


122 M.llajdukovie. D.Obradovit . B.Periiic I The Active S ide Principle

ges do not reach their destinat ions. The causes of unreliability lay in data t ransfer
errors, malfunctions which stop the activity of destination processes or discrepancy in
speeds of sou rce and destination processes (result ing from the different throughputs
of their com puters). Implementation of the three basic primitives of the client server
model must be backed up by a protocol designed to provide message delivery whenever
there are at lea st minimal conditions for this.

2. DESCRIPTION OF THE CLIENT SERVER PROTOCOL

The client server protocol coordinates the behavior of process client and
process server sides, and provides successful message exchange between them under
unreliable data transfer condit ions.

A request primitive call activates the proto col on the process client side. This
sends the request message a nd blocks the process client until the answer message
arrives. If this message is not received within the expected time, multiple
retransmissions of the request message are tried before giving u p on the answer
message. In that case. the request primitive call is unsuccessful.

Expect and answer primit ive calls act ivate the protocol on the process server
side. The fir st call blocks the process server until the request message arr ives. After
that, the server process serves the received request. and. at the end. it calls u p the
answer primitive. This leads to sending the answer message. and. eventually. to
temporary blocking of the process server (wh ich preserves the answer message for
retransmission, ifit has not reached its destination ).

The client server protocol has to coordinate two sides of behavior under
circumstances where each side ca n conclude about its partner's state only by message
arrival or non-arrival. For example, non-arrival of the answer message may be the
resul t of:

I . loss of the request message (this means that the server has not started service
and has not sent the answer message)

2. lasting service (because of a server ove rload)
3. loss of the answer message.

T he client can not distinguish between these three cases, and ought to
retransmit the re quest message, alt hough it is sensible only in t he fir st and the third
ca se. The client server protocol has to ca nce l retransm ited but already received
request messages in order to ensure at most one service per request.

3. IMPROVEMENT APPROACH TO THE
CLIENT SERVER PROTOCOL

Client server protocol improvement (described in this paper) is directed
to wards usage minimiza t ion of dist r ibuted computer system resources during process
cooperation , hut without sacrificing coope ration efficiency. Experiences with exist ing



MJ lajdukovic.', D.Obrariovic, B.Peri ~ it ' The Acuve Slrll' Pemciple 123

distribu ted computer sys te ms 16], 18), 13) show that a processor is a much more crit ical
resource for message exchange than a commu nicat ion channe l. It appears t hat
message transmission time (when the commu nication channel is engaged! is much
smaller than message t ransmission preparation ume (when the processor is l'ngll~t-d ) .

This directs ou r attention to reducing transmission preparation t ime , for a
great deal of it is spent on message data copying.

Time spen t on message t ransmission preparation can be reduced by cutting
down the total number of necessary messages, by Sf."nding contro l ins tead of data
messages (to avoid da ta copying), a nd, to some extent, by protocol s implification .

The active side principle, based on the optimistic approach , can help to
minimize t he to tal nu mber of necessa ry messages. The opt imist ic approach ex ploits
the fact that the ove rw helming majority of messages rea ch their destinat ions without
t rouble . This means that the protocol wou ld foresee a minimal number of messages
for normal circu mstances (when nil messages reach their destinat ions trouble-free ).
The active side principle states that the act ive side (or a t least the side to become
active) shou ld always initiate message sending. This is the C81;e in the normal
situat ion, when the client (as the act ive sidel in itiates commu nication by se nding the
request message , while the se rver (as the passive side ) is waiting for it. Then, client
a nd server roles are switched, and the se rve r (as the new active side ) se nds the reply
m essage, while the client (us the new passive side) wa its for it . In the case of failure of
the t ransm ission cha nnel, the active side pr inciple is usu ally respected. too. So, the
active side t ries to ret ransmit its message. This means that the client retransmits its
request message , and the se rver its reply message . Dut , when the se rver is over loaded ,
the usual approach (4), (5). (I ) does not follow the active side pri nciple, IlS the client
(wh ile being passive ) periodically asks for message replay. This dis turbs the server ;
beca use it must a nswer by acknowledgm ent to show its activity. A better approach
(suggested by t he active side principle ! is that the se rver. for longer lasting se rvices.
periodically se nds ' working" contro l messages, to calm down the client. This causes a
50% reduction in messages compa red to the usu al approach .

The applica tion of the active side principle bused on the optim ist ic approach makes
possible the usage of control ins te ad of data messages. lind offers s impler pro tocol
(with a smalle r nu mber of protocol participant s tates during commu nicationl, which
enables more efficie nt implementation .

4. PROPOSITION TO IMPROVE
THE CLIENT SERVER PROTOCOL

According to the active side principle, t he client (us the introductory act ive side)
sends the req ues t message , a nd. after that, becomes the passive side. Aft('r reception
of t he reques t message, the tu p to then blocked ) se rver beco mes t he active side. So, in
the case of longer lastmg service, its duty is to pre ven t ret ransmission of the request
message by period ic se nding of the "work ing" con t ro l message (to calm down the
waiting client , a nd to divert it from any retransm issions). At t he serv ice end , the
se rver sends t he a nswer message, a nd becomes the passive side. Recept ion of the
answer message converts the client to the active side. So. it se nds the ecknow-



124 M.I1ajdukovic, D.Obradovic, B.Pe riAic I The Active Side P rinciple

,
ledgment contro l message (to eventually shorten the duration of server blockade
inside the answer primitive call). In the case of absence of either the "working" contro l
message or the answer message (hut after reception of at least one "working" cont rol
message), the client reacts by sending the "resu lt?" control message (in an attempt to
eventually provoke retransmission of the answer message, if it has been lost ). In any
case, reception of the fir st "working" control message is a certain sign that the request
message has been received , so its retransmission is su perfluous, and wou ld be replaced
by the "resu lt ?" contro l message .

Table 1 and Table 2 contain a complete overview of the pro posed client server
protocol, named after t he active side principle, which inspired its design. The active
side protocol is designed strictly along the active side principle. The optimistic
approach to active side protocol design causes in normal circumstances only three
messages to be exchanged (re ques t, answer, acknowledgment) per short se rvices. For
long services a few "working" control messages are needed, to o. Request message
retransmissions are replaced by sending the "resu lt T' control messages as soon as
possible, and in any case the number of retransmissions is limited. The client is
wai ting for an answer while it receives "working" control messages.

The active side protocol has practically on ly one working state (wai t ing for answer)
on the client side (related to a request primitive call), and three working states on the
se rver side (one related to an expect primitive call and two related to an answer
primitive call) .

5, DISCUSSION OF
THE ACTIVE SIDE PROTOCOL

The advantages of the active side protocol can be shown by comparing it to
similar protocols, developed for famous distributed computer systems such as V (3],
[2J, AMOEBA [5J 0 ' CE DAR [I].

In normal circumstances, the active side protocol, the V protocol and t he CEDAR
protocol te nd to exchange a similar number of messages per short services, while the
AMOEBA protocol foresees acknowledgment of request messages [10].

None of referent protocols completely respects the active side principle. So, for
longer lasting services , the blocked client retransmits the request message or an
adequate control message , and the busy server reacts by retransmission of a backing
control message, which is double, compared to the number of messages sent in the
same situation by the active side protocol [10].

With regard to the number of states (protocol simplicity ) the act ive side protocol is
sim ilar to the V protocol (it has one client and three server states) and the CEDAR
protocol (it has two client and two server states). The AMOEBA protocol is more
complex (it has four clien t and four server states) [91 .

6. CONCLUSION

Improvement of the protocol for the client server model of process cooperation
insid e a distributed computer system is due to the reduction of processor participation
in message exchange. This is achieved by application of the act ive side principle , based
on the optim istic approach. The resu lt of th is is an act ive side protocol with better



MJhVdukovlt.~, D.Obradovlt . B.Perdic I The ActIve Side PrincIple 125

propert ies (smaller number messages and more efficient im plementat ion ) compared to
protoco ls developed for II famous distrrbuted compu te r systems .

Table 1. Overview of the active side protocol (the client side)

TilE CLIENT SIDE

STATE EVEl'T ACTIOl'

outside of any message ignore
protocol recept ion

a request prim itive request message sent, with transitio n into
call state "wait ing for answer with.. .

retransnusstons

waiting for answer message acknowledgment cont rol message sen t, and
answer with reception end of waiting inside the successfu l request
retransmissions primitive call, with transition into state

"ou tside of protocol"

' wor king" con t ro l transit ion into state ·wait ing for answer
message reception wit hout retransm issions"

any other message Ignore
recept ion

time for request message retransmission or end of
retransmission

..
inside the unsuccessfulwartmg request

primitive call , with t ransition into state
"outside of protocol"

waiting for a nswe r message acknowledgment cont rol message sen t, and
answer withou t rece ption end of waiting inside the successful request
retransmi ssions prim itive cal l, with transition in to stnte

"outside of protocol"

"working" com re postponement of periodic check
message reception

any other message Ignore
reception

periodic check -resu lt?" con t ro l message sent or end of
waiting inside the unsucce ssful request
primit ive c ull, with t ransit ion into state
"outside of protocol"



126 M.l lajdukovic. D.Obrariovit. B.Peri i it I The Active Side Principle

Tab le 2. Overview of the active side protocol (t he server side)

TilE SERVEH SIDE

STATE EVENT ACTION

outside of any message Ignore
protocol reception

an expect pri mitive t ransition into state ~wait ing for request-

""II
wait ing for request message Ignore old (served ) messages 0 ' e nd of
reques t reception waiting inside the expect pr imit ive can, with

,
t ra ns it ion in to s tate "servicing", and start ing
of service

Iloy other message Ignore
reception

servicmg any message Ignore
reception

t ime to calm down send of "working" control message
the clie nt

an a nswer send of answer messa ge , with t ransit ion in to
primitive call state "wa it ing for acknowledgment"

wait ing for acknowledgment e nd of wai ting inside the successfu l answer
acknowledgment control message primitive cull. with t ransit ion in to state

reception "outs ide of protocol"

"resu lt?" cont rol answer message retransm iss ion
message reception

nny other message ignore
rec eption

time out end of waiting inside the answer primitive
call, with transition mto state "ou tside of
protocol"



~t Hajdukovi c, DObrndovit , IIP('ri ~itl The Active Side Principle

REFERENCES

121

[I) Birrell, AD , Nelson, B, J ., "Implementing Remote Procedure Calls", ACM TmnsadllJnS
on Computer Systems, 2, (1984 ) 39-59.

[2) Cheriton, D, R. , Zwaenr-poel, W" "The distributed V kernel and i ts performan ce for
diskless works tations", ACM Operanng Systf'1n Hew ,'w, 17 (l9R31 129·140,

(3J Cheri to n, D. R., 'The V kernel ' A software base for distributed sys te ms", IEEE Software,
198-4 , 19·42 .

[4) Cheriton , D, R., "The V distributed system", COmml.OllClltlOn s of th .. A Clt/ , 3 1 (1988) 3 14·
333,

(5) ~Iull("nd('r , S. J , "Pr inciples of d istributed operat ing system design", Ph n. th('sis ,Vrlje
Umversueu te Amsterdam, 1985

(6J Schroeder, ~I D., lind Burrows, ~1. , "Performance of Ftrefly RPC", A C.\! Tra nS(J('"tlOns of
Computer Systems 8{l990) 1-17.

[7) Tanenbaum , A S., and Van Renesse , R. , "Dist r ibuted opera t ing sys tems", Computing
S un'''Ys 17 (1985 1419--470.

(8) Tanenbaum, A S., Van Renesse, R., Van Staveren, II .• Sharp, G., ~Iullt'nder , S. J " J ensen,
A., and Van Russum, G., "Exper iences with the AMOEBA distributed opera t ing system",
Commun ication of the ACM 33 (1990) 46-63.

[9J ZJ:Onjanin , D" "Comparison of in terprocess communication mechanisms within dis t r ibuted
compute r systems", ~taster thesis, Faculty of technical sciences, University of Novi Sad,
199'

(10) Zgonjamn, D,. lI ajdukovit , M., Peri~it B., "l mprcvement of client server mod..1 process
coo pe ration by application of the ncnvc side principle", Workshop on information
technologies, system control and system monasement, University of Novi Sad, May 1994 ,


