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Abstract: This paper gives a brief survey of Tabu search methodology - one of the
widely used modern general heuristics, originally designed to solve combinatorial
optimization problems. The power of this methodology is illustrated by applications to
two different types of real-life large dimensional problems: a combinatorial assign-
ment problem and a continuous optimal design problem.
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1. INTRODUCTION

Tabu search (T'S) methodology belongs to a class of so-called modern heuristics
which are currently intensively used to solve a large variety of combinatorial
optimization problems. The basic concepts of this methodology wese proposed by
Glover [6], while similar views were independently developed by Hansen et al. [15]
(under the name Steepest ascent mildest descent heuristic). TS represents a general
heuristic strategy for solving any combinatorial optimization problem of the form

min f(x),
xeX

where X is a finite set of feasible solutions, called the solution space, and f is an
arbitrary function such that f: X— R. This strategy has already been successfully ap-
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plied to a wide range of various problems and is rapidly spreading to many new fields of
application. Such success in implementation could be explained by the fact that the
general concepts of TS are flexible enough to incorporate some elements of Artificial
Intelligence and, thus, they can be easily adapted to different kinds of problem
structures. Therefore, TS is one of the most popular and the most promising tools
(together with Simulated annealing and Genetic algorithms) for solving hard
combinatorial problems, especially practical ones.

The purpose of this paper is to give a short review of TS methodology and to
illustrate its power in applications to two different types of real-life problems. The first
one 18 a combinatorial assignment problem: assigning students to exams at the
universities, The second one is a continuous optimal design problem: a global
optimization problem arising from the spread spectrum radar polyphase code design in
telecommunications, Although TS was originally proposed to solve discrete
optimization problems, here we show that it can be successfully applied to a continuous

case.

The paper is organized as follows: In Section 2 we briefly describe the basic
concepts of the methodology as well as some components of its more sophisticated
versions. Sections 3 and 4 contain applications to the assignment problem and the
optimal design problem, respectively. In both cases some numerical experiments are
reported.

2. TABU SEARCH METHODOLOGY

TS is a general iterative procedure based on the well-known local search
principle:

A neighborhood structure ig introduced to the solution space X in the
following way: Each xeX has an associated set Nix)cX, x¢N(x), called the

neighborhood of x. Ni(x) is defined as the set of all yeX that can be obtained
directly from x by a modification called a move mix,y) from x to y.

The procedure starts from an initial feasible solution and at each step moves
from the current solution to another one in its neighborhood , trying to reach an
optimal solution. At step & a subset N'(x®) of the neighborhood N(x®) of the current
solution x* is constructed and the best solution in N'(x%) is chosen as the next solution
£+l ( even if ﬂxk"'l ) Ef(:"} ). In this way TS allows ascent moves and,
consequently, avoids being trapped in local minima (which is the main weakness of
standard descent algorithms).

In order to guide the search process in an intelligent manner, TS procedure
incorporates a flexible memory structure as its essential component. Generally
speaking, at each step k& the procedure maintains a selected history H of the previous
search, i.e. a record which memorizes the characteristics of some previously generated
solutions. Then, instead of N(x®), a modified neighbourhood N(*.H) is defined
according to history H, and aset N'(x®) is selected such that N'e®) c Na® H) .
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The next solution 2%+1 s usually obtained by minimizing the objective function flx)
over N'(x*). But in general x+1 can be chosen to minimize an evaluation function
fla,H) which also depends on history H.

Summarizing the above considerations, the TS procedure can be expressed in
the most general way as follows:

Tabu search algorithm

Initialization: Select an initial solution x1eX .
x*=x1 . Pr=fh
The history record H is empty.
Iteration step: For k=12, ...
. Define a modified neighborhood N (x® H) and an
evaluation function fix, H).
Generate a set N'(x") as a subset of N(xk.H}.
Determine x* 1 by minimizing flx,H) over NPy .
If fxk+]) < f (x*), then *=xk*+1 and f"=f[xk+1}
. Update the history record H
End: If the stopping criterion is satisfied, then stop.

A crucial part of the TS approach is the definition of an appropriate flexible
memory structure. In its basic version only one such type of structure is applied: the
short-term (or the recency-based) memory structure, where at each step the record
H memorizes a selected history of the most recently generated solutions. H is formally
defined using so-called tabu lists Ty, ... ,Tp with lengths Ly, ... ,Lp , where p21 . A
tabu list T;,: €{1, ..., p}, represents a list of one or several selected attributes of L;
most recently performed moves or of the corresponding reverse moves (i.e. at step k&,
T; contains attributes of m A+l or mdtldd) for 1= k-L;, .., k-1). Now,
H=T)v..u Tp . The tabu lists define the tabu status of any move muk,:cl from the
current solution x® to some of its neighbors x. The move m(x® ,x) is tabu if at least one
of its attributes belongs to H . If m(x”,x) is tabu, then x is forbidden to be a candidate
for the next solution x**1, A tabu list T; is maintained as follows: At each step k the
corresponding attributes of the move m[:k,rk"'l} or of the reverse move m( +1..rk]
enter the list 7; and stay there in the next L; iterations. The recency-based memory
structure is a core component of TS with the main role to prevent cyeling back to some
previously generated solutions and to diversify the search process, 1.e. induce the search
of new subregions of the solution space X .

The attribute-based tabu lists can be too restrictive and forbid some moves to
solutions that have never been reached before. Therefore, T'S offers the possibility of
canceling the tabu status of a move when it leads to a "good enough” solution. This is
realized using aspiration criteria. In the basic version of TS an aspiration criterion
usually has the following general form: At step &k, let move m{z",x}. J:EN{IkJ'. be tabu.
Then, two values are determined: aspiration level a{m{rk,xll and threshold value
Alm(x® x)). If alm(*,x))< A(m(x® x)) , then the tabu status of m(x*x) is cancelled. The
simplest aspiration criterion of such a form is: the tabu status of m(x®.x) is cancelled if
solution x is better than the currently best solution x* obtained up to step &, i.e.

a(m(x® x))=f(x) and A(m (kR x)=flx*).
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Applying the tabu list restrictions and an aspiration criterion (if it exists), the
set No& H) is defined as the set of all xeN(x®) such that m(x*x) is either not tabu
or ﬂ{m(rk,x}} < A{mfrk,x}l. As NGk H) is usually too large to be examined efficiently,
aset N'(x%) is chosen such that N’(x%) :N{:rk,H} and |N’{1k]|c< |N{1k,fﬂ|. The
set N'(x®) can be obtained by generating randomly a specified number of
neighborhood solutions. But in some more intelligent applications, it can represent a
set of "preferred” solutions, with the structure depending on the characteristics of the
particular problem.

In the case of short-term memory, the next solution *+1eN(R) is chosen
to minimize the objective function fix) over the set N'&®) (e flx,H)=flx) at each
step of the procedure). This [ocal optimization problem may sometimes be a nontrivial
one and a special heuristic could be required to find the solution.

The initial solution x! can be randomly chosen or obtained by a special
heuristic designed for the particular problem. Applying such heuristics is recommended
in problems where "good" solutions have a special structure that cannot be easily
reached starting from a random solution.

The stopping criterion can have the following forms: the procedure is
terminated if the number of consecutive iterations, performed without any
improvement of the currently best objective function value f* , is greater than a
specified number. If the minimum value of fix) is known in advance, then the process
can be interrupted as soon as this value 1s reached.

Extensive literature exists devoted to the main concepts of TS methodology. A
general introduction to TS can be found e.g. in [10], [14], [16], [18], [19], while a more
detailed elaboration of its basic elements with a comprehensive bibliography is given
eg. in [T7], [8], [13].

One of the main strategic principles of TS is that the search process should
ensure an appropriate periodical alternation between local intensification and global
diversification phases, i.e. between intensifying the search in a "promising" subregion
and driving the search into new subregions. But sometimes the short-memory structure
1s not suffictent to realize such a principle.Therefore, in refined TS versions two
additional kinds of memory structures can be incorporated: the intermediate and the
long-term memory,

When an intermediate memory is applied at step k, the history record H
maintains attributes of some "good" solutions from the past. Solutions with such
attributes are forced to be the next ones by appropriately chosen N(x®, H) and flx,H). In
this way the search can be implicitly focused on a "good" subregion, ie. an
intensification phase is induced. In the case of long-term memory, H keeps track of
attributes that have not appeared for a long time (or whose appearence was less
frequent) in a sequence of previously generated solutions. Favoring solutions with
attributes from H, the next solution can be significantly different from those previously
generated, which causes diversification (for the main ideas of refined TS versions and
how they are realized, see [13], [14)).
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In order to implement TS methodology in a particular problem, a number of
tactical choices have to be made: the specification of the objective function and the
solution space (if the problem is not originally formulated as an optimization one), the
definition of the basic neighborhood structure, the selection of move attributes for tabu
lists and the lengths of tabu lists, the organization of longer-term memories in refined
versions, etc. Most of these choices strongly depend on the specific structure of the
problem. According to their generality, they provide enough opportunities to create an
intelligent search procedure which can imitate human reasoning or to apply learning
rules based on Artificial Intelligence principles, Therefore, TS can be viewed as a
metaheuristic.

TS (either in a basic or refined form) has been successfully applied to almost
all well-known standard combinatorial optimization problems (e.g. traveling salesman,
vehicle routing, quadratic assignment, graph coloring, etc.) and to a large number of
hard practical problems (job shop, low shop, machine scheduling, electric circuit
design, ete.). In most of these applications the obtained solutions were superior to the
best previously found by other existing methods (for a systematic survey of TS
applications, with corresponding bibliography, see [13], some parallel implemen- tations
are reviewed in [20]). Numerous experiments have shown that until now there have
been no general rules for creating the best possible choice of TS components in each
particular case. Namely, in most of the cases, this choice was determined by
experimentation.

Finally, let us mention that there are a few theoretical results dealing with the
convergence of TS, but only in the case of the probabilistic version (see [5]). Also, some
papers show that the TS concept can be applied to continuous optimization problems

(1], [11], [17] .

3. APPLICATION TO A COMBINATORIAL
ASSIGNMENT PROBLEM

The following problem of assigning students to exams during an examination
period arose at the Law School of Belgrade University:

In an examination period we are given a set of subjects for which exams should
be performed. For each subject we know in advance the exam days, i.e. the days in
which the exam can be organized. Each exam day of a given subject has its capacity: the
maximal number of students that can be examined on that day. Each student specifies
the subjects which he wants to take and should be assigned to one of the exam days for
each subject. The assignment of all students should satisfy the following additional
requirements: a student should have at least a prescribed number of free days between
two consecutive exam days and the capacities of exam days should not be violated for
any subject. The problem of finding an assignment of students to exams under the
described constraints will be denoted by (P).

Problem (P) belongs to a class of practical combinatorial problems which are
very difficult both to model and to solve. The usual way to deal with such problems is to
partition the set of requirements into hard and soft ones [4]. Then, soft require-
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ments are penalized in the form of the objective function, while hard ones appear as
constraints in the corresponding combinatorial optimization problem. Using such an
approach, problem (P) is modeled as a combinatorial optimization problem (CP) on an
associated dynamically weighted graph in the following way:

Let S ={Sy,...,S;,! bethesetof all subjects. The set of applications of all
students defines combinations Ky, ..., K, of the subjects. The combination K , i€ {1, .
., p}, is a subset of subjects from S such that there exists at least one student whose
application specifies K; . Let g; be the number of subjects in K; and s; be the total
number of students taking this combination. Each subject S; has n;, exam days dy;,
I=1, ..., nj , where di; is equal to the ordinal number of the exam day in the
examination period. The capacity of dj; is denoted by cp; . Tables 1 and 2 give the
data for a hypothetical situation with 3 subjects and 4 students taking 3 combinations.
For example, exam days of the subject S5 are the 11th and the 20th day of the exam
period with capacities 2 and 4, respectively.

Table 1. Subjects and exam days Table 2. Combinations of subjects
Subject | Ordinal numbers Capacities of Combinatio | Subjects No. of
Sg of exam days (dy;) | exam days (ezp) | n K, of K; students (s;)
Sy 8,12, 13 1,3,3 Ky 5,.8, 2
Sy 11, 20 2,4 Ko S8, 8q 1
S, 10, 14 4,7 Ka Sy, So, Sa 1 |

We can associate to the problem a weighted graph G as follows: Each dj; is
represented as a node of the graph. Two nodes d, 1 and d kolg » , ky#ko , are connected

with an edge if:
® thereisa K; such that Skl-skz € K; and

. |d*‘?1"l dk232 [> d,uin » Where dmm is the prescribed number of free days
between two consecutive student exams.

In this way a subject can be viewed as a set of nonadjacent nodes
corresponding to its exam days and, consequently, each combination is presented as a
subgraph of G. Let C; ={Cy;,j=1, ..., r;} be the set of all cliques (maximal complete
subgraphs) of K; which have exactly g; nodes. The associated graph G for the
hypothetical example is presented in Fig. 1. Here e.g. Cg= {Cg1, Cgg} , where Cgo1=

{8, 14} , Cgo= {13, 10} .
© @ 0
0 @ N 0
‘t ' A
NoZ

Figure 1. The associated graph
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A feasible assignment is an assignment x={x;;, i=1,..p,j=1,...r;} where xjj
is a nonnegative integer assigned to clique C:j such that

In fact, clique C;; represents a feasible schedule of exam days for the subjects of K; ,
while x;; is the number of students using this schedule. Given a feasible assignment x,
for each node dj; we can calculate the corresponding violation vy; of its capacity cg;
as

Vgl = max z Xy — Cxt, 0
(1, 1)dy eC,

In this way each feasible assignment determines the weights v;,; corresponding to the
nodes of G ,ie. G has dynamically weighted nodes. Fig. 1 indicates violations vy
corresponding to the feasible assignment given in Table 3 (the only violation vy1=1 is
at the node dy1=8).

Table 3. A feasible assignment

| Combination K; Cliques of K No. of assigned
(C;) students (x i)
Ky {8, 11} 1
{12, 20) 1
(8, 20) 0
{13, 20) 0
Ko (13, 10} 1
{8, 14] 0
Kq {8, 20, 14) 1
(8,11, 14) 0
{13, 20, 10} 0

Now the problem (CP) is formulated as follows: find such a feasible assignment
for which the value of the objective function, which is defined as the maximal violation
of all nodes, is minimal. Any optimal solution of (CP) is called the optimal assignment,
while the corresponding maximal violation is the optimal value. Obviously, if the
optimal value is 0, then the optimal assignment is a solution of the problem (P). If the
optimal value is greater than 0, then the set of solutions of (P) is empty.

The evaluation of the objective function of problem (P) requires that the sets
of cliques C; , 1=1, .., p are known. Hence, before the assignment is attempted, clique
generation preprocessing is to be done. Since finding all cliques is too time consuming
(even constructing a single clique is NP-hard), the preprocessing is not trivial. In [2] we

propose a special heuristic which generates "satisfactory” subsets C; cC;, i =1, ..., p.

A satisfactory E; should have cardinality large enough to prevent the accumula-
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tion of too many students at the same clique, but significantly smaller than that of C;.
At the same time, C;, i=1, ... , Py should be structured in such a way that the same

node is not contained in too many cliques, in order to avoid the accumulation of
students at the same node. The clique generation heuristic simultaneously produces a
feasible assignment.

Here we shall develop a TS procedure to find an optimal assignment
corresponding to the cliques Ci;’ €eC,i=1 ..,p Jj=1 ... ,r; . The solution space

X 1is the set of all feasible assignments to the chiques from Ci* i=1, ..., p, while the

objective function [(x) is the maximal violation of all nodes for the assignment xeX.

The initial feasible solution x! is the feasible assignment produced by the special
heuristic.

The neighbourhood N(x) is defined as follows: Solution y= (g is a neighbor
of solution x= {xu t, x,yeX, if y can be obtained from x by the f'olluwmg modification:

(M) Select a combination K; for which (_? 1s not singleton, and two cliques Cf&fl !
CU'EE C,;,J1#J2, such that Xijq > 0. Then Yij1 =
forall j#jq,79-

+1, whjleylj =X

i1 "1 Yijg =Xijg i

The modification (M) defines a move mi(x,y) in the neighborhood of x. In fact, y is
obtained from x by moving only one student from the clique C {called the from-
clique) to the clique C;; 79 (called the to-elique) of the same mmbmanun

In order to prevent cycling back to some recently generated solutions, two
tabu lists T'; and T’y with lengths L and Lo are introduced. At step & the lists 7' and
T2 are ua)dated in the following Way Let C, be the from-clique of the move
m(x® xk+1) Now a node dp; of C , which the maximal weight, is entered in
both lists. T'y disallows decreasing the we:ght of dp; in the next L; iterations, while
T'g forbids increasing this weight in the next Lo iterations. A move is considered tabu
if either its from-clique contains a member from T or its to-clique contains a node
from T9. As T could forbid some good moves which decrease the objective function
value, L1 should be smaller than Lg .

Now, generating a subset N (x®) of the nm%hburhmd N@*) of the current
solution x*® and moving to the next solution are performed in a four-step
procedure:

Step 1: Order all nodes according to decreasing weights corresponding to the
solution

Step 2: Passing through the ordered nodes, select the first node dp; for which at
least one admissible move exists, i.e. such a move that it is not tabu and its

from-clique contains dj; , but its to-clique does not contain any of the
already passed nodes.



Mirjana Cangalovié et al. / Tabu search: A Brief Survey and Some Real Life Applications 13

Step 3: Among all admissible moves of dj; find the best one, i.e. such a move for
which the maximal weight of the nodes in its to-clique is minimal.

Step 4: Perform the best move and thus obtain 2%+1 Update current weights of the
corresponding nodes and put djy; to tabu lists.

The TS procedure terminates if either no improvement of the objective
function value has been made during a given number of iterations or the optimal
assignment x* with fix*)=0 was obtained.

The power of the described TS procedure was tested on the examination
period in September 1994: The length of the examination period was 20 days. There
were 45 subjects, with 290 exam days, 5823 students and 715 combinations. The
number of free days between two consecutive exam days for any student was at least 2.

In this example 33 combinations contained only one subject and involved a
total number of 1135 students. As such students can be trivially assigned to exam days
with free capacities, left after any assignment of all other students, TS was applied to
the remaining 682 combinations with 4688 students. Input data statistics, presented in
Table 4, can give insight into some aspects of the complexity of the problem and the
associated graph G . For example, there were 207 combinations (subgraphs) with 3
subjects, where the average number of exam days (nodes) was 25 per combination,
while the total number of students involved was 1370,

Table 4. Input data statistics

No. of subjects 2 3 7 e 6 7| 8] 9 | 10
No. of combinations 108 207 | 168 | 98 H9 29 T b 1
Average No. of exam days | 17 25 34 | 42 48 57 | 72 | 79 | T1
Total No. of students 1820 | 1370 | 838 | 425 | 177 | 38 14 5 1

The special heuristic from [2] generated a total of 6107 cliques and a feasible
assignment which violated given capacities at 17 nodes for 78 students. The
distribution of violations is given in Table 5. Starting from this feasible solution, ie.
with flx})=19 , TS procedure with tabu lists lengths L1 =5, Ly=9 was applied. The
procedure needed 279 iterations to reach the optimal assignment x* with fix®)=0.

Table 5. Distribution of violations in the initial solution

| Violations N R T T T Y =78
| N° nodes 78 I W N N R A R y=17

4. APPLICATION TO A CONTINUOUS
OPTIMAL DESIGN PROBLEM

In this section we shall consider a global optimization problem arising in the
spread spectrum radar polyphase code design [3]. The problem is formulated as follows:
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gfnbai_min flx)=max {@)(x), ..., 9g,,(x)]
o

X={(xq, ... ,x,)eR" | 0<x; < 2n, j=1,...,n}, (1)

where m=2n-1 and

n I
'PEI-I‘IJ:Z‘:‘}H[ Z X ), t=1,....0

=i h=!2i- j-1l+1

n ' J
Po;(x)=0.5+ Zﬁ)ﬂ[ L . ]. i=1,....,n=1
J=i+l kw|26= j-1]+1

Py 4 (2) == ¢ ;(x), =] ...,m

It is proved in [17] that problems of type (1) are special instances of a class of
NP-hard problems. The attempt to solve (1) by an exact implicit enumeration technique
failed for n>5 . The difficulties are caused by the fact that it is not possible to get good
upper and lower bounds of the minimum of flx) on subregions of X and, consequently,
the number of considered subregions grows rapidly. This motivates the use of heuristic
methods, Here we applied to (1) a general multi-level TS technique developed in [17]
for global optimization problems. The basic components of this technique are specified
below:

The neighborhood M.rkl, .l'kEX. i8 defined in the usual Euclidean way:
Nehy={xeX | 0 <pe-2k|| <ay)

where aj, > 0 is a radius which depends on the iteration number k , (ie. the move
m(x® x) is here x=xk 4 ad, 0< <oy, ,d e R*\{0}).

Several tabu lists are introduced, but in each iteration only one of them is
active, Namely, when x® ig an interior point of X, after performing a move from & . the
pair (xk, [}2) enters the currently active tabu list. This pair defines a tabu cube

Cixk, pp)={xeX | |xj-xf“'| <P, j=1,..,n},

where i, , 0 <jg<ay, , is the cube size which again depends on &, A tabu cube
containg points which are forbidden to be visited in a prescribed number of future
iterations with the same active tabu list. This number represents the length of the list.
A point is tabu in an iteration if it belongs to the tabu region which is the union of all
tabu cubes from the currently active tabu list.

The subneighbourhood N'ix*) is a finite subset of N(x*) which is generated
using a finite set D(x¥) of “good” move directions, In our case the definition of a good
move direction 18 motivated by the structure of the minmax problem. Let for a given
xeX, Alx)=(ie(l, ..., m) |ﬂ.rl=r:pl-{:t]l. If ieA(x) we shall say that ¢; is active at x .
Generally speaking, it could be expected that at the optimal solution A(x) is not
n singleton. Therefore, during TS we shall try to generate points such that Alkys
Ak*1) e to make moves which change active functions, We can then expect
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that the segment [, Ik+1] contains “valley" points with low objective function
values. Such points can be obtained by a suitable discretization of the segment
[x%, x2*1] . Having this in mind, a search direction at xX can be considered good if it
decreases active and "almost active" functions and/or increases functions which are not
active. For example, suppose that at thi{oint «* the function @1 1s active, functions
99, ..., ¢ are almost active (i.e. @l }-tp;‘{rk}ﬂc, 1=2,...,s) and @g41, .., P,, are
not active ( i.e. tplirk]-tpitrk)}e, t=s+1, ...,m),wheree > 0 is a given parameter.

Let

] Veux*) Veux*)  Veu(xh) Vo, Vo,

-{ [V, M)’ | Vo) | Voo™ | [V )] [ Ve, b))

y Vo, (x*) N Vo..,(x*) Ny thl{x"'} 4 Vo, (x*)
"‘Vr.pl{x*]" U‘Wmlri}ﬂ' ‘ i?‘Pl{:‘k}H "?mm{xi]ﬂ

-{-£ | g<Gy.

Then we can take D(xR)={deGy|AGR)2AR+apd)}  (if such D?)=2, we set
D)= Gy). Given the set Dk, N'(x®) is generated as follows:

For each deD(xk) generate the point x(d)= r"+ukd. If x(d)eX redefine x(d) as
x(d) = ®+id, where :>0 issuch that R+idedX . Set N'(x%)={x(d), deD:F) |

x(d) is not tabu}.

The best neighbor 28 +1cN’(x®) is determined such that flx**1)=min flx)
among all x satisfying xeN'(xR). (If either N'(k)=2 or 2 is a boundary point of

X, i.e. ¥*e @X , then a random restarting of the TS process is made). Let x**! be the
discretization point of the segment [:rh rk"'l] with the minimum objective function
value. The currently best solution and the currently best objective function value are
updated using both x*+1 and L

The step size ay is chosen to balance two contradictory requirements: It
should be sufficiently large in order to provide a search of the entire set X and it should
be small enough to attain a satisfactory solution. The balance is achieved using a
multi-level search strategy based on the following principles: Let A < .. <A, be
the w possible choices (levels) for the step size during TS procedure. These levels are
alternated in a periodical manner, using a given sequence of positive integers g< ...
<q,,» where g; represents the maximal number of consecutive iterations which can be
performed with steps at levels Ay , ... , A; . Let ¢y, ... ¢, be the level counters which
are initially set at 0. Then the step size o is obtained as follows:

If ¢; #q; forall i=1, ..., w, then set a3=A, and ¢; = ¢j +1,j=1, ... w. Otherwise,
find the biggest ie{1, .. w} suchthat ¢; =gq;.If i<w, then set aj =A; ;1 and

¢j=0, j=1,..,i, ¢j=¢;+1, J=i+1, ... w. If i=w, TS is terminated.
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For example, if g1=2, gp=3, g3=10, the pattern of the levels which are used is
A141494341414043414).

According to the described multi-level search strategy, the level A; ., is
applied after g; consecutive iterations with steps from the set {A;, ..., 4; }. In order to
improve the efficiency of the search, this level can be forced earlier, if there was no
improvement of the objective function value in the last u; iterations, where u; < g; .
In this case TS procedure stops after g,, iterations or if there was no improvement in
the last u,, iterations.

If a multi-level search strategy is used, it is natural to introduce w tabu
lists Ty , ..., T, with lengths Lq, .., L, .Let Bj< .. < B,, be the corresponding
tabu cube sizes. If aj = A; , then the tabu list T'} is active at the k-th iteration and the
pair (x%, fj,) enters the {ist. where [i;=B; . Details of the outlined TS procedure can

be found in [17].

We shall illustrate the numerical performance of the multi-level TS procedure
on the special instances of (1) obtained for n=5,10,15. For n=5 we applied a two-
level search strategy, while for n=10 and n=15 we used three levels. The tolerance,
used in the definition of the set D(xF) , was €=0.00001. The discretization of the
segment {.r‘r‘. **1) was uniform, with 10 discretization points. The initial point x!

was In all cases the center of the feasible set X, ie. x}=n:, = .oty The

remaining parameters were set up by experimentation.

Experiments have shown that, independently of the dimensions, the
reasonable choices for tabu list lengths are, in the case of a two-level strategy, L1=100,
L9=20, and in the case of the three-level strategy L{=200, Lo=100, L3=20 . The size
of the tabu cube was always chosen to be half of the corresponding step size (B;=A; /2 ).
Different values for A; and g; were used in order to determine the best multi-level
search strategy. In all cases u; is taken to be 40% of g; . Table 6 shows the values of
parameters for which the best objective function value is obtained, also this value and
the corresponding iteration number. For the sake of comparison, Table 6 also contains
the results abtained by the Metropolis algorithm, reported in [3].

Table 6. Tabu search vs. Metropolis

n Aq Ay Az | 41 g9 43 The best | Iteration Metropolis
value number

5 0.04 2.0 99 | 20000 0.3391 15073 0.3403

10 | 0.02 0.2 3.0 4 999 20000 0.4615 7175 0.5896

15 0.03 0.3 3.0 4 999 20000 0.4383 2013 0.7455

The obtained results are quite satisfactory. Let us note that further
improvements could be obtained by a local search. In fact, the one-level TS algorithm
with a small step can itself be used as a local search procedure.
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5. CONCLUSIONS

The paper presents the main concepts of Tabu search, which is one of the most
popular modern heuristic methodologies. It is demostrated that it can be successfully
applied not only to large combinatorial problems but also to global optimization
minmax problems. Tests were performed on real-life examples arising in two different

fields of application.
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