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Abstract. The paper presents a simulation model, based on Zeigler’s formalism which
describes the system dynamic behavior; also, using the principles of object-oriented
simulation, model programming is achieved using the advanced concepts of Turbo
Pascal programming.
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1. INTRODUCTION

A system of m machines is considered, operated by n workers, m>n. The
machines run automatically yet, after certain periods of continous operation function
occurs and worker intervention is required. The continous operation period of the
machine and the time required by the worker to repair the machine are random values
of random variables of the given distribution. In this situation two possibilities occur:
there is at least one unoccupied, lazy worker, ready to intervene immediately in order
to repair the respective machine or all workers are busy, in which case the machine is
placed last in the waiting line. The whole waiting period in order to get repaired is
named interference time. The problem of finding an optimum operation mode for the
system arises, i.e. the optimum ratio of the worker’s total time of "laziness" and the
interference time. This problem is called the machine interference problem and it
corresponds to a waiting model of the following form: .//n;(m-n,.)(see [6],[7]). This
problem has not been solved yet analytically in the must general case; the problem
was solved only in the case when all machines have i.i.d. running time and the repair
times are also i.i.d. random variables. "Experience” on this type of data is obtained by
simulation and by changing several input parameters an optimum value is obtained.
Work studies [4] the model Exp(L)/Exp(p)/n:(m-n;FIFO) and the quantities determined
analytically for certain particular cases are compared to those obtained by simulation.
Any simulation model may be considered as a time-related dynamic system, its
components being described by three categories of variables, i.e.:
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input entrance variables , state variables and output variables. The dynamic behaviour
of a model with discrete events is described by the DEVS (Discrete Event System
Specification) object, defined as follows: DEVS = (1,5,0,t,6,6,,%), where: I is the "input"
set , 1.e. the carthesian product of the input variable value ranges ; O is the "output”
set, i.e.the carthesian product of the output variable value ranges; S is the "states" set,
@ 1.e. the carthesian product of the state variables values ranges; £:S—R+_{0] is the
time advance function, its value t(s), seS representing the interval of time after which
the system will switch into state &(s) , where & has the meaning presented further on;
5:S(S is the transition function of the system when shifting from one state to another
in the case of no entrance to into the system, i.e. if the system is in state s at moment 7,
then at moment T+¢(s) it will shift into state &(s) , if in the interval [T,T+¢(s)] no
external event occurs; 8..:@QxI— @, where @ is the set of all type pairs (s,e), seS and
ecR, O<e<t(s), function &,, shows that if a model is in the state s at the moment T' and
input x occurs at moment T'+e, then, after occurrence of the external event, the system
state will be 8,,(s,e,x); L.:S— @ is the output function, showing that if the system is in
state s at moment 7', then A(s) represents the information conveyed by the model at the

output. (see [5]).

Observation 1.1. As the considered model is autonomous, i.e. it has input parameters
(m, n, the type of random variables whose values are continuous operating and
separation time respectively), but it has no input variables, i.e. I=®, the system
transition is described by function 8, function §,, having no signifiance.

2. THE STATE VARIABLES ARE:

(2.1) List_Of_Operating Machines can be the empty set denoted A, or a list of type
(xy,7y)...0xp,,7,), where x; is the machine code, x;€{1,..,m} and t; the time of continous
operation of machine x, from the respective moment on, i=1,...p. When machine x,
starts operation, the continous operation time 1, will be generated as values of the
random variable, using the Monte Carlo method.

(2.2) List_Of _Machines_In_Repair can be the void set, denoted A, or a list of the form:
(Xpa1,01,)1 ) (44,04 &, ) Where x,.; is the machine code, y, is the workers code
who is repairing the machine x, ., x,,;€{1,..,m}, y;€{1, ..., n}, o;is the time required
for the repair, as the value of a random variable, generated by the Monte Carlo
method; it can also be assumed that 0,< o,..<0,

(2.3) List_Of_Machines_Waiting_ For_Repair can be the void set noted A, or a queue

of the form x,,. ..y ..X,. 04, Where x,. ..., 1=1,..,r is the code of the machine waiting for
the repair; assuming that all workers are busy, x,. .. represents the first machine in
the queue, x,, ..o the next one as.0o, and x,, ., the last one.

(2.4) List_Of Workers In_ Laziness an be the empty set noted A, or a queue of form
Yg+1--¥n » Wherey, ., is the code of worker, i=1,..,n-q; ¥,,, is the first one in the queue

as.o and y, is the last one, showing that a damaged machine will be repaired
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by ¥¢+1 and y,., will become the first one queuing; the worker having finished his
repair job will be placed last in the queue.

Obserevation 2.1. If the List Of Operating Machines is A if p=0, the
List_Of_Machines_In_ Repair is A if g=0, the List_Of Machines Waiting For Repair
is A if r=0 then m=p+q+r and n=q +r.

3. OUTPUT VARIABLES

1: 4} Output variables are: Tw is a vector of m components , Tu(1),...,Tulm) , where
Twu (1), represents the total time of effective operation of machinei, i=1,...m.

(3.2) Tr is a vector of m components , Tr(1),....Trim), where Tr(i) , represents the total
repair time of machine ¢, i=1,....m.

(3.3) Ta is a vector of m components , Ta(1),...,Talm), where Tal(i), represents the total
time of machine i waiting for repair , i1=1,...m.

(3.4) Tl is a vector of n components , Ti(1),...,Tl(n), where TI(i), represents the total
time of "laziness" of worker i, 1=1,....,n.

(3.5) Trm is a vector of n components , Trm(1),...,Trm(n), where Trm(t), represents the
total working time of worker i, i=1,....n.

The defined vectors represent the image of function J.

m n

Observation 2.2. We have: 2. Tr(i)=2.Trmli). (3.1)
=1 i=1

Observation 2.3. If we note

TRT = X Tu(i); TST =2 Tr(i);TWT = 2_Ta(i).TTID = X.TI(i)TTBS = X Trm(i);
=1 =1 =1 1=1 i=1

TRT _ __ TTBS ., TWT
EF = sgprorwrirst PM = Tigs.rrip L = TSt (3.2)

then EF is the machine efficiency factor, EM is the worker efficiency factor, and I is
the interference factor (see [4]).

4. DESCRIBING THE MODEL

Describing the model’s behavior implies describing functions t,6,4 of models object
DEVS. We note: LOM the length of the List_Of Operating_Machines (LOM=p) ; LMR
the length of the List Of Machines In_Repair { LMR=q ); LMWR the length of the
queue List Of Machines_Waiting For_ Repair ( LMWR=r) ; LML the length of the
queue List Of Workers_In_Laziness ( LML=n-q)(see Remark 2.1). We can consider 2*
=16 possibilities; it is easily confirmed that 11 of these cases are impossible:

LOM=0 and LMR=0 and LMWR=0 and LML=0;
LOM #0 and LMR=0 and LMWR=0 and LML=0;
LOM=0 and LMR #0 and LMWR=0 and LML=0;
LOM=0 and LMR=0 and LMWR #0 and LML=0;
LOM #0 and LMR=0 and LMWR =20 and LML=0;
LOM=0 and LMR=0 and LMWR=0 and LML #0;
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LOM=0 and LMR #0 and LMWR=0 and LML=0;
LOM=0 and LMR=0 and LMWR #0 and LML=0;
LOM 20 and LMR=0 and LMWR #0 and LML=0;
LOM=0 and LMR #0 and LMWR #0 and LML#0;
LOM #0 and LMR #0 and LMWR 20 and LML=0.

Thus the following 5 cases are left to be for studied:

LOM #0 and LMR #0 and LMWR=0 and LML=0;
LOM=0 and LMR #0 and LMWR 20 and LML=0;
LOM #0 and LMR #0 and LMWR #0 and LML=0
LOM #0 and LMR=0 and LMWR=0 and LML #0;
LOM #0 and LMR #0 and LMWR=0 and LML 0.

Considering the system in state s, we note s = 6(s). Function ¢(s) is expressed
as follows:

#

min(t,.0;), f LMW #0,LMR 0
t(s) =11, , if LMW 2 0, LMR =0 (4.1.)
0 . if LMW = 0,LMR # 0

In expressing function 2, operation := will be used, as in informatics; a:=a+b
meaning that a becomes the old a plus b.

Case 4.1. The system is in state: s=((xy,7) )...(x,,T, )i(Xy4 1,010 )oe(Xpin On Fn) AJA),
where p=m-n, i.e. m-n machines are in operation and n are in repair, all workers are
busy, there are no machines waiting for repair. The image of function 2. changes as
follows: Tu(x; ):= Tulx; y+t(s), i=1,..m-n; Trix, ;)= Trix,, ;) +s), i=1,..n;
Trm(y; ):=Trm(y; )+t(s), i=1,...,n.

In order to express s , two subcases will be studied:

Case 4.1.1. When 1, <o, the following event will be the damaging of machine x; and, as
there are not "lazy” workers, machine x, will be placed last in the queue of machines
waiting for repair, the system will shift into state:

8 —{{:cl 'rl] [xp I 'I'.'pr_l] [.r r.rl ylj [.tpm ]n ,_}Fn] :rpm :A) where:

Il-xz, Xp -

pl" p= Xpslre p+n-l = XpsmrXpin = X5

Tl =TZ“‘HHJ.---I p“l =T, ‘ffﬂi:ﬁi =0 -f’fﬂ'},.,.,ﬂ; = Oy =~ U(5).

Case 4.1.2. When t,>0a,; the following event will be the returning to operating state of
machine x,,,, and as there are no machines waiting for repair, worker y, will shift into
laziness; machine x,,, shifting into the state of operation implies random generation
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of time during continuous operation and its introducing into the list observing the
increasing order of times; the system will shift into state:

s ={(I1,IIL..(IP+], p+11-{xp+2,nl yll...{xpm,nn_l,yn_l);.*\;y,J; let v be the time of
continuous operation of machine x X,.1,and be k so that: 1, —#ls)<1<1, = t(s), then:

xl xl!"'lxk =xk‘xk+l :IP+,1‘xk+2= xk+l,.;;‘xp+1 =xp;xp+2 =xp*2,...,xp+n =IP+H;

rl =N =US)...lp, =1, —US)Ty, =T r,HE T — US),. =r, —ts)

p +1
o =c:2—t(s]....,u;,_| =0, — ts).

Case 4.2. The system is in state: s=(A;(x},0,,5)...(x,,0,,¥,)i%,,,---X,,;4), ie. n

machines are in repair requiring all n workers, the rest of m-n machines waiting for
repair, while there are no "lazy" workers. The image of function A changes as follows:

Trix; ):= Trix; ) +t(s), i=1,...,n; Ta{x,,+,,‘l = Talx,.;)+t(s), i=1,...n;
Trm(y; ):= Trm(y; )+t(s), 1=1,..

The following event will be machine x, shifting into the state of operation,
simultaneously with machine x,,, shifting into repair, wich will be introduced into the
list of machines in repair, being rep&ired by worker y, , who has become available; the

system will shift into state: s = [{xl,tll (xz,n'l,yl HE A Gps V) XonigesXrmsN); be T
the time of continous operation of machine x, and o the repair time of machine x,, .,
and be % sothat o, -t(s) <o<g; - {(s); then:

L] L] L]

xl xl- 2 Xg = xerk+1 = n+1~xk+2 = xk+1- v Xpgl = Inrxm? Xn+2s 3 %m = X
Jr*l =r. cr] 52 — £(8), .“.ﬁk 1 —“.& (s), n'k -4:::1&:5,Hl = Opy1 — USE).....0, =0, —¥38),
J’1=J’2: -J"k 1= Yk J"k-)"l J’;m J"k+1-----J' =¥n-

Case 4.3. The system is in the state:

S={{xl'rlj"'(xp'fp]:[Ip+1*ﬂ'1'y1}‘"{xp+n=ﬁn'yn):xp+n+l m'h] _m-n.—l;

i.e p machines are operating , n are in repair , m-n-p are waiting for repair and there
are no "lazy” workers. The image of function . changes as follows:

Tulx; ):=Tulx; ) +t(s) , 1=1,....p; Trix,.;):= Trix,,; )+i(s) , 1=1,...,n;
Ta(x ;):= Talx;)+t(s) , i=p+n+1,..m; Trm(y;):= Trm(y;)+1(s), i=1,...,n.

In order to express s two cases will be studied:

Case 4.3.1. When 1, <o, the following event will be the damaging of machine x, , which
will be placed last in the queue of machines waiting for repair; as there are no "lazy"
workers available, the system will shift into state:

A~
s = {{x;,ti)...(x'p_l,t;,_li;{x;,,u;,yi)...(.t;,m_l,n'n,y;,};:c;,m...x;";d} where:

”
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II=I2..... P 1=IPlIP=IP*I'.. fxp*n l_xp*ﬂ|xp+n=xp+n+1,---|xm__1=xm|xm=xl;

1:'1-—-124[5} .Tp_l—t *—t{sl.ﬂ,—ul—t[s] O, = 0, — s); yl yl,....y;,=_)r,,.

Case 4.3.2. When t1,>0, the following event will be the shifting into operation of

machine x, ., and simultaneously the shifting into repair of machine x,,, ., which will
ba repmred by worker i the system will shift into  state:

s =0y, 1) (X1 Tpa1)i (%20 01, M) (X 10 Oy Y)i X pyma-- X3 A); let T be the
time of continous operation of repaired machine x,,, generated at random and o the

continuous time nt in repair by machine x,,,., and be % [ so that
spe P
T -Hs)<t< T t(s), and o, -tis)<c <o), -1s); then:

.tl =I],....xk =Ih.xh+1 =IP+I'x*+2 =xk+l-. ‘.xp_+1 =xp;xp+2 =IP+21+¢ N

XL =20 X051 = Xpane s X142 = Xlily oo +xp+n+l = xp+mxp+n+2 xp+n+21 ey Xy = Xy
T =T =8, ..., T =T —H8), Ty = nthﬂ = Tpey — US),. vy T p+l = Ty — Hs)

n'; = 0y -tts}....,r.r}_l =0 -I{sl.rﬁ = u,:r‘m = 01 —:(s]....,:r,, =0, — l(s).

Case 4.4. The system is in the state:s=((x,, 1,)...(x, .7, i A:A; 3...5,), le. all m
machines operate and all n workers are in laziness; the following event will be the
damaging of machine x; and its shifting into repair, being repaired by worker y,. The
image of function A changes as follows:

Tulx;): =Tulx;) + t(s) , 1=1,...,m; Tly;): = TI@,J + K(8), i=1,...,n.
The system will shift into state : s =((I;.T;] ixm Pl SR L {:cm,crl,yl} A A; y2 y:,];
where:

¥

X) = X200y X1 = Xy Xy = X301 =T —U8), .., Ty =T — S N1 = X1s- s Y =901 = 5
o being generate at random.
Case 4.5. The system is in the state:

8= (g, vyl T i x y,00, M) (X O s Yo 5 NS Y et - X )i 1SpSme-n-1; e,

p machines are operating , m-p machines are repaired by m-p workers, there are no
machines are waiting for repair and n-m+p workers are in "laziness". The image of
function A changes as follows:

Tulx; ):= Tulx; ) +t(s), i=1,...p; Trix;):= Trix;)+t(s), i=p+1,...m
Tily ; :=Tlly,; ) +t(s), i=m-p+1,...m; Trm(y; ):=Trm(y; ) +t(s), i=1,,..,m-p.

In order to express s two cases will be studied:
Case 4,5.1.When 1, <o, the following event will be machine x, shifting into repair,

being repaired by worker y,, .., , the first in the queue of "lazy" workers; the system
will shift into state:
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s =((x,1)... (Xp-1,Tp-1)s {xp! o1y Y1) o {xmrﬂ:n—pd! J".:u—p+1}: A .'?".:ﬂ— ptee .}’;1} let o be the
time of repair of machine x, and k so that:o, - t(s) <o <, - #(s); then:

X =Ig..--,Ip_1 = xp,xp =-rp+lv"-v-tp+k =IP*"*|'IF“"*'1 =I],J‘.‘p+k+2 =xp+k+'.’.*'“1rm = Xms
N =02 Ypek = Ypsks Yprkel = Ym-psls Yp+ks2 = Yhslo-oos Ym-p+1 = Ym-p)
T =T = U8,y Tp g =1, —Hs);

o] =0 —,t{s}‘___,n'k =Op — HS],G;HI =0,05,9 = Op,1 “E{SL----Gm-pH :Um-p —~ t(s).

Case 4.5.2. When 1, >0, the following event will be machine x,+1 shifting into

operation, worker y, will be placed last in the queue of "lazy" workers; the system will
shift into state:

5 = {{xl,'rlj...(xmh-rp,,l];[xmz,nl,y]}...[xm.nm_p_l,ym_p_l};a;ym_p...yﬂ}; let T be the
time of continous operation of machine x,., and be k so that 1, —t(s) <t < i,y —18);
then:

L] S Xpyeooy Xp = Xp, X} 1 = IF+1,Ik+2 =xk+1...,xp*1 = IP;IP‘-‘E = Ip*z,...,xm = Zm>

Ty =T = U8)e s T =T —8H8) Thi1 =T Thio = Tiay —US)y iy Ty =T, —US)

cr'l =0y —t(s],...,n;,,_p_l = Oy p — £(8).

N=Y20 s Ym-p-1 = Ym-p:Ym-p = Ym=pisls--1¥n-1 = Yn» ¥n = N1-
Observations:

4.1. An event occuring in a system is equivalent to the transition of the system from
one state into another; this is achieved using the "rule of the minimum time", i.e. an
event will occur after a period of time equal to min {1, 5, } at the respective moment.

4.2. If 1, = 6; arule has to be set up for the determination of the following event; in
the paper it was established that if 1, = oy, then the following event will be the first of
the machines on the operation list shifting into repair.

4.3. The initial state of the system consists of: all machines operate and all workers are
in "laziness" (see case 4) and the vectors representing the image of the output function
are all zero.

5. OBJECT-ORIENTED SIMULATION OF THE MODEL

The object-oriented simulation represents a reflection of OOP (Object-
Oriented Programming ) in the simulation of models with discrete events. It is thus
possible to make use of the advantages offered by OOP in simulation (see [1],[2]). The
object-oriented simulation of a model is in fact its decomposition into several
submodels; the description of their behaviour uses methods grouped according to the
objects corresponding to each submodel and emphasizing the connections between the
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component submodels. A possibile presentation of the digraph model associated to
the considered simulation problem (see [5]), in this case is:

—— MIM
|
| ‘ '
out _
™ In £l
Operating '|Mach1nes out
Machines |* in ~ out |in Repair
x
out n
out out
Workers in Machines
Laziness Waiting for
Repair

Figure 1: A possibile presentation of the digraph model

The correspondence between the submodels and the objects described by them is:
"Operating Machines” correspond to M_Op, "Machines in Repair” to M_Rep, "Workers
in Laziness" to W_Lazy and "Machines Waiting for Repair” to M_Waiting_Rep. The
links betwen submodels are achieved through a seventh object called the coordinator.
Object M_Op manages the dynamically alotted list of operating machines; each node of
the list comprises the machine code, the time of continous operation and a pointer to
the following element, as presented in section 2. The program frame describing the
data and methods of this object is :

Type M_Op=0Object

First:...; Tu:array|l..dim_max] of real;

Procedure Init(m:word); Procedure Ins Ord(Nod:...);

Procedure Act_Time(t:real); Procedure Act_Tu(t:real);

Procedure Delete; Function Lg_List:Word;
Function Total Tu(m:word):real; Function The First:...

end;

where: First is a pointer to the first element of the list; Tu is the machines’' operating
times vector; Init method initializes the list of machines in operation with the empty
list and Tu by zero; Ins_Ord method implements a new node into the list, in rising
order of time; Delete method suppressess the first node of the list; Act Time method
adjusts the time of continous operation of the respective machine by subtracting the
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advance time (minimum time); Lg List method supplies the number of nodes
(machines) on the list; Act_Tu method actualizes the operation time of the machines.
The description of the M_Rep object which manages the list of machines in repair is
almost identical to that of object M_Op; the difference lies in the fact that each node of
the list comprises an additional field comprising the code of the work repairing the
respective machine; also, the object processes vectors ¢r and trm which have the same

signifiance as in the formal description of the model. The sequence presenting the data
and methods of this object is:

Type M_Rep=0bject

First:...; Tr:array|l..dim_max| of real;
Trm:array|1l..dim_max] of real; Procedure Init(m:word);
Procedure Ins_Ord(Nod:...); Procedure Act_Time(t:real);
Procedure Act_T'r(t:real); Procedure Act_Trm(t:real);
Procedure Delete; Function Lg List:Word;
Function Total Tr(m:word):real; Total_Trm(m:word):real;
Function The First:... end;

The W_Lazy object manages the dynamically alotted list of "lazy" workers, based on
the queue principle, i.e. it will process the first and last fields, pointers to the first and
last nodes of the queue; introduction into the queue will take place after the element
shown by the last pointer, and deletion will be performed at the other end. Also, it will
change vector tl, the signifiance of which has been presented in section 3. The
sequence describing this object is:

Type W_Lazy=0bject

First,Last:...;

Tl:array|1l..dim_max] of real;

Procedure Init(m:word); Procedure Delete;

Procedure Implement(....); Procedure Act_Tlazy(t:real);
Function Lg_qeue:word; Function The_First:...;
Function Total_tl(m:word):real; end;

The methods perform the actions suggested by their names. The list of machines
waiting for repair, organized on the same principle as the list of "lazy” workers is
processed by the M_Waiting_Rep object, which also updates vector ta (see section 3).
The methods, whose names suggest the performed action, and the processed data are
presented in the following description:

Type M_Waiting_Rep=0Object

First,Last:...; Ta:array|1..dim_max] of real;
Procedure Init(m:word); Procedure Delete;

Procedure Implement(...); Procedure Act Twait rep(t:real);
Function Lg_queue:word,; Function The_First:...

Function Total_ta(m:word):real; end;

The coordinator object uses instances mo of M_Op type , mr of M_Rep type, wl
of W_Lazy type and mwr of M_Waitig_Rep type; it is introduced by the following
sequence:
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type coordinator=0bject

Procedure InitSist;

Function GenVarAl(...): real;

Procedure SelectEv (var tip_ev: word ;var t_min : real);
Procedure Transition(m,n:integer);

Procedure TeoEfFact(.....) end;

The Initsist method reads the model input parameters (number of machines,

number of workers, the exponential variable parameters which generate the continuous
operation and repair time, number of simulated events) and initializes the system, i.e.
all 'machines are operating, all workers are in "laziness", the list of machine in repair
and the queue of machines waiting for repair are empty. Applying the Monte Carlo
method, the GenVarAl method generates random variables, their values being the
operation and repair times. The SelectEv method determines the type of the following
event according to the list lengths and the times of the first operating of the first
machine in repair. The sequence of Turbo Pascal language instructions required for
this is:

Procedure coordonator.SelectEv;

bl SO SH T A

begin

p:=mo.The_First; q:=mr.The_First; r:=ml.The_First; t:=mwr.The_First;
if (mo.Lg List<>0) and (mr.Lg List<>0) and (ml.Lg Queue=0) and
(mwr.lg_Queue=0) and (p”.Time Op<=q.Time_Rep)
{case 4.1.1} then
begin
tip ev:=1;t min:=p”.Time Op
end:
if (mo.Lg List<>0) and (mr.Lg List<>0) and (ml.Lg Queue=0) and
(mwr.lg_queue=0) and (p”.Time_Op>q”.Time_rep)
{case 4.1.2) then
begin
tip_ev:=2;t_min:=q”*.Timp_rep
end;
if (mo.Lg_List=0) and (mr.Lg_List<>0) and (ml.Lg_queue=0) and
(mwr.lg _queue<>0)
{case 4.2) then
begin
tip_ev:=3;t min:=q*.Timp_rep
end;
if (mo.Lg List<>0) and (mr.Lg_List<>0) and (mwr.Lg_queue <>0) and
(ml.lg_queue=0) and (p*.Time_Op <=q".Time_rep)
{case 4.3.1}then
begin
tip_ ev:=4; t min:=p".Timp Func
end;

if (mo.Lg_List<>0) and (mr.Lg_List<>0) and (mwr.Lg_queue<>0) and

(mllg_queue=0) and (p*.Time_Op>q”*.Time_rep)

{case 4.3.2) then
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begin
tip_ev:=5; t _min:=q".Timp rep
end;
if (mo.Lg_List<>0) and (mr.Lg_List=0) and (mwr.lg_queue=0) and
(ml.Lg queue<>0)
{case 4.4) then
begin
tip_ev:=6; t_min:=p”~.Time Op
end;
if (mo.Lg_List<>0) and (mr.Lg_List<>0) and (mwr.Lg queue=0) and
(ml.lg_queue<>0) and (p”.Time_Op<=q”".Time_rep)
{case 4.5.1} then

begin
tip_ev:=T,
t_min:=p”~.Time_Op
end;
if (mo.Lg_List<>0) and (mr.Lg_List<>0) and (ml.Lg queue<>0) and
(mwr.Lg_queue=0) and (p”.Time_Op>q”.Time_rep)
{case 4.5.2}then
begin
tip_ev:=8; t min:=q".Time_rep

end;

The method also determines the minimum time after which the following
event occurs, i.e. the transition of the system from one state into another. The system
transition from one state into another is performed by the Transition Method , which is
presented further on:

Procedure Coordinator. Transition(m,n:integer);

VYBE Pt rnan. st int.s modn s nodl:...; nod2:...;
begin

SelectEv(tip ev,t min);

p:=mo.The First; q:=mr. The_First;

r:=ml. The_First; t:=mwr. The_First;

case tip_ev of

1: begin

mo.Act_Tu(t_min); mr.Act_Tr(t_min); mr.Act_Trm(t_min);
with mo do
begin

cod ml:=p".Cod_M; mwr.Implement(cod_m1);Delete;
Act Time(t_min);mr.Act_Time(t_min);
end end;
2: begin
mo.Act_ Tu(t_min); mr.Act_Tr(t_min); mr.Act_Trm(t_min);
with mr do
begin
mo.Act_Time(t_min); nod2.Cod_M1:=q".Cod_m;
nod2.Time_opl:=GenVarAl(lam); mo.Ins_Ord(Nod2);
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cod_ml:=q".Cod_W; ml.Implement (cod_m1); Delete; Act_Time(t_min);
end end;
3:begin
mr.Act_Tr(t_min); mr.Act Trm(t_min); mwr.Act_Ta(t_min);
with mr do
begin
nod2.Cod M1:=q"*.Cod_m; nod2.Timp_opl:=GenVarAl(lam); mo.Ins_Ord(Nod2);
nod.Cod_W:=q".Cod_W; nod.Time_rep:=GenVarAl(niu);
nod.Cod_m:= mwr.The_First®. CodM_wait; mwr.Delete;
Delete; Act_Time(t_min);Ins_Ord(Nod);
end end;
4:begin
mf.Act_Tu(t_min); mr.Act_Tr(t_min); mr.Act_Trm(t_min);mwr.Act_Ta(t_min);
with mo do
begin
cod_ml:=p”*.Cod_M;mwr.Implement(cod_m1);Delete;
Act_Time(t_min); mr.Act Time(t min);
end end;
5:begin
mo.Act_Tu(t_min); mr.Act_Tr(t_min); mr.Act_ Trm(t_min); mwr.Act_Ta(t_min);
with mr do
begin
nod2.Cod M1:=q”*.Cod m; nod2.Timp opl:=GenVarAl(lam);
mo.Act_Time(t_min); mo.Ins_Ord(Nod2);
nod.Cod_m:=mwr.The_First*.CodwaitREp;nod.Cod_W:=q".Cod_W;
nod.Time_rep:=GenVarAl(niu);Delete; mwr.Delete; Act_Time(t_min);ins_ord(nod);
end end;
6:begin
mo.Act_Tu(t_min);ml.Act_TI(t_min);nod.Cod_m:=p”.Cod_M; mo.Delete;
nod.Time_rep:=GenVarAl(niu); nod.Cod W:=ml.The First*.Lcod W;
ml.Delete;mo.Act_Time(t_min); mr.Ins Ord(Nod);
end,;
7:begin
mo.Act_Tu(t_min);mr.Act_Tr(t_min); mr.Act_Trm(t_min); mL.Act_TI(t_min);
nod.Cod_m:=p”.Cod_M; mo.Delete; nod.Time_rep:=GenVarAl(niu);
nod.Cod W:=ml.The First”.Lcod mune; ml.Delete;
mo.Act_Time(t_min); mr.Act_Time(t_min); mr.Ins Ord(Nod);
end;
8:begin
mo.Act_Tu(t_min); mr.Act_Tr(t_min); mr.Act_Trm(t_min); ml.Act_TI(t_min);
with mr do
begin
mo.Act_Time(t_min); nod2.Cod_M1:=q".Cod_m; nod2.Timp_opl:=GenVarAl(lam);
mo.Ins_Ord(Nod2);cod_wl:=mr.The_First".Cod_W, mlimplement(cod wl);
Delete; Act_Time(t_min);
end
end; end; end;
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6. PRACTICAL CONSIDERATIONS

For m=10,n=2

In [4] the theoretical inference factor is established for m=4, n=1 and A=1.
With my simulation program, I obtained values approximately equal to the theoretical
values. In the following table, for A=1 and for different values of m and n, the results
obtained using my program are presented, considering p=2.0 (slow service), u=5.0
(moderate service) and u=10.0 (fast service).

niu I EF EM
2.0 1.95932 0.41554 0.98749
5.0 0.50911 0.77843 0.73412
10.0 0.14008 0.90018 0.43779
For m=10, n=3
niu | EF EM
2.0 0.71552 0.52240 0.92799
5.0 0.10162 0.81812 0.556033
10.0 0.02006 0.90727 0.30302
For m=10, n=4
niu | EF EM
2.0 0.16303 0.64534 0.76237
5.0 0.01276 0.83317 0.41185
10.0 0.00261 0.90716 0.23150

(1]

(2]
(3]

Thus, I can find the best value of efficiency factor I, EM, EF (see section 2).
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