Yugoslav Journal of Operations Research
6 (1996), Number 1, 121-127

THE ACTIVE SIDE PRINCIPLE
APPROACH TO THE DESIGN
OF CLIENT SERVER PROTOCOL

Miroslay HAJDUKOVIC, Danilo OBRADOVIC, Branko PERISIC

Faculty of Technical Sciences,
University of Novi Sad,
Fruskogorska 11, 21000 Novi Sad,
Yugoslavia

Abstract: This paper discusses possible improvements to the protocol intended to
support the client server model of process cooperation inside a distributed computer
system. Protocol improvements are possible by applying the active side principle,
based on the optimistic approach. This leads to the design of an active side protocol
with better characteristics with respect to the exchange of smaller numbers of
messages and more efficient implementation, compared to protocols of the same class.

Keywords: Distributed computer system, client server model, remote procedure call, protocol.

1. INTRODUCTION

The client server model is the typical form of process cooperation inside a
distributed computer system [4], [5], (7] This model imitates the program
subprogram relationship, with the difference that a program appears as a process on
one computer, and a subprogram as a process on another computer of the same
distributed computer system. It is not strange that a variant of the client server model
is known under the name remote procedure call [1], [6].

The aim of the client server model is to make it possible for a process client,
active on one computer to get service from a process server, active on another
computer of the same distributed computer system. This kind of cooperation 18
supported by three primitives: request, expect and answer. The first is intended for
the client to inform the server about the requested service and to wait for an answer
from the server. The second is used by the server to wait for the request, and the third
enables the server to send the answer to the client.

The client server model of process cooperation is based on message exchange
under conditions of unreliable communications, with the consequence that all messa-

122 M.Hajdukovié, D.Obradovié, B.Peridié¢ / The Active Side Principle

ges do not reach their destinations. The causes of unreliability lay in data transfer
errors, malfunctions which stop the activity of destination processes or discrepancy in
speeds of source and destination processes (resulting from the different throughputs
of their computers). Implementation of the three basic primitives of the client server
model must be backed up by a protocol designed to provide message delivery whenever
there are at least minimal conditions for this.

2. DESCRIPTION OF THE CLIENT SERVER PROTOCOL

The client server protocol coordinates the behavior of process client and
process server sides, and provides successful message exchange between them under
unreliable data transfer conditions.

A request primitive call activates the protocol on the process client side. This
sends the request message and blocks the process client until the answer message
arrives, If this message i1s not received within the expected time, multiple
retransmissions of the request message are tried before giving up on the answer
message. In that case, the request primitive call is unsuccessful.

Expect and answer primitive calls activate the protocol on the process server
side. The first call blocks the process server until the request message arrives. After
that, the server process serves the received request, and, at the end, it calls up the
answer primitive. This leads to sending the answer message, and, eventually, to
temporary blocking of the process server (which preserves the answer message for
retransmission, if it has not reached its destination).

The client server protocol has to coordinate two sides of behavior under
circumstances where each side can conclude about its partner’s state only by message
arrival or non-arrival. For example, non-arrival of the answer message may be the
result of:

1. loss of the request message (this means that the server has not started service
and has not sent the answer message)

2. lasting service (because of a server overload)

3. loss of the answer message.

The client cannot distinguish between these three cases, and ought to
retransmit the request message, although it is sensible only in the first and the third
case. The client server protocol has to cancel retransmited but already received
request messages in order to ensure at most one service per request.

3. IMPROVEMENT APPROACH TO THE
CLIENT SERVER PROTOCOL

Client server protocol improvement (described in this paper) is directed
towards usage minimization of distributed computer system resources during process
cooperation, but without sacrificing cooperation efficiency. Experiences with existing

M.Hajdukovié, D.Obradovié, B.Peridi¢ / The Active Side Principle 123

distributed computer systems [6], [8], [3] show that a processor is a much more critical
resource for message exchange than a communication channel. It appears that
message transmission time (when the communication channel is engaged) is much
smaller than message transmission preparation time (when the processor is engaged).

This directs our attention to reducing transmission preparation time, for a
great deal of it is spent on message data copying.

Time spent on message transmission preparation can be reduced by cutting
down the total number of necessary messages, by sending control instead of data
messages (to avoid data copying), and, to some extent, by protocol simplification.

The active side principle, based on the optimistic approach, can help to
minimize the total number of necessary messages. The optimistic approach exploits
the fact that the overwhelming majority of messages reach their destinations without
trouble. This means that the protocol would foresee a minimal number of messages
for normal circumstances (when all messages reach their destinations trouble-free).
The active side principle states that the active side (or at least the side to become
active) should always initiate message sending. This is the case in the normal
situation, when the client (as the active side) initiates communication by sending the
reguest message, while the server (as the passive side) is waiting for it. Then, client
and server roles are switched, and the server (as the new active side) sends the reply
message, while the client (as the new passive side) waits for it. In the case of failure of
the transmission channel, the active side principle is usually respected, too. So, the
active side tries to retransmit its message. This means that the client retransmits its
request message, and the server its reply message. But, when the server is overloaded,
the usual approach [4], [5], [1] does not follow the active side principle, as the client
(while being passive) periodically asks for message replay, This disturbs the server,
because it must answer by acknowledgment to show its activity. A better approach
(suggested by the active side principle) is that the server, for longer lasting services,
periodically sends "working” control messages, to calm down the client. This causes a
50% reduction in messages compared to the usual approach.

The application of the active side principle based on the optimistic approach makes
possible the usage of control instead of data messages, and offers simpler protocol
(with a smaller number of protocol participant states during communication), which
enables more efficient implementation.

4. PROPOSITION TO IMPROVE
THE CLIENT SERVER PROTOCOL

According to the active side principle, the client (as the introductory active side)
sends the request message, and, after that, becomes the passive side. After reception
of the request message, the (up to then blocked) server becomes the active side. So, in
the case of longer lasting service, its duty is to prevent retransmission of the request
message by periodic sending of the "working" control message (to calm down the
waiting client, and to divert it from any retransmissions), At the service end, the
server sends the answer message, and becomes the passive side. Reception of the
answer message converts the client to the active side. So, it sends the acknow-

124 M.Hajdukovié, D.Obradovié¢, B.Perisi¢ / The Active Side Principle

ledgment control message (to eventually shorten the duration of server blockade
inside the answer primitive call). In the case of absence of either the "working" control
message or the answer message (but after reception of at least one "working" control
message), the client reacts by sending the "result?" control message (in an attempt to
eventually provoke retransmission of the answer message, if it has been lost). In any
case, reception of the first "working" control message is a certain sign that the request
message has been received, so its retransmission is superfluous, and would be replaced
by the "result ?" control message.

Table 1 and Table 2 contain a complete overview of the proposed client server
protocol, named after the active side principle, which inspired its design. The active
side protocol is designed strictly along the active side principle. The optimistic
approach to active side protocol design causes in normal circumstances only three
messages to be exchanged (request, answer, acknowledgment) per short services. For
long services a few "working" control messages are needed, too. Request message
retransmissions are replaced by sending the "result ?" control messages as soon as
possible, and in any case the number of retransmissions is limited. The client is
waiting for an answer while it receives "working" control messages.

The active side protocol has practically only one working state (waiting for answer)
on the client side (related to a request primitive call), and three working states on the
server side (one related to an expect primitive call and two related to an answer
primitive call).

5. DISCUSSION OF
THE ACTIVE SIDE PROTOCOL

The advantages of the active side protocol can be shown by comparing it to
similar protocols, developed for famous distributed computer systems such as V [3],
[2], AMOEBA [5] or CEDAR [1].

In normal circumstances, the active side protocol, the V protocol and the CEDAR
protocol tend to exchange a similar number of messages per short services, while the
AMOEBA protocol foresees acknowledgment of request messages [10].

None of referent protocols completely respects the active side principle. So, for
longer lasting services, the blocked client retransmits the request message or an
adequate control message, and the busy server reacts by retransmission of a backing
control message, which is double, compared to the number of messages sent in the
same situation by the active side protocol [10].

With regard to the number of states (protocol simplicity) the active side protocol is
similar to the V protocol (it has one client and three server states) and the CEDAR
protocol (it has two client and two server states). The AMOEBA protocol is more
complex (it has four client and four server states) [9].

6. CONCLUSION

Improvement of the protocol for the client server model of process cooperation
inside a distributed computer system is due to the reduction of processor participation
in message exchange. This is achieved by application of the active side principle, based
on the optimistic approach. The result of this is an active side protocol with better

M.Hajdukovié, D.Obradovié, B.Periié / The Active Side Principle

125

properties (smaller number messages and more efficient implementation) compared to
protocols developed for a famous distributed computer systems.

Table 1. Overview of the active side protocol (the client side)

THE CLIENT SIDE
STATE EVENT ACTION
outside of any message ignore
protocol reception
a request primitive |request message sent, with transition into
call state "waiting for answer with
retransmissions”
waiting for answer message |acknowledgment control message sent, and
answer with reception end of waiting inside the successful request
retransmissions primitive call, with transition into state
"outside of protocol"
"working” control |transition into state “waiting for answer
message reception |without retransmissions”
any other message |ignore
reception
time for request message retransmission or end of
retransmission waiting inside the unsuccessful request
primitive call, with transition into state
"outside of protocol”
waiting for answer message acknowledgment control message sent, and
answer without |reception end of waiting inside the successful request
retransmissions primitive call, with transition into state
"outside of protocol”
"working” contrel |postponement of periodic check
message reception
any other message |ignore
reception
periodic check “result?” control message sent or end of

waiting inside the unsuccessful request
primitive call, with transition into state
"outside of protocol”

126 M.Hajdukovié, D.Obradovié, B.Peridi¢ / The Active Side Principle

Table 2. Overview of the active side protocol (the server side)

—

THE SERVER SIDE
STATE EVENT ACTION
outside of any message ignore
protocol reception
an expect primitive |transition into state "waiting for request”
call
waiting for request message |ignore old (served) messages or end of
request reception waiting inside the expect primitive call, with
" |transition into state "servicing”, and starting
of service
any other message |ignore
reception
servicing any message ignore
reception
time to calm down |send of "working” control message
the client
an answer send of answer message, with transition into
primitive call state "waiting for acknowledgment”
Iwaiting for acknowledgment |end of waiting inside the successful answer
acknowledgment |control message primitive call, with transition into state
| reception "outside of protocol”
"result?" control answer message retransmission
message reception
any other message |ignore
reception
time out end of waiting inside the answer primitive
call, with transition into state "outside of
protocol”

(1]
(2]
(3]
[4]
(5]
(6]
(7]
(8]

(9]

[10]

M.Hajdukovi¢, D.Obradovié, B.Perisi¢ / The Active Side Principle 127

REFERENCES

Birrell, A. D, Nelson, B. J., "Implementing Remote Procedure Calls®, ACM Transactions

on Computer Systems, 2, (1984) 39-59.

Cheriton, D. R., Zwaenepoel, W., "The distributed V kernel and its performance for

diskless workstations", ACM Operating System Review, 17 (1983) 129-140,

Cheriton, D. R., "The V kernel: A software base for distributed systems", IEEE Software,
1984, 19-42.

Cheriton, D. R., "The V distributed system”, Communications of the ACM, 31 (1988) 314-
333.

Mullender, S. J., "Principles of distributed operating system design”, Ph.D. thesis Vrije
Universiteit te Amsterdam, 1985 .

Schroeder, M. D., and Burrows, M., "Performance of Firefly RPC", ACM Transactions of
Computer Systems 8 (1990) 1-17.

Tanenbaum, A. S., and Van Renesse, R., "Distributed operating systems", Computing
Surveys 17 (1985) 419--470.

Tanenbaum, A. S., Van Renesse, R, Van Staveren, H., Sharp, G, Mullender, S. J., Jensen,
A, and Van Russum, G., "Experiences with the AMOEBA distributed operating system”,
Communication of the ACM 33 (1990) 46-63.

Zgonjanin, D., "Comparison of interprocess communication mechanisms within distributed
computer systems", Master thesis, Faculty of technical sciences, University of Novi Sad,
1994,

Zgonjanin, D., Hajdukovi¢, M., Perisi¢ B., "Improvement of client server model process
cooperation by application of the active side principle", Workshop on information
technologies, system control and system management, University of Novi Sad, May 1994.

