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Abst r act: This paper describes a new Tabu search-like technique for solvi ng
combinatorial optimization problems . The cham -interchange move is introduced .•
which is an extension of the well -known I-interchange move . Ins tead of Interchanging
one solu tion att r ibu te that is in the solution .....ith one that is not, four att ributes an'
interchanged . In that way the Tabu sea rch recency-based me mory is eas ily obtained,
i.e., the poss ibility of getti ng out of the local optimu m trap can be ach ieved without
addit ional efforts . Some location-allocation problema that cou ld be solved by t he same
chain-interchange algorithm by on ly changing the objective function are HEitE'<! .
Moreover. most of the problems listed arc suggested for the first time to be solved by
Tabu search me thod (TS). Computer results arc reported.
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1. INTRODUCTI ON

A new local search heuristic Chain-in terchange method for solvi ng
co mbinatorial optimization problems is proposed. It could be seen as a Tabu sea rch
me thod adapted for a large class of problems, as well as an extended interchange
heuris t ic.

TS was int roduced by Glover (1 986) and indepe ndently by Ha nsen (19B6)
(u nder the name Steepest A scent Mildest Descent) as a mete-heurist ic designed to J;l' t 11

global optimum to combinatorial opti mization problems. TS belongs to a class of

J Work on this paper was initia lized during a visit of the first aut hor to La Laguna University .
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Local Search Heurist ic Methods, or more specifically to a class of Descent-Ascent
Methods (Hansen and Jaumard (l990)).The major components include a short-term
memory process which is the core component of the search procedure, an intermediate
memory process for regional ly intensifying the search, and a long -term memory process
for globally diversifying the search . The short-tenn memory process is implemented
through a set of tabu conditions and the associated aspiration criteria. The idea is to
prevent cycling in the descent-ascent process by avoiding reversal or repetition of
previously visited solut ions . Intermediate and long-tenn memory processes are
perfonned by restricting the search in a special subregion and by inducing the search in
a new subregion of the solut ion space. TS has already been applied to an increasingly
wide spect rum of problems. For a survey of a variety of successful applications, see
Glover (1980, 1990) a nd Glover and Laguna(l994).

For each particular problem researchers developed neighbourhood structu res,
short-term, intermediate and long-term memory processes in order to build a few TS
rules in exist ing local search heuristic methods. We have the opposite purpose in this
paper; find a class of optimization problems that could be soloed using the same T S
memory processes , i.e., the same data st ructu re . Our work is based on the fact that
there are many more opti mization problem s that could be solved by TS than data
st ructures developed to solve them in an efficient way. Thus our method applies to a
large class of combinatorial problems , and for each problem just the subroutine
evaluati ng the objective function value has to be changed.

The method proposed in this paper is an extended. Interchange heuristic.
Instead of interchanging two variables (attributes) in order to generate the
neighbourhood of a cu rrent solut ion, we interchange the posit ions of four variables.
This simple extension of well known descent local search I -interchange methods allows
us to obtain the following properties: (i) move at each iteration to the best neighbouring
solution , even if it is not better than the current solution (to avoid a local optimum
trap); (ii) introduce two waiting (tabu) lists (to prevent cycling). Lists consist of
variables waiting to go out of the solution and to go into the solution respectively,
Hence, we save t ime and memory by storing not the tabu solutions themselves, but one
of their attributes; (iii) bring into the solution that variable wh ich has been out of the
solution for the longest time (to induce the search in a new region of the solution
space.). Problem-specific knowledge now can be easily embedded in the algorithm, or,
any existing desce nt heurist ic method of the Interchange type can be extended, using
the same data st ructure .

We shall illustrate our method on some discrete location-allocation problems .
The paper is organized as follows. In the next section we formulate the p-faci lity
locat ion-al locat ion problem and give a list of some models that could be solved with our
method by only changing the objective function. Ou r list of applications is meant to be
illustrative, not exhaustive . In Section 3 we explain the rules of our Chain-Interchange
(CO algorithm within the Tabu search (TS) framework. Computer experience is
reported in Section 4. Sect ion 5 concludes the paper.

2. THE p-FACILITY LOCATION-ALLOCATION PROBLEM

The Location-Allocation (LA) problem consist of finding the best selection of
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points to npe n facilities at them and th e way to serve th e users . The objective cost
function to be minimized depends on the relat ive s ituation of the facility points and the
demand points. In a wide class of relevant location-allocation prohlems, every
alternative solution consists of a fixed numbe r, say p , of facility points to he opened and
t hen the optimal way to serve the US(' r1' . For every set of p facility points. the optimal
allocat ion of users to the facility poin ts gives the optimal cost . T hen the problem
consists of find ing the set of p facility points that minimizes the corresponding cost .
These are the p -facility location-allocation problems where the feasible solut ions are
the sets of p facility poi nts and the objective function ranges from simplest to those
com puted by solving a n allocat ion problem (see Brandeau and Chiu (1989».

In order to formal ise discrete LA models, we consider set L of m potential
location points, set D of n demand points and m-en matrix with the costs c(x,u ) of
attending a user at 1.1 from a facility at x, v x E L, 'rIu E D. Every alternative solution is

given by the set X of location points chosen for the facilities and the allocation of every
demand point 1.1 E U to the facility point A (u ) E X that serves eve ry use r at 1.1 : The
objecti ve function to be mini mized depends on the locat ions X and the allocations AU .

For directly-all ocated models the objective cost function is monotone and every
user at 1.1 ifl a llocated to the facility point A (u ) such that c( A(u), 1.1 ) S c(x, 1.1 ), 'r/x E X .

Then the solu tion space for these problems is S = {S . X I X ~ L}. On the othe r hand .

for any LA problem, given the allocation AU of the users, the location of the facilit ies is
g1VE"n by X = AW). So the solution space can be considered to be
S = {S = A I A : D -+ L }. Another way to give the allocations consists of providing the

partition of the demand po int se t in the points all ocated to eve ry facility po int , i.c., by
giving U(x ) = {u E D : A (u ) '" x}, Vx e X .

However, in order for describe the search procedure for these problems, it is
convenient to use all the it ems rela ted with the solution ; i.e ., the locations given by X.
the a llocat ions given by A (. ) and the part it ion given by U (.) . In any implementation we

can use any of t hem to perfo rm any step since X = A(lJ) and U(x )" A - 1(x ), v x ,

T herefore, we can use the solution space:

S ={S = (X , A,U)/ X ~ L, A :D -+X, U : X-+2 D with A(u ) ., x iffu e U( x)}

T he p -faci lity problem is a directly-allocated LA problem wit h solution space:

s . {S o X I X .. LoIXI= p}

T hen the object ive function charncterizea the proble m . A list of these problems
is give n in Brandea u and Chiu (1989). We selected 10 of them. T his list is meant to be
illustrat ive, not exhaustive. All of them are directly allocated LA problems, ie., the
object ive cost function depends on the best allocation for every user. So me of these
problems are announced as maxi mization problems in the literature, but they arc all
formulated here by object ive functions to be min imised .
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Let
c(X,ul = min c(r,u).

..x

L T he p -median problem. The objective function is the average of the allocation
costs.

2. The p -center problem. The object ive fun ct ion is the maximum of the allocation
costs.

3. The balanced p -centdian problem. The objective fun ction is the sum of the
objective fun ctions of the p -median and the p -center problems.

4. Th e median p -center problem. The median p -center problem consists of
finding the optimal solut ions of the p -center problem with min imum average
allocat ion costs. The objective function is also a linear combination of the objective
functions of the p-median and p -center problems. It can be defined by

where a 2: max fl ( X ), For instance a = max d r , U).
XEL.uaJ

5. T he p -capture problem. This problem consists of maximizing the amount of
demand captu red by p facility points. We assume that the amount of demand of
every user captured by competi tors is inversely proportional to the corresponding
cost. The object ive fun ction of thep-capture problem is:

fsl X ) = I elY ,u) ,
uaJ c(Y,u )+c( X , u )

where Y represents locations the competitors already estabilished

6. The p-covering problem. The optimal solut ions of t he p -covering problem
maximize the amou nt of users within a distance r . The objective function is:

!.I X )= I!u e U'el X , u» rll·

7. T he p-equtty problem. The opt imal solutions are those minimizing the
difference between the objective functions of the p-center and p-median problems .
The object ive functions is:
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8. The p -anticenter problem . The opti mal solutions are those maximizing the
minimum of the allocation costs. The objecti\"f.' funct ion is:

f8(X ) = max - c( X, u)
.dJ

9. The p -mean problem. The objective funct ion IS the average of squared
allocat ion costs .

10. The p -tou-mcdlan peohlcm . The objective fun ction is the average of logarithm
ofthe all ocat ion costs .

(rc(Xl = lUll Ilo<dX, uJ.
• ,u

3. CHAIN-INTERCHANGE HE URISTIC METHOD

Most of the classica l heuri st ic search proced ures appearing in the literature to
be applied to location -allocation problems can he described using moves (or
neighbourhood st ructu res). &1.' Cooper (1964 ), Handler and Mirchnndani (979).
Jacobsen (1983), Kuehn and Ha mburger (1963 ), Maranzana 0 964 l, Moreno et al.
(1991), Teitz and. Bart (1968) etc. This is formalised below .

3.1. Search moves for LA problems

Let (S,n be the solution space and the object ive funct ion of a combinato rial
problem. A heuristic search procedure consists of a st rategy to apply a ser ies of search
moves. The search moves are operations to obtain a solution S e S s tarting from
another solution T e S .

For a location-allocation problem, let S "" (X, A, V ) be the cu rrent solut ion
"riven by the locat ions X, the allocations A and the partition V . T he usual elementary
moves for locat ion -allocati on problems are the follow ing:

• Reallocation of demand point u to facility point x .
-c Take x e X und e e t/ witb V(A ( u »~{u}.

- DoA(u )_ x .

• Opening of a facility point at x to serve demand point u ,
-c Take r e Xund e e D ...vith V(A(u))~{u}.

- Do A(u ) 4- x .
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• Closing of the facility center attending demand point u.
- Take x e X and U e U(x ) wit h U(A (u» = {u} .

- Do A (u ) .... x .

• Translation of the facility point at x to y .
- Take xe X and Y fl X.

- Do A {u ) .... y for vu e U (x ).

The elementary moves only modi fy one item of the solution . Reallocat ion,
Opening and Closing moves only modify the allocat ion of a demand point, so the closed
and opened facility center corresponds to singleton demand sets. A translation move
only modifies the location of a facility point.

The set of feasible solutions of a directly-allocated locat ion- allocat ion problem
is S = {S z X I X ~ L }. Let X be the current solution, then the usual elementary moves

for these problems are:

• Addition.
- Takex fl X and do X s-, X u {x}.

• Elimination.
- Take x e X and do X .... X \ {%}.

Finally, the set of feasible solutions of a p -facility location-allocation problem
is S = {S '" X I X ~ L : IXI ::: p} .Then the usual elementary move for these probl ems is:

• Subtitution.
- Take %E X andy fl X and do X .... (X \ {%})u{y}.

Given a set of (elementary) moves. solut ion T is a neighbour of solut ion S if
there is a move that produces T from S . The neighbourhood N (S) of solut ion S is the
set of neighbours of S . The ne ighbourhood st ructure is very important for the success
of a search procedure. From elementary moves, one can define multiple or combined
moves.

3.2. Chain-interchange moves

A common property of Reallocation . Opening and Closing on the one hand and
S ubstit ution moves on the other is that they all interchange pos it ions of some ent it ies
(variables) that belong to the solut ion with some that are not in the solut ion. If the
solution is represented by pairs (%, u ).%E L, u E D (or by edges of an associated graph).
then reallocation . opening and closing moves mean that one ed ge is moved out of the,
solut ion and another one goes in it. On the other hand, if the solut ion is represented as
a su bset of L(X l;; L then an interchange move is a su bstitut ion move: one facili ty
(vertex of associated graph ) goes in X. another goes out .
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We shall now int rod uce a new chrun-interehnruse move. This move could 1x1
obtained as lin extension of reallocation, ope ning, closing and subst itution moves: if
dements that should be inter-changed from one step to another are edges (.r,u ) of
associated graph. we have chain -reallocation , chain-opening or clunn -elcsmg m OVC8 ; if
suc h elemen ts are facilities x EX. then a cbain -eubetuution move is obtai ned . We shall
describe in detail only the chain-subst itut ion move and give a pseudo-code for it in the
next subsect ion . Analogous results hold for chain-realloca t ion . chai n-opening and
chain-closing.

Let us divide a set of facility points L into four disjointed subsets XI' TI, X2
and T2 , such that:

x =X l U TI. Xl n TI =0 . IX I =p

1~ \X =XZUT2• X 2nT2 =0. !L \ X I =m - p ,

with IXII = p - I I . !TIl=t l .IX21=m - p - t2 and ]T2!=re. Sets T1 and T2 are two tabu lists

with card inalit ies t l a nd tz respectively. Then the chain-substi tution move is as follows:

• Ch ain·s ub sti t u tio n move.
Take .r(l4< t E X I . X,Il E Xz• X · E TI and X~ E T2. Do the following:

X , ~ (X, I{ x~, }lU{x'};

TI .- (TI \ {x' })U{ X IIl } ;

X2 ~ (X2 I{ x ," }lU{ x"};

T2 ~ (T2 I{X " } lU { X O" ' } ·

As the result of the above fou r moves we obtain one substi tut ion move. i.e.• W(­

take .roul E X and XIIl E X and get X +- (X \ { .roul } )U { .rill }. The question is why do

we need four ins tead of only one subst itut ion move ? By taking out facility point .r....t
from X , t;; X, not from X • we force some facility points to he part of the solution for a

certai n number of steps, even if excl udi ng them from the solution wou ld produce a
better solu t ion . By implementing T 1 and T2 as order lists and if x ' E T1 is chosen in

f IFO (First In First Out) manner. then each facili ty should stay in the solution for
t , =1 T, I it erations . In t hat way at most t ,+ 1 ascent moves a re allowed in the aeerch

process (if the current solut ion is a local minim um ). T he same holds for facility poi nt
x" • i.c.• before it ~(Jes out from T 2 • it is forced to be out of the soluti on for t 2 iterations.
Let us ernphas izo this fact in the following Property.

Property I IAOt the lengths of tabu lists T 1and T2 be t J ami tz reepectwety. The
sequence of solutions X ,. i = 1.2•... obtained by successnie implementation of the chain­
substitut ion moues abaoe under the FIFO rule in T , and T2• has a period of length
u C!: t l + t2 + 2.

Proof. The seque nce Xu i = I .2•... could 'get into a loop' (a cycle of numbers
that is repeated endlessly) only if the same solut ion X is obtained after u steps . \'rle shal l

show that (1 C!: t l ... t2 ... 2 . Indeed . he minimum number of iterat ions facility .r~, E Xl

needs in order to belong to X, again is tl'" t2 '" 2 : one s tep to go out from X 1h ite-
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ra tions being in T2 because of the FIFO rule. at least one step in X2 and /1s teps in T I •

It is easy to see that all other facilities that leave the solut ion after X~I~/ could be in T I •

thus. in the solution. _

To change the positrons of two elements with indices out and in in some
ordered set xU . it is necessary to perform 3 ope rat ions: xx : :: x(out) ; x(out) : :: x(in );
x(in ) : :: xx, Note that for four changes we need only 5 operat ions (k and 1are indices of
the firs t entities introduced in tabu lists T I and T2 respectively):

Cb atn -su bst ttu t to n-move (out. k. ic . L, x)
xr : '" x(out);

x(out ) : '" x(k);

r (k) : = din);

r (in ): = x(l);

r(i) : = xx .

Note also that two important TS steps are performed with only these five
statements: (i) move to a new current solut ion ; Iii) update tabu list.

3 .3 . Algorithm

Let the number of demand Ifixed l points n. the number of facility points m and
the number of new facilities p be given . Let us assume that we are able to calculate t he
objective funct ion value /IX) if solution X !;; L is known . T hese are all the input data we
need. Output values of the chain-substitution procedure are : best found solut ion
X <>P/ : { xoP/(j ). j :l •. · ·· .P }andfoP/ ={(X oP/ )'

Chain-suhstitution (m , n. P. fopt. xopt (. ».

Step 1.

Step 2.

Parameters of the meth.!::!d
- t lo/2 : lengths of the tabu lists 1j and T2;

- nbmax: the maximum number of iterations between 2 improvements;

- nlong : number of times a long term memory process .....ill be used

(i .e.. how many times the procedure will be restarted in

a n unexplored area of solution space)

~
Let x(j ). j = 1, .. . •m be the set of facility locat ion points L in some order.

The first p of elements of r (] ). j : 1•. . . . , m represents the solution.

- Find an initial ordering of array x(j ). j = 1. _... •m.

{ Obtained at random. (i.e.• a random permutation of 1. . . . m )

or by any heuri st ic method (for example by a greedy heuristic ).}

- Put xnp, ( j ) : = r{j ). j = 1•...• m ; fop, : '" { (xoP/ );

{ X<>pf(j ) : = x(j I. j '" I, ... , P represen ts the incumbent solu tion

-(best solut ion fou nd so far )}
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- nbiter : = 0; { cu rrent iterat ion }

- besti ter := 0; { iteration when the best solution has boen found }

- enll :=1';cnt2 :=m ; { init ial values for counters in two tabu lis ts }

- d ():: O; )= I, ... , m; { Long - term memory array d {j ),J =I , ... , m.

represent the iteration number when variable J

left the solution the last time. }

Step ,1. Divers ificati on loop.
(or It - I to n/ong do

Step 4. • ot search ,
whil e (nbu er - besnter < k , nbmax) do

nbuer : = nbiter + I ;
S tep4.I . Fjnd..1.he best soluti on in the neil;hh2w:hood

- Generate a se t of neighbour solut ions .V(,x };

- choose non tabu solution x' nptimizinz ( over N ix );

I x' () differs from x (j ) in only two indices ou t and In )

- check if there is a tabu solut ion better than {opl {aspi ration lew!);

in that case, Xopt : = .r.

Around (m, n , p. t I, t2, x , t ', xapt, (opt , out, In ).

Kl'fP the best incu mbent solution
iC ir:< (opt ) then

{opt : = ( ' ; xopt (out l := x(m ); bestuer : » nbiter,

e"diC·•
Strp 4,3 . ll1.>date long · term memory

d (x (out )l :- nbuer;

Step 4.4. Move to t he new solut ion a nd \lMD-k..Yl~

C h a in -s u bs t itution - move tout, cnll ,m, cnt2, r );

('nt l :=clIt l - I ; If <Cnt l = p - tl ) then cnt l : '" p; (· " d iC;

cnt2 := cnt2 - I ; if (cn/2 = m - (2 ) then cnt2 : .. m ; ('ndiC;

endwhile
Step 5. Piycrs ificllt joll

{ Br ing: into t he sol ution variable j ' that has been out fur the longest t ime,

I . c. , - fi nd the minimum or d(j ), J == P + I, . " , m, and

- exchange its position with one from T, . }

J O: :Earwnin{ dtj ).j ==p+ I , ... , m };

XX" : == x(p );x(p ) : =. r (j" ); x (j") : = xx;

endfor h .

Obviously, the complexity of one iteration or the descent-ascent search (S tep 41
depends on the complexity or the procedure Around (S tep 4.1.) s ince Chain­
su bsrl t u t fo n -m o ve is O(1), We shall now give a pseudo-rode for the greedy or stet'<
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pest descent mildest ascent (Hansen (1986)) version of the algorit hm , i .e., a vers ion that
explores the complete neighbourhood consisting of p(m - p ) solut ions. T hen
modifications in order to get defferent versions are obvious: (i) partial greedy - take one
facility out of the soluti on at random and exchange it with al l m - p facilit ies that do
not be long to the current solution; ( ii) anxious search - enumerate all neighbourhood
solutions u ntil the first improvement ; (iii) random search • take u (a parameter)
nei ghbourhood solut ions at random: (iv) random walk • take one neighbourhood
solut ion at random , etc. Note that for the random walk algorithm we need no tabu lists
Itl ::. t2 : 0 ), since the probability of cycling is al most o. A similar conclus ion holds for
random search. Note also that l -sabstitutw n move (with al l versions mentioned
above) can in fact be viewed as a special case of ou r chain-interchange move, where the
parameters t1 '" ITII and t 2 '" IT21 are set at zero.

The detailed pseudo-code ofAround follows .

Arou nd {m, n, p, t l , ra. x, f", (op/. ' xopt ,out .in )

[" := big ;
fo r i = I to P { Enumerate candidates that go out of the solution}

jj : = x(i);

for k '" p + 1 to m { Enumerate candidates that go into the solution}

x(i ) : : x(k); { Interchange facilities }

{ : '" {( x ); { Find objective function in x }

if (i ~ p - t l and k s: m - (2 ) then { Keep the best non tabu solution}

if (( c [" J then

r :=( ;out :: itin :» k ; endif

e lse { Aspiration criterion }

if (( < (opt ) then

(opt := ( ; out :'" i; in :'" k; xoP/(out) :: x (i n );

eodif;
eodif:

en d fa r h j
x (i ) : '" ii .

endfor i ;

The Around procedure employs a simple type of aspira tion cr iterion.
consisting o f re movi ng a tabu status from a t ri al move when it yields a solut ion better
than the best obtai ned so far « opt ). Then it becomes both, the new cu rrent and new

incumbent solut ion.

3.4. Extensions

In the framework of TS both intensificati on and diversi fication of t he
sea rch are performed using so - called long . term me mory function . It has been not-
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ed that search with memory has many more cha nces to visit unexplored regi ons of tf-e
solut ion space t han ra ndom mult istart search. Moreover, mult ist art implcmentution
suffers from 'cont rul-Iimlt catastrophe (see Boese , Kahng and Muddu (l9~H » ) when the
problem size grows large. In Boese , Kahng and Mudd u (994) it is shown that usually in
combinatorial problems. V{'!'Y good solu tions are located near other good solut ions . That
result may explai n why Simu la ted a n nealing, tabu search and other descent-ascen t local
search heur istics have been so successful in practice. But these also explain .....hy TS hass
been successful even without using the long-term memory function (M'C Glo\'l'r and
Laguna 1994 & 3.4. for such applicat ions).

However; there arc easy ways to imple-ment TS long -term memories in nur
algorith m. One possihility has al ready been explained in steps 4.:1. and 5 of the

. algorithm: dj represents the last iteration number when facility point) Iutt ri buto of the
solu tion) has been in the solut ion (Sum and McKt>O....'11 (19931). Note that only one
ope ration in each iteration is m..eeded to update sequence d) (Step 4 31.

Another pos.eibrhty is to introduce frequen cy-based-memory (Glow r and
Laguna (1994 Jl in the cha in- intercha nge method . I...t r ) represent counts of the number
of occur rences of a facility point ) in the soluti on in previous it r-rations . When
improvement with loca l search is no longer possible, intensification a nd diversification
cou ld be performed using array r j tin Step 5 of the algorithm ) in some of the following
.....ays:

Table 1: Results for 47 European Cities: moxit» 10000, nlong= I , IJ= I , 12""3

~I 28;11

10 17677
15 12749
20 9328
25 6561
30 44 55

Obiecnve function value

RW l -int CS I

28711 29938 287 11
17845 18474 17677.
12918 12749 12749
9762 9fJ57 9328
6908 6920 6621
4705 4530 4455

RW

0.00
0.95
1.33
4 .65
529
5.61

'l> deviation

l -int CS I
4 .27 0.00
4.51 0.00
0.00 0.00
3.53 0.00
5.47 0 .9 1
1.68 0.00

CPU Time (sec)

HW l -int CS

9 .00 0.36 2.47
5 .M 0.4 2 1.55
4 47 0.73 1.29
:l96 0.75 1.!5
368 053 1.06
3.50 0.59 0.98

• Intensification by Setect tc n .
Take p largest elements from r

J
and put cor respond ing facilit ies into the "lew

solut ion. Among them , put correspo nding facilities into the new t hat correspond
to t 1 largest members of r) in T 1 :

• Uiversification by Nega tive Selection.
Bring into the solut ion p facilities with cor respo nding P smalles t vulues of arruy r)
(or d

J
) , etc.

4. COMPUTATIONAL EXPERI ENCE

T wo sets of experi ments .....ere conducted for the p-median prob lem only. The
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fir st one examined road distances between 47 important European cities (Moreno.
Garcia and Moreno-Vega (1994» ; the second one used the Ruspini (1970) data for 75
fixed points, which is widely referenced in classification or clustering' theory. Without
1055 of gen erality, in all testi ng it is assu med that a set of potential faciliti es is equal to
a set of customers (L =-D, m =-n ). We reported in Moreno, Moreno and Mladenovic (1994)
a comparison of Tabu search. Simulating Annealing and Genetic Algorithms in solving
the p -median problem . It was shown that the Tabu search method gives better results
than both the Simulating Ann ealing and Genetic Algorithm. Here we compare the
results of our Chai n-Substitution method (CS) ....rith another two well -known methods:
the Random Walk (RW) algorithm (wi th local improvement of the solutio n ) and descent
I-I ntercbange (l -Int}. In the Random Walk algori thm both, the facility that goes out
and that goes in are chosen at random. The new solut ion determines the partit ion of
the set of customers into p groups. Local improvement cons ists of solving separate ly p
l -fecility problems. i.e., the best center for each given set of customers is found. We
obtain the I· Interchange method as a special case of our Chain-Interchange method by
setting parameters t 1 and tz to zero (tabu lists are empty). RW and CS terminate when a
given maximum number of iteratio ns maxit is reached, while l -Int stops naturally
(when there is no better solution in the neighbourhood of a current solution ). The
results for the 47 European cities problem are given in Table 1. p represents the
number of new facilities and Z"PI the exact minimum value (Klose (1994» . The next
columns contain the objective function val ues, % deviation calculated relative to Z"PI

and CPU times for al l methods compared.

Ta ble 2 : Results for Ruspini data: marit=- 25000, nlong=1, t l=l. t2=3

Objective function value % deviat ion CPU Time tsect

4- z RW l -int CS R\V l -int CS RW l -int CS
779,68 779.68 796.44 779,68 o.00 2.15 0 ,00 49 .57 1.68 14.09

I . 512.81 5 15.14 5 12.8 1 5 12.81 0.45 0.00 0,00 29 .5 1 3.52 8.67
15 389.98 390.28 393.83 393,83 0.08 0.99 0 ,99 22 .75 5.45 7.12
2. 314.10 318.66 315.05 315.05 1.45 0.30 0.30 19.20 6.90 6.83
25 252.43 263.50 257.45 255.80 4.39 1.99 1.33 17.12 6.11 5.97
30 199 .41 214.28 208.56 207.37 7.45 4.59 3.99 15.79 5 68 5.40
35 159.90 169 .88 166 .48 163 .10 6.24 4.11 2.00 14.93 5.07 4.984. 127.63 139.56 132.46 128,62 9.35 3.78 0.77 14.30 4.74 4 62

The results for Ruspin i data are summari zed in Table 2. using the same
format as Table 1. The Chain-Substitution (CS) algorit hm out-performs both l -Int and
RWI while using smaller CPU times.

5. CONCLUSIONS

The I- Interchange (swap) move was successfully applied to a large class of
combinatorial problems, but it did not allow escaping from local optima traps. We
suggest a simple extens ion of this move , chain-in terchange move, that allows us to
obtai n an efficient descen t-ascent local search heurist ic of the Tabu search type.

The list of the implementations of Ltnterchange. and thus chain-interchange
moves is very large. Even the simplex method for linear programming a nd some con-



cave minimization methods are of tha t type: one variable goes out of the busis, another
goes in . On the other hand, the same problem could have different interchange
st rategies, i.e., di fferent data. st ructures could he developed to solve the snrne problem
b)' t he using interchange method. For example, in dircctly-ullocuted LA problems t lu­
same solution can be represented as a subset of vertices (Iocnnona] as well WI a subset
of edges (a lloca t ions) of some graph . Obviously, the sot of neighbourhood solutions
obtained by all pa.sesible interchanges in both cases is not HlP same. This fact eoulrl Iirmt
a general approach in which problem-specific knowledge is ignored . In thi~ paper we
suggested some "middle" approach: recogn ize a class of problems wit h eimilnr properties
, stich t ha t the sa me data st ructure (the same I1l".'orithml mil)' be applied. W{,lIddrl'!'"ed
our a ttention to loca tion-allocation problems which huve similar problem-specifi c
k nowledge . To solve them we developed a version of the chain-interchangr- method , the
cha in-substitution algorithm.

Future work on t his "middle" approach wit h the cbain.interchanee methods
could be developed in four direct ion s: (iJ enlarge the class of problems that could be
solved efficie nt ly with the chain-eubeutution algor ithm proposed in & 3,;) of this paper
(by on ly changing the subrout ine that evalua tes objective function). and compare
resul ts with other gooQ heur istics (for each particular problem ), TI.('St' could be for
example p -clu ster problems, n-dlsperslon problems. simple plant location problems.
quadra tic knapsack proble ms. concave minimization problems etc., {iil to solve lar~'l.'

instances of L\ problems extend the basic version of the chasn-subetuuuan algorithm
usinJ: some hybri ds or other kn own idl'(t.'l from TS; (iii) develope data structures that
allow implementation (If othe r version of the chnin-interchnn ge method suc h as chain­
reallocation , cha in-opening, cha in -closing etc, and compare results with the chain­
substitution algor ithm; (iv ) in this paper we propose a t -chein -intcrchea ge method.
Obvi ously it cou ld be generalized to a k -cbain-intercharuie algo rithm. Then it becomes 8

hybrid of the Variable Neighbou rhood Algorithm (l'o1Iadt'novlc (1995) and TS.
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