectation and the variance of p. To this end we

shall first recall an intermediary result from [9]. Let us denote by p}” the probability

that a word w will be generated into class D; if it was generated into class D, , 1<j.We
have

Lemma 1. The probability that a word w will be generated into class D, if it
was generated into class D; , 1<j,1 2 2, j>2, is given by the formula

pY =p+qd™ (4)

Now the main result is

Theorem 2. If among the equivalence classes of the derivations according to a
psg, a Markov dependence exists then the expectation and the variance of the random
variable giving the number of derivations by which a word is generated verify the

following relations

1+o
Eu=(n-lp+u, and D, = p(}'[ﬂ‘i—ﬁ-1]+un

where u, and v, are certain quantities that remain bounded as n increases.
Proof. Starting from (3) with p, given by relation (1) we get

i S
En=(n-1)p+ Z[pl—p)ﬁ"'l—{n-lJpHp]-p}% (5)
xr=2 i’
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Further, the variance of p is

n 2 n
Du=E[ X(u,-p) | = XE(w,-p)*+2 TEGw-p)u;-p;. (6
x=2 x=2 i<j, 122

But

‘3 -1 2.2x-2
E(u, - p,) = Dy, = p.q, = [(py - P + pl[1-p, ]=Pa+(py-PXa- PR ~(py-p)8™

and the second term in (6) becomes E(p; - p,)(p;-p;)=Epu;-p;p; where p;u; is
a random variable taking the values 1 and 0. The value 1 is taken with the probability
by P‘{;“ so that we have E(u, -p; Nu;=p;l= g -(py ‘P}E'SI.J-E +(py - PHQ“F}EJ_I .
Thus, the first term in (6) is obtained from the equality

% 2 8(1-8"") S 0=
Y E(u, ~p,) =(n-1)pg+(p,- pXg-p) —~(py - P) 5

xo2 1-0 1-6

and the second from the equality

. g Feicn 7
LEW -p)n,-p)= 2 [pgd" " —(py-p)8" " +(py-pNg-p)3’ ]
1< j.122 1<),122

Now by observing the terms which are bounded as n increases, the theorem follows.

4. THE ALTERNATING GENERATION PROCEDURE
AND THE ASSOCIATED TRANSITION MATRICES

Now we shall introduce a new procedure for generating words. To this end we
consider the special case when a word can be generated into the equivalence class of a
derivation on the following conditions: 1) It can be generated into the class D, , x 2 2, by

more of its elements; 2) If it i1s not generated into the class D, , x > 2, then it is
generated into the preceding and the next class.

We refer to such a way of generating words as being an alternating generation
procedure (ef. |[5]). Four cases arise:

(1) A word will be generated by the derivations from the first class and the last (in brief:
the word is generated by the first class and the last);

(1) It will be generated by the first class but will be not generated by the last;

fii1) It will not be generated by the first class but will be generated by the last;

(iv) It will not be generated by either the first class or the last class.

With some supplemental conditions we have determined the probability that a
word will be generated in n equivalence classes (see [9]).
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Now we propose to determine the transition matrices corresponding to each of
the above cases. We suppose that if word w is not generated by class D, then it will be
generated by class D, ., with probability p and by class D, ; with probability g=1-p. If
w 1s not generated by the first class then, it will certainly be generated by the next,
while if it is not generated by the last class then, it will certainly be generated by the
preceding. Obviously, this procedure for generating a word is a typical Markov chain.

Now let us denote by A; the event when the word is generated by class D,, by
A, when it is generated by class D5 ,... by A, ; when it is generated by class D, .

1°. Let us first consider the case (i) Word w is not generated by class Dy such
that it will be generated by class D, and D, with probabilities g and p respectively; then
it will not be generated by class D; but will be generated by classes D, and Dy with
probabilities g and p respectively, a.s.o. We have:

B g R0 8 = @ 0 0
g 0 .p 0O o 0O G 0
0.0 1 .0 == 0 0 0
(7)
0 0 06 0 - g 0 P
0 0 0 0 - 0 0 1]

There is an even number n of equivalence classes in the considered case.
Because for our conditions of work we must have n = 2, it results that the above matrix

is of the type n-1 (i.e. it has an odd number of rows and columns).

29 In the second case word w is not generated by class D5, as in the first case,
but it is also not generated by the last class such that it will be certainly generated by
the last but one class. The transition matrix is now of the form:

7 (SR P o [ (0 BRI CE T ¢ Tt EAE )

o p 0 -~ 0 0 O

0 1 0 0 @ 0 0
(8)

0 0 B0 0T "0

1 TN Y DI D ¢ s R B

The number of the equivalence casses is an odd integer and the transition
matrix has an even number of rows and columns equal to n-1.

3° In the third case the novelty is that the word is not generated by the first
class D, such that it will be certainly generated by Dj . Also it is generated by the last
class. The transition matrix is the following:
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0 1 0 0 0 0 0 0]
IR e Bl T ¢ 0 0 0
T 1 Y N Bl 0
(9)
6 0 6 0 0 - g 0 p
i@ 0. .0 .0 .0 < 0 .0..1]

Now the number n of the equivalence classes is again an odd integer such that
the transition matrix has an even number of rows and columns equal to n-1.

4°. Finally, in the fourth case the word is not generated by either the first class
D, or the last D, such that it will be certainly generated by classes D and D, ; . The
transition matrix is as follows:

- -

0 - 1.% "0 0 o 0,09
¢ 10 00 «w o o 0
0O ¢ 0 p 0 - 0 0 0
(10)
B 090 00 = 0 W'D
G0 0D D G 0 i)

The number n of the equivalence classes is an even integer, as in the first case,
such that the matrix has an odd number of rows and columns equal to n-1.

We now propose to determine the two-step transition matrix for each of the
above cases, A surprising result that we shall call the property of invariance of the
transition matrix will be obtained. It appears as a specific characteristic of the process
of the generation of words by an alternating generation procedure. This is

Theorem 3. The transition matrix for a word in a random process of
generation by an alternating generation procedure is invariant to a two-step transition.

Proof. 1° In the first case we already know that n-1 is an odd integer. Then
Poiygi1 =1 (1=12,..n/2), p,;=0 (=12..,n-1), yj=12..,(n-2)/2)
Poizi-1=q U=12,...,(n/2)-1), paisiaa=p (=12,..,(n/2)-1)
the other probabilities p;; being all equal to 0 for iz, (1y=1,2,.,(n-1)). On the other
hand, two consecutive rows are different in the following sense: if one of them contains
the integer 1, the other contains p and ¢. The rows containing 1 are those of an odd

rank, while the rows containing p and g are of an even rank.
We now compute the nonzero elements in two consecutive rows of the matrix
(7). Let us consider the rows k and k+1. If £ is an even integer then, by the above

conditions we have p, .., = ¢ and p, ..y = p, the other elements of this row being
equal to 0. For the row of rank k+1 we get py,; 141 = 1, the other elements of this row
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being equal to 0; a similar result is obtained for the row of rank &-1.

Now we can compute the rows of rank £ and k+1 of the two-step transition
matrix. We find successively:

Pi1=-=Prp-2=0 Ppp1=% Pp=0. Pppaa =P Prpio==Pyn1=0
Prii1= = Pe1k =0 Praaraa=1 Prarkez == Prs1n-1=0.

But this means that the obtained matrix is identical to matrix (7). For k being
an odd integer the same result is found.

2°, In the second case, n-1 is an even integer and the transition probabilities
are;

Pai12i1=1 (=12, (n-1)/2), p,2J=0 (1=12,...,(n-1), j=12,..(n-1)/2),
pzl 2'_1 - q. pgl 2*_1_1 - p [l = 1.2...,.{!‘! = 3] "I 2}} Elnd. pﬂ-l "_2 - 1.

the other probabilities p;; being all equal to 0 fori #j (ij = 1,2,...,(n-1)).

As in the previous case the rows containing 1 are those of an odd rank, while
the rows containing p and g are those of an even rank, except the last row which also
contains a 1 (p,.; ,.o = 1). Computing the nonzero elements in two consecutive rows £
and k+1, we get (for an even integer k).

Pri-1=gand pgi.1=p (k=2,4,...,(n-3)), the other elements of this row being 0,
Priaks1 =1 (k=0,2,4, ... (n-3), the other elements of this row being 0.

Now we obtain the rows of rank 4 and &+ 1 of the two-step transition matrix:

Ppi=-=Pri-2=0 Prp1=9 Pp=0 Prro=P. Pppsa=-=Pgn1=0:
Pri11==Prak=0 Praka=L Praks2=-=Pran1=0
but the last row is: p, ;== Pp1,-3=9 Ppin2=L P, 1,1 =0, which is just

(8).
3°. Now n-1 is an even integer as in the preceding case. We obtain:

Pig=1 Poig; =L (i=12....(n-1)/2), p;9; 1 =0(=12..(n-1), j=12..(n-1)/2),
P2ii12i =4, Pais12is2=p (i=1,2,...,(n-3)/2).

the other probabilities p;; being all equalto O for ¢ # j (i,7=1,2,...,(n-1)).

The rows containing a 1 are those of an even rank, while the rows containing p
and g are those of an odd rank, except the first row which contains a 1(p;, = 1).

The rows of rank 2 and k+1 (k& being an even integer) of the two-step
transition matrix are the following:
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Pia == Ppa-1=0: Pop =1 Ppas1 == Prp1=0.
Pra1 == Praak-1=00 Priaa=9 Prara =0 Prias2 =P Praksd == Ppaan-1 =0
but the first rowis: p;, =0, p;, =1, py3=...= py,; =0, which is just matrix (9).

4° In this case n-1 is an odd integer. The transition probabilities are as follows

Pis=0, P 1no=1 Poisi=1 (1=12,. . (n-2)/2)
Pizj1=0 (1=12..(n-1), j=12...n/2), Pyi,15; =G Pais1zi2=P (1=12....(n-4)/2)

the other probabilities p; being all equal toOforz# j (i,7=1,2,...,(n-1)).
If £ is an even integer, the rows of rank &k and k+1 are as follows:

P =1 (k=2,4,...,n-2)), the other elements of this row being equal to 0.
Piak=qandpgyp,0=p (k=2,4,...,(n-4)), the other elements of this row being
0. But this is just matrix (10), and the theorem is proved.

As we have already emphasized, this is a property of invariance which
characterizes the process of the generation of words up to an equivalence. Furthermore,
because the generative systems that we have considered are free of any restrictions,
this property has a sufficient by large character.

5. PROBLEM OF REFLECTING BARRIERS

In this section we shall discuss the fourth case in the alternating generation
procedure in which a word is not generated by either the first class or the last. But now
we consider only the equivalence classes of derivations in which a word is not
generated. In this case the number of the equivalence classes of derivations is an even
integer, say n = 2k. Because n > 2, the number of classes by which a word is not
generated is equal ton / 2.

[f word w is not generated by class D, then, it will be generated by class D, ,,
with probability p and by class D, ; with probability ¢ = 1-p. If w is not generated by
the first class then it will certainly be generated by the next, and if it is not generated
by the last class then, it will certainly be generated by the preceding. Evidently, this
procedure for generating a word is a typical Markov chain.

In our case of study w is not generated by the classes Dy, (k = 1.2, 1/ 2),and
we are interested only in these equivalence classes. Because it is not generated by
either the first class D, or the last D, , it will certainly be generated by D, and D, ,. Let
us denote by A, the event when the word is not generated by class D, , by A, when it is
not generated by class D, ... ,by A, , s = n /2, when it is not generated by class D,. The
transition matrix corresponding to this case is the following:
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[0 1

0
0 ¢
0 0
0 0

0
0

0
0

0
0

0
0

q
0

0
1

p
0

205

We now propose to determine the two-step transition matrix. Using the
formula for the transition probabilities we obtain the following form:

0 p
0 gq+pg 0
2
q 0 2pq
0 0 0
L 0 0 0

0
0

p

o

0
0

0
0
0

0
0

0
0
0

2
q

0

0
0

0

q

0
0
0

ap+p

0

P

This problem is of the type of reflecting barriers known in the theory of
Markov chains. For example, let us consider that a particle located on a straight line
moves along the line via random impacts occuring at times ¢;, £y, t3, ... . The particle can
be at points with integral coordinates a, a+1, ... , b. At points @ and b there are
reflecting barriers. Each impact displaces the particle to the right with probability p
and to the left with probability ¢ = 1 - p so long as the particle is not located at a
barrier. If the particle is at a barrier, any impact will transfer it one unit inside the gap
between the barriers. Thus, our case of the generation of words by an alternating
generation procedure becomes of a special interest. Its practical nature must also be
emphasized and new interesting results may be obtained in the future.
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