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Abstract. For unsolvable generalized equations with monotone mappings on the left
side the notion of approximative roots is introduced. The (existence) theorems are
proved and numerical methods for finding approximative solutions are proposed. The
application areas are the analysis of contradictory models of optimization, game theory,
economic equilibrium, etc.
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1. INTRODUCTION

Monotone mappings play an important role in the optimization theory because
many problems that involve convexity can be re-formulated in terms of such mappings,
e.g. convex mathematical programming problems as well as saddle-point problems,
complementarity problems, and problems of the game theory of the theory of economic
equilibrium [1-2]. In this paper the recent problematics of improper (in other terms ill-
posed or unresolvable) mathematical programming problems [3-4] is transferred to
generalized equations with monotone mappings on the left side.

Let E be a finite-dimensional Euclidean space, G - some subset of the direct
product E x E, () - scalar product of two vectors. Set G is called monotone, if for any

two points (2’, ¥') € G, (2", y") € G the following inequality holds

(zr - zu' y: - yn) E 0-
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and maximal monotone, if it is not properly contained in any other monotone set.
Set (7 generates the pair of point-to-set mappings T E — 2F and T E - 2F,
namely
Tz= {v:{z,y} € G} T_ly= {z:lz,y] & G}

If G is monotone (maximal monotone), both of these mappings are called monotone
(maximal monotone),

The problem we are interested in is concerned with the roots of 7, i.e. such
vectors z € E, that

Tz 50. (1)

We shall study the case when this generalized equation has no solution and therefore
must be corrected. Our analysis is based on the approach developed in [4] for improper
mathematical programming problems.

The main framework is as follows. Let

T(x)z>0 (2)

be a parametrical imbedding of the original equation (1) into some family of equations
depending on the vector parameter A € E, (of finite dimension) so that under some

values 4, = i; we have T(1') = T and the set

W = {L € E,: equation T'(%.) z 3 0 has at least one root }

is non-empty.

Any choice of the parameter ... €W determines the concrete variant of
correction of unsolvable equation (1). Assume that this choice is restricted by some set

R, R(1W = @, and that there is a point-to-set-mapping S:E; — 28 evaluating this
choice (e.g. subdifferential mapping of some convex secalar function evaluating the
difference A —1'). According to general ideas of [4-6], let us consider the problem of
finding S-optimal correction parameter value A in the following form

A
find the vector i, € W, =cl(R[W) such that for some s, € Sk,

and for any i € Wy, the following inequality holds
(Sg g — k) <0. (3)

Note that this problem belongs to the class of so-called variational inequaliti-
es, for which the quality theory and numeric techniques have been developed [1-2, 7
and others]. The solution to equation (2), corresponding to Ay (or its e-approximation, if

ko € W), will be called to the S-approximative solution of equation (1).
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A closure operation in the definition of the set Wy is introduced for some
regularization of the problem.

If S.=A-2 and the set ¢/ W is convex then the S-approximation is
equivalent to finding the element of ¢! W closest to . .

2. MAIN RESULTS

In the sequel we assume that some monotone mapping F:E x E, — 255 of
arguments 2, A exists with the property

T(.) z={y € E:3h e E, such that (y, k) e F(z,.)}. (4)
Since F' is monotone, the mappings T'(A) are monotone too for any 2.

Theorem 1. Let F be monotone and condition (4) holds.
Then mapping f: E;, —» 2% defined by the formula

fi={y €E, :3zsuch that (0, y) € F(z, 1)}, (5)

15 monotone too. Moreover

W ={A €E, :T(1)z 3 0 solvable} = dom f,

where dom [ denotes the efiective domain of the mapping f - the set of all points with
non-empty images.

Proof. If y e fi, ¥ e fA" aretaken arbitrarily then by definition of f the
points 22"k exist such that A'=E\N)edomF, A" =(z",2"VedomF,
w'=(0,¥)eFlh'), w"=(0,y")eF(h"). Consequently (due to monotonocity of F) we
have

(' =", A =A")+(0-0,2" - 2") =
w' -w", h'-h")20.

(="l =AL)

N,

To show that W =dom [ let us take any A € W. For some z € E we have
0TG)z={y:3h cE,(y,h) €F(z,.)}. Hence there exists hcE, such that
(y,h) € F(z,)), i.e. h & f ), and therefore [ i # @. Conversely, if we take any % edom f,
then points y € E, and z € E exist such that (0,y) € F(z,2). Due to (4) this means’the
inclusion T(A)z > 0. .

A set M is called almost convex if ri(conv M) = M. From the known theorem

[7] a about the structure of the effective domain of maximal monotone mappings there
follows.

Corollary 1. If mapping [ in relation (5) is maximal monotone then set Win
problem (3) of finding the S - optimal correction parameter value of equation (1) 1s
almost convex.
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Let us present the conditions that will be used below in different
combinations.

(a) Mappings F:Ex E;, — Vel andf:E, —» 2% from formulae (4)-(5) are
maximal monotone.

(b) Set R is closed and convex and ri R\ ri(dom f) # @.

(¢) Mapping S:E, — 2% is monotone, upper semi-continuous and its values
are convex compact sets over Wi = cl(dom f [ R).

(d) The point hy ert Wy and a compact set D surrounding it exist with the
property: for any L € Wy N D there exists s e Sk such that ( s,.~hy )2 0.

Set D is said to surround a point h, if for any /eE there exists € = £(/) > 0 such
that kg +& I € D (e.g. the sphere {A:| A —hg || =r} with the center at k, surrounds it).

Assumptions (a) - (d) guarantee that the problem (3) has solutions and seen
the weakest among the conditions of such type for monotone variational inequalities [1-

2, 8-9].

Define auxiliary mappings H* : Ex E;, —» ghek; f*:E, - 25 by the rules

H (2.3) = {uF{z. 1)+{0} x Sga for (2,1) edom FNL,
@ otherwise;
£ (0) = {ﬂfl*l*sﬂl for A edom Si [ dom f,
2 otherwise.

Here Sp =S+ Npi, mapping Ni:E;, — 2B is generated by normal cones to set
Rbyrule Ngi={l:(,A-h)>0foranyh R}, domSg=R(domS, L={(z4):
zeE, A edomSg }, a > 0.

Under the above assumptions mapping f® will be maximal monotone. The
mapping H” will be maximal monotone if condition (¢) holds for the whole R.

Theorem 2. Generalized equations f“ 130, H®(z,)30 are solvable or not
simultaneously.

This follows from the fact that if (z,4) is any root ol mapping H®, then A is a
root of mapping f“, and conversely, if % is any root of f®, then there exists z € E such
that (z,1) is a root of H®,

Theorem 3. Let F' be monotone, the conditions (b), (c) hold and the sequence

{%,} consists of the roots of the mappings f“~, where a, — +0. Then all cluster points
(if any exist) satisfy variational inequality (3).
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Proof Let i; e Wi be an arbitrary cluster point of the sequence {},}. We
may suppose Ag = lim,;, 4,. Theorem 2 implies that with sequence (4,} there may be

associated some sequences {z,}, {s,}, {u,} and {l,) such that s, €Sh,, I, Ngh,,
(0,u,) e F(z,, 4, ) and
Sy = —dp —0p Uy. (6)

Since sequence {A,} is bounded then, due to the declared properties of mapping S,
sequence {s,) associated with it is bounded too. All its cluster points belong to S 1,.

Let 5, be any one of them (one can think sy = lim,, s, ). Let us show that (s,
Ag—A) <0 forall & € RMNdom f (therefore for all . € Wy).

Indeed, since f is monotone (see Theorem 1) and u, €/ 4,, we have
( psh=Ay )s{ u,A-2, ).

From the definition of normal cones it follows that

(1A% §S0.
Hence for a fixed . edom f and any n we have

( s M =A Y= ( by h=2p )40 ( tnsA=2p YSn{ 6, A=2p ) )

Letting n to infinity, we shall get the desired inequality.

Corollary 2. Let all assumptions of Theorem 3 and condition (a) be valid, and
let the set Wg of the solutions of inequality (3) be not empty and lie in W.If 3, is any
cluster point of the sequence {A,} and f 2, is bounded then for some wg € f A the
inequality

( ug,Ag-x )<0
holds for any A € W}g.

P r o o f. Maximal monotone mappings are upper semi-continuous.
Then under the above assumptions there exists a cluster point u, of the sequence {u, ]

(one can think u, = lim,,, u, €f 4y). Take any A € Wg. From the definition of set ng
as well as the properties of normal cones and the monotonicity of S there exists s € SA
such that (see (6))

(U Ay =N =Y, (-8, =1, A, -\ s Ya, ( 8,A-2, )<0.
Letting n to infinity, we shall get the inequality we wanted.

Theorem 3 shows how to find the S-optimal vector of correction i, and the
approximative root of equation (1) corresponding to it: we must choose a small a>0
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and find the root (z, %) of the mapping a H ,.The vector %, will be good « aaproxima-

tion to A , as close to it as a is small.
We shall now give some conditions which guarantee the solvability of

equations f“2 30, 0 <a <ay, and the boundedness of their solution sets in coupling.

Theorem 4. Let take that the assumptions (a)-(¢) hold and the mapping S
are strongly monotone on Wipwith module >0, 1i1e for all

10" eWp, seSL', s" eSL" the following inequality holds
(s'=5", A'=A")2y[A -A" |[2

Then the mapping [ is strongly monotone too it has the unique root i, and
theset Ag= |J A, is bounded for any «g > 0.

D<a<ay

Proof Take any u' e f*L', u” € f*L". We can present them as the sums
u=s+l'+at’, u"=s"+1"+at", wheres' eS1’, s eSL", ' eNgd', I"eNgh", t' efl’,
t" e f)." . Since [ and Ny are monotone and S is strongly monotone, we have

(u+ -u"._, l: — l"} = <Sl_snl l'— ?L")'l‘
+(I- _In. if-lif) +a (t.t_fn' lr_ lu) > Tu l' _l" Hz.

1.e. the mapping f“ also satisfies the condition of strong monotonocity. Being maximal
monotone it has the unique root 4, [1].

Next, let us show the set Ay bounded.

Take any iy eriWg =ri RN\ ri (dom f), sg €Sy, Iy e Nghy, ty =f hg- Since
f* is strongly monotone with the module y> 0 and 0 & [ A, we have

2 .
Aa—4Ao “ £+< sﬂ""lﬂ"'ﬂtﬂ' o —4p )

|
Then
Yl 2a=2o [T < 50 |+] lo [+ to D[] 2a =20 |,
l.e.
| 22 "3?_]{” so 1+l 7o |+eol £ [
forall a <a, .

Note that the condition of strong monotonicity of S over Wximplies that over
condition (d) is true.

Corollary 3. Suppose that all assumptions of Theorem 4 hold and A,
dom [ is the solution to problem (3). Then

| 220 [sev ™| 2 |
for any z, € f),.
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P r o o f. The mapping of S is strongly monotone. Therefore for all s, € Si_ , 5, € Shy
the following inequality holds

( 8 —80s g =2g )2 ¥] Ay=2g |*.
Using inequalities (3), (7) we have

Y[l ba =ho HEE( Sar Ag =M }+{ 50, Ao~ ta )5< 8as g —ho }'5
<-af 25, Ag=Ag )sa| 2o || | 2a=%0 .

which proves the Corollary,

The condition of strong monotonocity of S may be omitted if we use a more
restrictive variant of condition (d). Let V" denote the set of roots of mapping /.

Theorem 5. Let assumptions (a)-(¢c) be valid as well as the following variant
of condition (d): there exists a point hy eri Wy c ri(dom ) and a compact set D

surrounding it with diameter d such that for any » edom " (1D there exists s € S &
for which ( s, 2 ~hgy )26, where dom f* =R [\ dom f, 5 >0 is fixed.. If there exists
0%ty ef hyg then thesets V" 0<a <ay,=8/(d| ¢ | ), are non-empty and bounded in
coupling (namely they all lie in D). If in addition fhg 30, then V¥ c D forall a > 0.

P r o o f. The mappings of f* are maximal monotone. We will show that for
0 <a <ag all of them satisfy the condition of type (d) relative to set D, Indeed, let
LeDNRNdom f, leNgh, tefhandseShbesuchthat( s,A-hg )25 . Then it

is obvious that s, =s+/+af € f"4 and for all 0 <a < ay we have inequality

( SarA-hg )=(s A-hg )+( L A-hg )+a( t, A-hg )2
28+ ( tg, A-hg )2d-ag| ty |d=0,

The reference to the theorem on the existence of the roots of monotone mappings [see
9, p.228] ends the proof.

3. THE CASE OF LINEAR PARAMETERIZATION

Assume that
TUJE.': Tz-l, A EE = E;_.

We shall call it the case of linear correction (shifting) of equation (1),
Obviously, one can include the linear case into the framework of Section 2: it is

enough to take F'(z,%) = (Tz-2)x | z} as the mapping F. This implies that f = 7! and

equation
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Tz~ )30

has a solution if and only if A edom T,

The variants of conditions (a)-(d) corresponding to this case are enumerated
bhelow,
(a') Mapping T s maximal monotone (the main consequence of this is that T

. : | , - e L
will be upper semi-continuous over rildomT) and the sets dom T, domT = will be
almont convex [7]

(b') Set R is convex, closed and ri R(\ri(domT ") ¢ @,

(¢') Mapping S is monotone, upper semi-continuous and its values are convex
compnet sets over Wy,

(d') There exists a point by ¢ ri Wy and a compact set D surrounding it with
the property: for any 2 e ri Wy (1D there exists s € Sa such that ( s, 4 -hg )20,

Let us again construct the auxiliary mappings 7" . E - 2’:. S E— 2!"', ¢
ExE - 25E ag follows

Tz - Sﬁl{ «wz) forze domT()(-1/adom S;tl:"
7"z«

@ otherwise;

G - Sph+al ' forh e domSy N domT ™
| @ otherwise;

H" (2 1) {u?‘z ~ah fx {Snl raz } for (z,4) € dom H"
; z'l ™

) otherwise;

Here Sy =S+ Ni, Np:E - 2F is monotone mapping generated by normal cones to
the set R, dom Sp = RN dom S, dom H* = { (z,0):z edom T, k edom Sy }, a » 0.

Conditions (a')- (¢') guarantee the maximal monotonocity of mapping 8" only,
The mapping H" will be maximal monotone if condition (¢') holds not only on Wy but
on the whole set B, The maximal monotonoeity of 7 may be obtained by assumption
ritdom T)(\ri(-1/adom Sg') » @, which in turn may be obtained (for small a > 0)

from inclusion 0 e int (dom Sg'). All these facts are consequences of the well-known

theorem on maximal monotonocity of the sum of maximal monotone mappings (see e.g.
[9], p.234).

Let us present (without proofs) the analogouses of Theorems 2 - 4 for the
linear case

Theorem 6 The equations
S*%20, T"2»0, H"(z,1)»0

are solvable or not solvable at the same time,
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Let Z% be the set of the roots of the mapping T and W® be the set of the
roots of the mapping S”.

Theorem 7. Assume the mapping T is monotone, conditions (b’), (¢’) hold and
the sequence { %, }consists of the roots of the mappings S%», where a, — +0. If this

sequence has cluster points then all of them are solutions to the variational inequality
(3).
Theorem 7 shows how to find the S-optimal shifting vector A; and the

corresponding approximative solution of equation (1): we must choose a small a >0
and calculate the root (2,,%,) of the mapping H, (or the root z_ of the mapping T"
and associated with it the vector A, € W(z,), or the root % of the mapping S" and
associated with it the vector z, € Z()_)). The vector 2, will approximate i; we are
interested in, more precisely if a is small. Moreover, Tz -3 >0, ie.
Tz, -%,30, 1e. 2z, 1s the S—-approximative solution of the original equation.

Theorem 8: Let conditions (a')-(c’) be valid and the mapping S be strongly
monotone on Wi with module y > 0. Then a) any mapping S" is strongly monotone too
and has the unique root A,; b) theset A= U %, is bounded for all oy > 0.

O<ac<ag
Corollary 4. Let all assumptions of Theorem 3 be valid and A, edom T ' be
the solution to problem (3). Then

| Aa =20 sy 2 |,

where z, € < ifBs Ag 18 taken arbitrarily.
Strong monotonocity condition on S may be weakened if we use some more
restrictive variant of condition (d’).

Theorem 9: Let conditions (a’)-(¢’) be valid as well as the following variant of
condition (d’): a point hy € riWg c ri(dom T™') and a compact set D surrounding it
(with diameter d) exist such that for any A edom S” | D and some s € SiL one has
(s, A—hg )25, where domS®= RNdomT™, 8>0isfixed. If there exists
0=ty €T 'hy then the sets W*, 0 <a <ug=58/(d| ty |), are non-empty and bounded

in the coupling (they all lie in D). More over, if T‘lho 3 0 then W" are non-empty and

liein D for all o, > 0.
Remark: Theorem 6 provides the opportunity to obtain the boundedness and

non-emptiness of set W” from some properties of the inverse mapping Sal.

Theorem 10. Let the mapping T be maximal monotone, R=E and the
mapping S ! = S 'he upper semi-continuous, compact-valued and strongly monotone

on E with module y > 0. Then for any ay >0 the sets W”, 0 <a < ag, are not empty
and bounded in the coupling.
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P r o o f: Under the above assumptions the mappings T® are maximal and

strongly monotone. Indeed, take any ¢, €T z, £, € T2, £ +5, t, =t +s, where

t eTZ, { eT2, s e-S'(-az), s €-8 (-a2z’). Then (to—ts, 2'-2")=(t"-

—t", 2'-2")+(s'-8", 2'-2")2ay|2-2" I”.

It implies that each of them has one and only one root z, and for any z;
dom T and o €T 2, sg e-S!(~uz,) we have successively

ay| 2=z [ $=( o+, 24-20 )

<l zg—2z | ({ Ag )+ max max |[ls])<
O<a<ay seS'(-azg)

5“ R H lu Ao ]|+ max max |sf),
fzlsr seS '(z)

where r = | 2z |. Therefore

al z, [sag | 2o [+ (] Ao ||+“mﬂx max |s{)

zlsr seS'2)
provided that 0 < a < .

Consequently, the set |J «z, is bounded for any «,. Hence, due to the inc-
Dcacay,

lusion %, e W(z,) = 8 '(~a z,) and assumptions about properties of R and S7', the
set U W is bounded too.

ﬂ{ﬂ"‘fuﬂ

We end this section by describing the structure of the set of all approximative
roots of maximal monotone mappings.

Theorem 11. Let R = E, J; be the S-optimal shifting vector for the maximal

A
monotone mapping T and Zu=T_1 )o # @. Then there exists a vector sy €Sk, such

that -s; is the recessive heading of the set Z; (i.e. Z; -5, < Z;).
P r o o f. The set Z; is closed and convex [1-2]. Let z; € Z; and sy be the

vector in Sk for which for all L € W, (= cldom ) inequality (3) is valid:
( 501- ;hu_'_}- ::' Eﬂ-
Since T is monotone, the inequality
(z0-s9g—2z k=% )=(20—2 ho=% )=( s, =2 )20

is valid for any (z,4) eG. It implies (due to the maximal monotonocity of T) the
inclusion zy -5y €T &g = Z.
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4. EXAMPLES

Let us consider the dual pair of linear programming (LP) problems

max{ ( ¢,x ): Ax<b, x>0 }, (8)
min{ ( b,y ):ATy2¢c,y20 }, (9)

where xe R", ceR", ye R" be R™, Aisan (mxn)-matrix, the superscript T
denotes transposition.

The problems (8)-(9) may be improper. Let A=[ AJ, Al |' =[ By, B, |, ¢' =
(cg,c1 ), bY =(by, b)), x" =(x§,x]), ¥" =(y, v ) be a partition of the original prob-
lems. Let us define the sets

M) ={ x: Agx s by, Ajxsbhy+v,x20 },
M (w={ y:Byy=2co Blyze;-u,y20},
W, ={u:Mu+2 }, W2={ v MW2B ), W=W =W,

All these sets are polyhedrons. Let us assume that W 2 @, Our task is to find the
elements w = [ ug , Vo ] e W which are minimal relative to some vector monotone norm

diu,v)= dI{HJ . dg‘.lﬂ.

The sense of this problem is to obtain consistent systems of constraints in (8) -
(9) by means of the minimal correction of some groups of its right-hand sides & and ¢,.

It is easy to reduce this problem to that of finding the § - optimal shifting
vector for the monotone mapping 7', as regarded in Section 3, if we denote

(%o | Bjy-co
T 0 ‘ .
. 0, By y-¢y o T T2+ N'z, furle],_ryaﬁ,
X0 by — Agx @, otherwise,
1] | by — Ayx |

Here N*:R™™ 27" is the mapping generated by normal cones to the non-
negative ortant of R"™™,

p (p] 18 I
ddylu

54 g ., R={A= y :p=0,4=0}, Sr=| "} '
q q 0

v v | 0da(v) |




30 L. D. Popov / On the Approximative Roots of Maximal Monotone Mappings

‘Using the well-known inversability of subdifferential mappings of conjugate
convex functons [8] we can reformulate the auxiliary problem of finding the root of the

mapping T as the following dual pair of LP problems

max{ ( ¢, x )-rdy((Ajx—by)*): Agx < by, djl(x;)<T, (10)
x' =[ x5,% ]20},
min{( &,y )+rd,((c,~ B/ ):Byy2cy dyly)<r, (11)

y =[ 3.1 |20},

where 2 =max(0,2) for the number %, p = [ p;,...,p; for the vector

p=[ pn....;;; © 1/a>0, diandd; are conjugate norms to d,andd,,

respectively. Note that problems (10)-(11) was considered in [4] where the dual
relations for improper LP problems were established.

Let M, be the optimal set for the problem (10) and M, be the optimal set
for  problem (11). In [4] there it was  established that if

{Aozsbn,d;{xljcr,xzﬂ =@ M_=#@, or {Bgyacn,d;{yl}{r,yaﬁ }:t @, M:f.t@,
then problems (10)-(11) are solvable and their optimal values are equal to each
other. Moreover, if x, eM,, y, €M, then x_,y, are optimal vectors of the LP
problems.

Lo(u,,v.)=max{ ( cg,xg )+{ c;—u,, %, ): Agx <by, Aix<b +v,,
J:T=[.rg.x1T ]20],

L(u,,v)=min{ ( by,yo )+{ by-v,. 3 ): Biy2co, bly2c,-u,
y' =[ %5, ]20},

where u, = (c; - Bl y,)* €W, v, =(A;x,-b)" eW,.

Note that for the maximal monotonocity of T" in this case it is sufficient to
demand (instead of conditions (b), (b’)) the relation W # @. Then due to the results of
Sections 2-3 we have

Theorem 12. If W =W, xW, 2 @ then

lim . i | (Ax-b)* -v =0,
lim max min | (c;- By -u |=0,
rsm yeM, uewlu

where W x W, is the set of saddle points for the equivalent class of convex-concave
closed functions L;(u,v), Lul{u.ui relative to the region Arg mii:rx d; (1) x Arg min d5(v).
ueW,

veW,

Let us now consider the convex programming (CP) problem in the form
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sup{ folx): f;(x)<0, j=1,..,m, xeR"}, (12)
and the dual one
inf sup Lix, y), (13)
ys0 x

where the functions -f;(x), f;(x),...,f,, (x) are assumed to be convex and differentiable

everywhere, L(x,y) = fn(:r)+<y. Fx)), 3= 0y,) s Fl2)= (o), D).
If the CP problem is improper we are interested in finding

(ug,vg) = arg o in (e, v,
where W' = { (u,v) € R" x R™ : functions L(x,y)- <u,x>-(v,y) has a saddle point in
the region R* xR™ }, R™" ={ yeR™ :y<0 }.

In the general scheme of Section 3 set z= {:T,yTJT. A=, e, Tz=
Toz+ Nz, R=R""™, Si=(u,v), whereN:R"™ — 2R is the mapping generated
by normal cones to the product R" x R™

¥ ThT 4
Tyz= (-V L(x,y), V,L(x,y)") ify < 0
D, otherwise.

Then the problem of optimal correction of the CP problems (12)-(13) may be
reduced to that of finding the S-optimal shifting vector for the monotone mapping T.

The auxiliary problem of finding the root of the mapping T" may be reformulated as
follows: find

max { fo(x)-(a /2|’ -1/Ca) Y[ f;x)* ' :xeR" }, (14)
J=1
min { fo(x)+(y, £&)) - (o / 2)(x* = ) : ax = t15)

= Vfp(x)+ (y, Vf(x)), y e R™ }.

By M, and M, let us denote the optimal set of problem (14) and the projection

of the optimal set of problem (15) on the subspace of the variables y, respectively. From
the general results of sections 2-3 it follows

Theorem 13. Under the above assumptions the optimal values of problems
(14), (15) are the same and the sets M,, M, are non-empty. If x, eM,, v, €M,
then (ax), f*(x,)")" eW’, x, is the optimal vector of the problem

sup{fﬂ{x}—(uxa.x ):fj{xlsf;{xq}, j=1,...,m, xeR" }
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¥, 1s the optimal vector of the dual problem

inf 'sup (L(x,y)-{ ax,,x )-( f*(x,), ¥ ),
ysO o

and lim__, o (ax,, f (x,)) = (4, vy).

Probiem (14), as the one replacing (12), was regarded in [10-11] where it was

regular (therefore proper). Dual relations between problems (14), (15) were considered
in [12]. Relations between problems (12), (13) and (14), (15), in the case when they are
improper LP problems of the first kind (i.e. only the primal system of constraints is
inconsistent, not the dual), have also been established earlier.
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