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Abstract: This paper describes a new Tabu search-like technique for solving
combinatorial optimization problems. The chain-interchange move is introduced.,
which is an extension of the well-known 1-interchange move. Instead of interchanging
one solution attribute that is in the solution with one that is not, four attributes are
interchanged. In that way the Tabu search recency-based memory is easily obtained,
i.e., the possibility of getting out of the local optimum trap can be achieved without
additional efforts. Some location-allocation problems that could be solved by the same
chain-interchange algorithm by only changing the objective function are listed.
Moreover, most of the problems listed are suggested for the first time to be solved by
Tabu search method (TS). Computer results are reported.
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1. INTRODUCTION

A new local search heuristic Chain-interchange method for solving
combinatorial optimization problems is proposed. It could be seen as a Tabu search
method adapted for a large class of problems, as well as an extended interchange

heuristic.

TS was introduced by Glover (1986) and independently by Hansen (1986)
(under the name Steepest Ascent Mildest Descent) as a meta-heuristic designed to get a
global optimum to combinatorial optimization problems. TS belongs to a class of

! Work on this paper was initialized during a visit of the first author to La Laguna University.
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Local Search Heuristic Methods, or more specifically to a class of Descent-Ascent
Methods (Hansen and Jaumard (1990)).The major components include a short-term
memory process which is the core component of the search procedure, an intermediate
memory process for regionally intensifying the search, and a long -term memory process
for globally diversifying the search. The short-term memory process is implemented
through a set of tabu conditions and the associated aspiration criteria. The idea is to
prevent cycling in the descent-ascent process by avoiding reversal or repetition of
previously wvisited solutions. Intermediate and long-term memory processes are
performed by restricting the search in a special subregion and by inducing the search in
a new subregion of the solution space. TS has already been applied to an increasingly
wide spectrum of problems. For a survey of a variety of successful applications, see
Glover (1980, 1990) and Glover and Laguna(1994).

For each particular problem researchers developed neighbourhood structures,
short-term, intermediate and long-term memory processes in order to build a few TS
rules in existing local search heuristic methods. We have the opposite purpose in this
paper: find a class of optimization problems that could be solved using the same TS
memory processes , i.e., the same data structure. Our work is based on the fact that
there are many more optimization problems that could be solved by TS than data
structures developed to solve them in an efficient way. Thus our method applies to a
large class of combinatorial problems, and for each problem just the subroutine
evaluating the objective function value has to be changed.

The method proposed in this paper is an extended Interchange heuristic.
Instead of interchanging two variables (attributes) in order to generate the
neighbourhood of a current solution, we interchange the positions of four variables.
This simple extension of well known descent local search 1-interchange methods allows
us to obtain the following properties: (i) move at each iteration to the best neighbouring
solution , even if it is not better than the current solution (to avoid a local optimum
trap); (ii) introduce two waiting (tabu) lists (to prevent cycling). Lists consist of
variables waiting to go out of the solution and to go into the solution respectively.
Hence, we save time and memory by storing not the tabu solutions themselves, but one
of their attributes; (iii) bring into the solution that variable which has been out of the
solution for the longest time (to induce the search in a new region of the solution
space.). Problem-specific knowledge now can be easily embedded in the algorithm, or,
any existing descent heuristic method of the Interchange type can be extended, using
the same data structure.

We shall illustrate our method on some discrete location-allocation problems.
The paper is organized as follows. In the next section we formulate the p-facility
location-allocation problem and give a list of some models that could be solved with our
method by only changing the objective function. Our list of applications is meant to be
illustrative, not exhaustive. In Section 3 we explain the rules of our Chain-Interchange
(CI) algorithm within the Tabu search (TS) framework. Computer experience is
reported in Section 4. Section 5 concludes the paper.

2. THE p-FACILITY LOCATION-ALLOCATION PROBLEM

The Location-Allocation (LA) problem consist of finding the best selection of
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points to open facilities at them and the way to serve the users. The objective cost
function to be minimized depends on the relative situation of the facility points and the
demand points. In a wide class of relevant location-allocation problems, every
alternative solution consists of a fixed number, say p, of facility points to be opened and
then the optimal way to serve the users. For every set of p facility points, the optimal
allocation of users to the facility points gives the optimal cost. Then the problem
consists of finding the set of p facility points that minimizes the corresponding cost.
These are the p-facility location-allocation problems where the feasible solutions are
the sets of p facility points and the objective function ranges from simplest to those
computed by solving an allocation problem (see Brandeau and Chiu (1989)).

In order to formalise discrete LA models, we consider set L of m potential
location points, set D of n demand points and mxn matrix with the costs c(x,u) of

attending a user at & from a facility at x, Vx € L, Yu € D. Every alternative solution is
given by the set X of location points chosen for the facilities and the allocation of every
demand point u eU to the facility point A(u) € X that serves every user at u. The
objective function to be minimized depends on the locations X and the allocations A(.).

For directly-allocated models the objective cost function is monotone and every
user at u is allocated to the facility point A(u) such that c(Au),u) €clx,u), vxeX.

Then the solution space for these problems is S = {S§ = X / X < L}. On the other hand,

for any LA problem, given the allocation A(.) of the users, the location of the facilities is
given by X=A(D). So the solution space can be considered to be
S={S=A/A:D- L}. Another way to give the allocations consists of providing the

partition of the demand point set in the points allocated to every facility point, i.e., by
giving Ulx) ={u e D: Alw) =x}, vxeX.

However, in order for describe the search procedure for these problems, it is
convenient to use all the items related with the solution; i.e., the locations given by X,
the allocations given by A(.) and the partition given by U(.). In any implementation we
can use any of them to perform any step since X = A(D) and U(x)= A '(x), Vx.

Therefore, we can use the solution space:
S={S=(X,AU)/XcL A:D-> X, U: X - 2P with A(w) = xiffu eU(x))
The p-facility problem is a directly-allocated LA problem with solution space:
S={S=X/XcL:|X|=p}

Then the objective function characterizes the problem. A list of these problems
is given in Brandeau and Chiu (1989). We selected 10 of them. This list is meant to be
illustrative, not exhaustive. All of them are directly allocated LA problems, ie., the
objective cost function depends on the best allocation for every user. Some of these
problems are announced as maximization problems in the literature, but they are all
formulated here by objective functions to be minimised.
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Let °
c(X,u)=min elx, u).
xeX

1. The p-median problem. The objective function is the average of the allocation

costs.
filX)= = Y elx,u).
IU uel

2. The p-center problem. The objective function is the maximum of the allocation

costs.
fo(X) =max c(X,u).

uel!

3. The balanced p-centdian problem. The objective function is the sum of the

objective functions of the p-median and the p-center problems.

fg(X}= fl{X}+ fg(}{}.

4. The median p-center problem. The median p-center problem consists of
finding the optimal solutions of the p-center problem with minimum average
allocation costs. The objective function is also a linear combination of the objective

functions of the p-median and p-center problems. It can be defined by

f(X) = (X)) +a fo(X).

where a > max f;(X). For instancea = max c(x,u).
xel uel

The p-capture problem. This problem consists of maximizing the amount of

demand captured by p facility points. We assume that the amount of demand of
every user captured by competitors is inversely proportional to the corresponding

cost. The objective function of the p-capture problem is:

(Y, u)
X)= S :
f5(X) n%; e(Y,u)+e(X,w

where Y represents locations the competitors already estabilished

maximize the amount of users within a distance r. The objective function is:

felX) = [{u EU:C{X.u}:-rH.

The p-covering problem. The optimal solutions of the p-covering problem

The p-equity problem. The optimal solutions are those minimizing the

difference between the objective functions of the p-center and p-median problems.

The objective functions is:
fT{Xj — ﬁJ{X}_ rl{XJ.
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8. The p-anticenter problem. The optimal solutions are those maximizing the
minimum of the allocation costs. The objective function is:

falX)=max —c(X,u)
uel)

9. The p-mean problem. The objective function is the average of squared

allocation costs.

folX) = — T e(X, ).
|U| uell

10.  The p-log-median problem. The objective function is the average of logarithm
of the allocation costs.

1

fiolX) = o Y logelX, u).
I“lueld

3. CHAIN-INTERCHANGE HEURISTIC METHOD

Most of the classical heuristic search procedures appearing in the literature to
be applied to location-allocation problems can be described using moves (or
neighbourhood structures). See Cooper (1964), Handler and Mirchandani (1979),
Jacobsen (1983), Kuehn and Hamburger (1963), Maranzana (1964), Moreno et al.
(1991), Teitz and Bart (1968) etc. This is formalised below.

3.1. Search moves for LA problems

Let (S,/) be the solution space and the objective function of a combinatorial
problem. A heuristic search procedure consists of a strategy to apply a series of search
moves. The search moves are operations to obtain a solution S €S starting from

another solution T € S.

For a location-allocation problem, let S =(X,A,U) be the current solution
given by the locations X, the allocations A and the partition U. The usual elementary
moves for location-allocation problems are the following:

* Reallocation of demand point u to facility point x.
— Takex € X and u e U with U(A(u)) = {ul}.

— Do Al(u) « x.

* Opening of a facility point at x to serve demand point u.
~ Takex X and u € D with U(A(u)) # {u}.

~ Do Alu) « x.
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* Closing of the facility center attending demand point «.
- Takex € X and u ¢ U(x) with U(A(u)) = {u}.

- Do A(u) « x.

* Translation of the facility point at x to y.
—~ Takex e Xandy ¢ X.

- Do A(u) « y for Yu e U(x).

The elementary moves only modify one item of the solution. Reallocation,
Opening and Closing moves only modify the allocation of a demand point, so the closed
and opened facility center corresponds to singleton demand sets. A translation move
only modifies the location of a facility point.

The set of feasible solutions of a directly-allocated location-allocation problem
is S={S=X/X c L}. Let X be the current solution, then the usual elementary moves

for these problems are:

* Addition.
~ Takex ¢ Xanddo X « Xu{x}.

* Elimination.
-~ Takex e Xand do X « X \{x}.

Finally, the set of feasible solutions of a p-facility location-allocation problem
isS= {S =X/XcL:|X|= p} . Then the usual elementary move for these problems is:

* Subtitution.
—~Take x e Xandy ¢ Xand do X « (X \{x}hu{y}

Given a set of (elementary) moves, solution T' is a neighbour of solution S if
there is a move that produces T from S. The neighbourhood N(S) of solution S is the
set of neighbours of S. The neighbourhood structure is very important for the success
of a search procedure. From elementary moves, one can define multiple or combined
moves,

3.2. Chain-interchange moves

A common property of Reallocation, Opening and Closing on the one hand and
Substitution moves on the other is that they all interchange positions of some entities
(variables) that belong to the solution with some that are not in the solution. If the
solution is represented by pairs (x,u),x € L,u € D (or by edges of an associated graph),
then reallocation, opening and closing moves mean that one edge is moved out of the.
solution and another one goes in it. On the other hand, if the solution is represented as
a subset of L(X c L then an interchange move is a substitution move: one facility
(vertex of associated graph) goes in X, another goes out.
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We shall now introduce a new chain-interchange move. This move could be
obtained as an extension of reallocation, opening, closing and substitution moves: if
elements that should be inter-changed from one step to another are edges (x,u) of
associated graph, we have chain-reallocation, chain-opening or chain-closing moves; if
such elements are facilities x € X , then a chain-substitution move is obtained. We shall
describe in detail only the chain-substitution move and give a pseudo-code for it in the
next subsection. Analogous results hold for chain-reallocation, chain-opening and
chain-closing.

Let us divide a set of facility points L into four disjointed subsets X, T}, X,

and T , such that:
X=X, UT, X,NT =, |X|=p

LAKX =X2UT2,XEHT2 =@,|L\Xl =m-p,

with |X;|= p—4,,|T}| = t;,|X3| = m - p—t; and |T5| = t,. Sets T} and T, are two tabu lists
with cardinalities ¢; and ¢, respectively. Then the chain-substitution move is as follows:

* Chain-substitution move.
Take x,,, € Xy, x;, € Xy, x' €T} and x" ¢ T,. Do the following:

X; «(X%; \{ s hu{x'k
Ty « M\ {xHU{ =, k

X, « (X3 \{x, hU{x"};
T « (T \ {x"HU{ 200 }-

As the result of the above four moves we obtain one substitution move, 1.e., we
take x,, e Xandx,, ¢ Xand get X « (X\{ x,,, })U{ x,, }. The question is why do
we need four instead of only one substitution move ? By taking out facility point x,,
from X; ¢ X, not from X , we force some facility points to be part of the solution for a
certain number of steps, even if excluding them from the solution would produce a
better solution. By implementing T, and T, as order lists and if x' €T} is chosen in
FIFO (First In First Out) manner, then each facility should stay in the solution for
ty =| Ty | iterations. In that way at most ¢,+1 ascent moves are allowed in the search
process (if the current solution is a local minimum). The same holds for facility point
x", 1.e., before it goes out from T, , it is forced to be out of the solution for ¢, iterations.
Let us emphasize this fact in the following Property.

Property 1 Let the lengths of tabu lists T; and T', be t; and t, respectively. The
sequence of solutions X,, i=1,2,... obtained by successive implementation of the chain-
substitution moves above under the FIFO rule in T, and T, has a period of length

i Efl +32 + 2.

P r o o f. The sequence X, i1=1,2,... could 'get into a loop’ (a cycle of numbers
that is repeated endlessly) only if the same solution X is obtained after « steps. We shall

show that « 2 #; +#» + 2. Indeed, he minimum number of iterations facility I:;i:: e X,
needs in order to belong to X, again is f; + &, + 2: one step to go out from X, ¢, ite-
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rations being in 7', because of the FIFO rule, at least one step in X; and ¢, steps in T',.
It is easy to see that all cther facilities that leave the solution after x'’, could be in T,

thus, in the solution. »

To change the positions of two elements with indices out and in in some
ordered set x(.), it is necessary to perform 3 operations: xx : = x(out); x(out) : = x(in);
x(in) : = xx. Note that for four changes we need only 5 operations (k and [ are indices of
the first entities introduced in tabu lists T'; and T'; respectively):

Chain-substitution-move (out, k,in, [, x)
xx := xlout);

x(out): = x(k);
x(k): = x(in);
x(in) : = x(0);
()= %r.

Note also that two important TS steps are performed with only these five
statements: (1) move to a new current solution; (ii) update tabu list.

3.3. Algorithm

Let the number of demand (fixed) points n, the number of facility points m and
the number of new facilities p be given. Let us assume that we are able to calculate the
objective function value f1X) if solution X c L is known. These are all the input data we

need. Output values of the chain-substitution procedure are: best found solution
Xopt = { XoptThJT=1,...,p } and fop = (X p).

Chain-substitution (m,n, p, £, ().

Step 1. Param fthe
— 11, t2: lengths of the tabu lists T} and T5;

— nbmax: the maximum number of iterations between 2 improvements;
— nlong: number of times a long term memory process will be used
(1.e., how many times the procedure will be restarted in
an unexplored area of solution space),
Step 2.  Initialization
Letx(), j =1,...,m be the set of facility location points L in some order,
The first p of elements of x(j), j=1,...., m represents the solution.
— Find an initial ordering of array x(7), j=1,....,m.
{ Obtained at random , (i.e., a random permutation of 1....m)
or by any heuristic method (for example by a greedy heuristic ).}
—Put x,,, () :=2()), j=1,...,m; fopy i = flxgp);
{ x,p(j):=2x(j), j=1,..., prepresents the incumbent solution
- (best solution found so far )}
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~ nbiter := 0; | current iteration }

~ bestiter := 0; { iteration when the best solution has been found }

~cntl := p;ent2:=m; { initial values for counters in two tabu lists }

~d(j):=0;j=1,...,m; { Long- term memory array d(j), j=1,...,m,

represent the iteration number when variable ;
left the solution the last time. }

Step 3.  Diversification loop.
for k& = 1 to nlong do

Step 4.

Step4.1.

Step 4.2.

Step 4.3.

Step 4.4.

Step 5,

Descent-ascent search.

while (nbiter - bestiter < k-nbmax) do

nbiter : = nbiter + 1;

Find the best solution in the neighbourhood

~ Generate a set of neighbour solutions N(x);
— choose non tabu solution x* optimizing fover N(x);

( x"(j) differs from x(;) in only two indices out and in)
— check if there is a tabu solution better than f,,, (aspiration level);

in that case, x,, :=x.

Around (m,n, p,t1,2,x, f", X0, fope, OUL, in).

Keep the best incumbent solution
if (f* < fo) then

fopt := [ 3 Xope (Out) == x(in); bestiter : = nbiter,

endif;
ate long - term mem
d(x(out)) : = nbiter;

he new solution an 18
Chain - substitution - move (out,cntl, in, cnt2, xJ;

entl ;= entl -1; if (cntl = p—-t1) then cntl : = p; endif;
ent2 = cnt2-1; if (cnt2 = m - t2) then cnt2 : = m; endif;

endwhile
Di ficati
{ Bring into the solution variable ;* that has been out for the longest time,
i.e., - find the minimumof d(j),j=p+1,...,m, and
~ exchange its position with one from 7). |

j*i=argmin{ d(j), j=p+1,...,m };

xx:=x(phx(p)i=x(j");x(j") = xx;
endfor k.

Obviously, the complexity of one iteration of the descent-ascent search (Step 4)
depends on the complexity of the procedure Around (Step 4.1.) since Chain-
substitution-move is O(1). We shall now give a pseudo-code for the greedy or stee-
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pest descent mildest ascent (Hansen (1986)) version of the algorithm, i.e., a version that
explores the complete neighbourhood consisting of p(m - p) solutions. Then

modifications in order to get defferent versions are obvious: (i) partial greedy - take one
facility out of the solution at random and exchange it with all m - p facilities that do

not belong to the current solution; (ii) anxious search - enumerate all neighbourhood
solutions until the first improvement; (iii) random search - take v (a parameter)
neighbourhood solutions at random; (iv) random walk - take one neighbourhood
solution at random, etc. Note that for the random walk algorithm we need no tabu lists
(t; = L = 0), since the probability of cycling is almost 0. A similar conclusion holds for

random search. Note also that 1-substifution move (with all versions mentioned
above) can in fact be viewed as a special case of our chain-interchange move, where the
parameters ¢; =|Ty| and ¢, =|T;| are set at zero.

The detailed pseudo-code of Around follows.

Around (m,n, p,t;,t3, %, , fopts Xapt» Out, in)

f* = big;
fori =1 to p { Enumerate candidates that go out of the solution }
) 2= x(t);
for k = p+1 to m { Enumerate candidates that go into the solution }
x(i) : = x(k); { Interchange facilities }
f := f(x); { Find objective function in x }
if (i < p—t; and k < m—t,) then { Keep the best non tabu solution }
if (f <f") then
f*:=f;out:=1i;in:= k; endif
else { Aspiration criterion }

if (f < f,,;) then
fopt = [iout :=1i; in:=k; x,, (out) := x(@in);
endif;
endif;
endfor k;
x(t) 1= Jf;
endfori;

The Around procedure employs a simple type of aspiration criterion,
consisting of removing a tabu status from a trial move when it yields a solution better
than the best obtained so far (f,,,). Then it becomes both, the new current and new

incumbent solution.

3.4. Extensions

In the framework of TS both intensification and diversification of the
search are performed using so - called long - term memory function. It has been not-
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ed that search with memory has many more chances to visit unexplored regions of the
solution space than random multistart search, Moreover, multistart implementation
suffers from "central-limit catastrophe’ (see Boese, Kahng and Muddu (1994)) when the
problem size grows large. In Boese, Kahng and Muddu (1994) it is shown that usually in
combinatorial problems, very good solutions are located near other good solutions. That
result may explain why simulated annealing, tabu search and other descent-ascent local
search heuristics have been so successful in practice. But these also explain why TS has
been successful even without using the long-term memory function (see Glover and
Laguna 1994 & 3.4. for such applications).

However, there are easy ways to implement TS long -term memories in our
algorithm. One possibility has already been explained in steps 4.3. and 5 of the
-algorithm: d; represents the last iteration number when facility point j (attribute of the
solution) has been in the solution (Sum and McKeown (1993)). Note that only one
operation in each iteration is needed to update sequence d, (Step 4.3).

Another possibility is to introduce frequency-based-memory (Glover and
Laguna (1994)) in the chain-interchange method. Let r; represent counts of the number
of occurrences of a facility point j in the solution in previous iterations. When
improvement with local search is no longer possible, intensification and diversification
could be performed using array r; (in Step 5 of the algorithm) in some of the following
ways:

Table 1: Results for 47 European Cities: maxit=10000, nlong=1,t,=1, {,=3

p— ——————

Objective function value " %deviation ___ CPU Time (sec) |
Lint L —

29938

18474 17677

12749 12749
9657 9328
6920 6621

* Intensification by Selection.
Take p largest elements from r; and put corresponding facilities into the new
solution. Among them, put corresponding facilities into the new that correspond
to ¢, largest members of r; in 7', ;

* Diversification by Negative Selection.

Bring into the solution p facilities with corresponding p smallest values of array r;
(ord;), etc.

4. COMPUTATIONAL EXPERIENCE

Two sets of experiments were conducted for the p-median problem only. The
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first one examined road distances between 47 important European cities (Moreno,
Garcia and Moreno-Vega (1994)); the second one used the Ruspini (1970) data for 75
fixed points, which is widely referenced in classification or clustering theory. Without
loss of generality, in all testing it is assumed that a set of potential facilities is equal to
a set of customers (L=D, m=n). We reported in Moreno, Moreno and Mladenovi¢ (1994)
a comparison of Tabu search, Simulating Annealing and Genetic Algorithms in solving
the p-median problem. It was shown that the Tabu search method gives better results
than both the Simulating Annealing and Genetic Algorithm. Here we compare the
results of our Chain-Substitution method (CS) with another two well-known methods:
the Random Walk (RW) algorithm (with local improvement of the solution) and descent
1-Interchange (1-Int). In the Random Walk algorithm both, the facility that goes out
and that goes in are chosen at random. The new solution determines the partition of
the set of customers into p groups. Local improvement consists of solving separately p
1-facility problems, i.e., the best center for each given set of customers is found. We
obtain the 1-Interchange method as a special case of our Chain-Interchange method by
setting parameters ¢, and ¢, to zero (tabu lists are empty). RW and CS terminate when a
given maximum number of iterations maxit is reached, while 1-Int stops naturally
(when there i1s no better solution in the neighbourhood of a current solution). The
results for the 47 European cities problem are given in Table 1. p represents the
number of new facilities and z,,, the exact minimum value (Klose (1994)). The next
columns contain the objective function values, % deviation calculated relative to z,,
and CPU times for all methods compared.

Table 2: Results for Ruspini data: maxit=25000, nlong=1, t;=1, t,=3

| Objective function value % deviation __ CPU Time (sec) |
1-int W RW_ 1-int CS

168 1409

352  8.67

5.45 712

690 6.83

611 597 |
568 540 |
507 498 |
474 462 |

The results for Ruspini data are summarized in Table 2. using the same
format as Table 1. The Chain-Substitution (CS) algorithm out-performs both 1-Int and
RW, while using smaller CPU times.

5. CONCLUSIONS

The 1-Interchange (swap) move was successfully applied to a large class of
combinatorial problems, but it did not allow escaping from local optima traps. We
suggest a simple extension of this move, chain-interchange move, that allows us to
obtain an efficient descent-ascent local search heuristic of the Tabu search type.

The list of the implementations of l-interchange, and thus chain-interchange
moves is very large. Even the simplex method for linear programming and some con-
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cave minimization methods are of that type: one variable goes out of the basis, another
goes in. On the other hand, the same problem could have different interchange
strategies, i.e, different data structures could be developed to solve the same problem
by the using interchange method. For example, in directly-allocated LA problems the
same solution can be represented as a subset of vertices (locations) as well as a subset
of edges (allocations) of some graph. Obviously, the set of neighbourhood solutions
obtained by all possible interchanges in both cases is not the same. This fact could limit
a general approach in which problem-specific knowledge is ignored. In this paper we
suggested some "middle” approach: recognize a class of problems with similar properties
, such that the same data structure (the same algorithm) may be applied. We addressed
our attention to location-allocation problems which have similar problem-specific
knowledge. To sclve them we developed a version of the chain-interchange method, the
chain-substitution algorithm,

Future work on this "middle" approach with the chain-interchange methods
could be developed in four directions: (1) enlarge the class of problems that could be
solved efficiently with the chain-substitution algorithm proposed in & 3.3 of this paper
(by only changing the subroutine that evaluates objective function), and compare
results with other good heuristics (for each particular problem). These could be for
example p-cluster problems, p-dispersion problems, simple plant location problems,
quadratic knapsack problems, concave minimization problems etec.; (i1) to solve large
instances of LA problems extend the basic version of the chain-substitution algorithm
using some hybrids or other known ideas from TS; (iil) develope data structures that
allow implementation of other version of the chain-interchange method such as chain-
reallocation, chain-opening, chain-closing etc. and compare results with the chain-
substitution algorithm; (iv) in this paper we propose a l-chain-interchange method.
Obviously it could be generalized to a k-chairt-interchange algorithm. Then it becomes a
hybrid of the Variable Neighbourhood Algorithm (Mladenovié (1995)) and TS.
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