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Abstract. The problem of determining optimal schedules for the static, single
machine scheduling problem with the aid of CON and SLK due date determination
methods is considered. The objective is to minimize the total weighted earliness and
tardiness penalty in the case when weights are proportional to the processing times of
the respective jobs. For each method, an optimization algorithm has been developed,
by means of which the set of all optimal sequences is provided. The numerieal
example, presented after the theoretical foundation, confirms considerations about
the structural similarity of the two methods.
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1. INTRODUCTION

Fulfilling delivery dates seems to be one of the most desirable performance
criteria for the evaluation of different production schedules. The mean tardiness
criterion has been a standard measure of conformance to due dates, although it
ignores the consequences of jobs being completed early. The introduction of modern
production systems (e.g., Flexible Manufacturing and Just-In-Time Systems) has bro-
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adened the range of the applications of the above criterion, as 1t discourages the tardy
as well as the early completion of a job. In such environments, jobs that are completed
early must be held in stock until their due date, while jobs that are completed after
their due dates may cause serious problems to customers and/or the production
system. Therefore, an ideal schedule is the one, in which all jobs finish exactly on their
assigned due dates. If this is not possible, one may try to minimize the deviations of
jobs completion times from their due dates.

The concept of penalizing both earliness and tardiness has spawned a new
and rapidly developing research direction in the area of scheduling. The variety of

works observed in the earliness /tardiness (E/T)/ literature stems from the diversity of
assumptions related to the objective function of the problem. In most of them the

objective is to optimize the due date and the job sequence simultaneously [3]. In work
presented in [3], [8], [14], standing amongst the most prominent surveys of the
problem, there are more than a hundred different variations of the objective function.
Variations comprise different earliness and tardiness penalties, additional penalties,
non-linear penalties, job dependent earliness and tardiness penalties, due date
tolerances, distinct due dates and job deadlines. In addition, a variety of Due Date
Determination (DDD) methods has been proposed, which refers to simple cases,
dealing with the static, single machine problem with deterministic processing times
[7], [10], as well as to more complicated ones, that address the problem with multiple
machines [6], non-zero ready times [5], and stochastic processing times [13]. The usual
objective is to minimize the total lateness.

A sace of the static single machine problem is examined in this paper, in
which the weights of jobs are proportional to their processing times, and two
optimization algorithms for respective DDD methods are illustrated. This case is quite
realistic since a relation between the processing time of a job and the job’s value is
quite usual (see for example [1], [2]). So, the inventory cost (associated with the job’s
value) can be viewed as being proportional to the processing time of a job. Similarly, if
the profit gained from a job is proportional to the processing time, the cost of a delayed
sale, due to delayed completion, may be considered as being proportional to the
processing time of the job. An additional tardiness penalty due to loss of goodwill may
also be considered as being proportional to the processing time. In this paper, the
performance criterion used is the minimization of total weighted absolute lateness
(total weighted earliness and tardiness).

In practice, appropriate weights for jobs are difficult to ascertain [1]. In real
world scheduling systems the weights are often set arbitrarily, in many cases by
setting all of them equal to one. Typically, jobs that have longer processing times have
a higher selling price and, consequently, a higher priority. In many systems both the
processing time and the weight of a job are nearly proportional to the job’s monetary
value, resulting in weights that are nearly proportional to the processing times.
Espousing the justification given in [2], this proportionality models a situation, in
which the unit cost of earliness/tardiness reflects value-added cost, which is likely to
be proportional to processing time.

The problem is analysed by means of two DDD methods, namely CON and
SLK. For each method an optimization algorithm has been developed that leads to the
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set of optimal sequences. The similarity of the above methods becomes clear by using
a numerical example. Both methods result in the same minimum value of total
weighted absolute lateness.

2. PROBLEM FORMULATION AND ASSUMPTIONS

Let N={1, 2, ..., n} be the set of n independent jobs to be processed and R the
set of n! sequences generated out of the jobs of the set N. The assumptions for the
problem are as follows:

(1)  All jobs become available for machine processing simultaneously;
(i) All processing times p; ¢ € N, are deterministics and known before
processing starts;
(i11) Job pre-emption and job splitting are not permitted;
(iv) The nachine cannot process two or more jobs simulatneously;
(v) There will be no inserted idle time in the schedule.

Let s denotes an arbitrary sequence in R and Ji;; the job that occupies the

i-th position of the sequence s. In the sequel, the symbol [i], when used as subscript,
denotes a variable of a job in this position. So, let Cj;), W\, Ly, B, T, dr) denote the

completion time, the waiting time, the lateness, the earliness, the tardiness and the
assigned due date of the job JI,--], respectively. Finally, let ar;) (g > 0) denote the

weight associated with lateness (tardiness or earliness) of J[ ;1 in any sequence of K.

The weights considered here are proportional to the processing times of the respective
jobs, that is ar;) = A Prijs A > 0. The objective function f(s) to be minimized 1s as follows:

fo)= Zay | Gy~ iy |=15P[;] | G~ i) | (1)

Treating due dates as decision variables reflects the practice of setting due
dates internally, as targets to guide the progress of shop floor activities. Prescribing a
common due date (CON method) might represent the case in which different items to
be produced constitute a single costomer’s order. Assigning identical dea dates to
these items can be seen as an engagement for the simultaneous completion of the
complete customer order. Salesman usually quote a common delivery date on all
orders for different items of one chient (or, alternatively, on all orders of different
clients). Furthermore, prescribing a common due date might also reflect an assembly
environment, in which the components should all be ready at the same time to avoid
delays. The rationale of the SLK method is given in [12]. According to this method, the
due date of a job is determined by adding a constant lead time to its processing time. If
the shop status is relatively stable, all jobs may be given due dates based upon a
constant lead time and their processing times, regardless of job content,
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In the CON method, all jobs are assumed to have exactly the same flow
allowance (due date), denoted by k. Thus, 1t 18 d[;] =k, V Jm es, and (1) can be written

as follows:
fcon(8) = ;‘-2 Pli] | C[:‘] ~k | (2)

The following theorems hold in this method (proofs in [4], [5]):

Theorem 1. For any specified sequence s, there exists an optimal value &°, the
common constant flow allowance for all J[ﬂ in $, which coincides with the completion

time of exactly one of the jobs in s.

Theorem 2. For any specified sequence s, in which the optimal flow allowance, k",
coincides with the completion time, CM, of a job g T (the position of the optimal

allowance in a sequence s) is determined by:

iam < 0 and %a[lj - i ﬂ[i] =0,

{=r i=r+l

r=1
2] -

On the other hand, according to the SLK method, all jobs are given flow

allowances that reflect equal waiting time or slack, denoted by ¢. Thus, it is
di1 = P+ @ v €5, and because of W) = Cp;) = py;), (1) can be written as

rSLK{S]zlép[i] |C[i]‘P[f]"“? |=J"§P[f] |wii]_q | (3)

Similarly to the CON method, the following theorems are valid here (proofs
in [4), [6]):

Theorem 3. For any specified sequence s there exists an optimal value of g, denoted
by ¢°, which coincides with one of the waiting times of the jobs in s.

Theorem 4. For any specified sequence s, in which the optimal slack ¢° coincides with
the waiting time of a job JI"]' r 1s determined by:

r-1 n r n
Eﬂ{j]—gﬂ-[l-l-:ﬂﬂnd Ea[f]- o B ﬂmEU.

1=r+l

3. OPTIMIZATION ALGORITHMS

In this section two algorithms are presented, one for each DDD method, for
optimal scheduling of n jobs in the static, single machine, weighted absolute lateness
problem,
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3.1. Using the CON method

A primary oplimal sequence as well as all alternative optima can be found by
the following algorithm:

Algorithm 1

Step 1: From a given sequence s in R construct the sequence s;py, by arranging
the set of jobs in non-increasing order of their processing times.
Step 2: Use Theorem 2 to obtain the position r (r 1s the position of a job JI"'

whose completion time CH 1s equal to the optimal flow allowance &°).

Step 3: Let A be the set of jobs occupying the places 1 to r in the sequence s;py,
and B the set of jobs that occupy the places (r+1) to n in the same
sequence. Obtain all sequences s,,(CON) derived from all possible
combinations of job seqauencing in each of the above sets.

Theorem 5. For any specified sequence s, assuming that the weights of jobs are
proportional to their processing times, the minimization of the total weighted absolute
lateness is achieved by the s,,(CON) sequences determined using the above
algorithm.

P r o o f: Because of Theorems 1 and 2, (2) can be written as follows:

r-1 -
me"J = lzﬁ-][k —CE'-I}*-JL.-:%] P:.'](CE'] -k )=

1=]

=2 { Ay - ppa) + P& = Py = PP+ P8~ Py~ Py Py 3
+ A { Pppan) Py + Pray - 4 Pprat) =R+ Plraa] Py + Pt +Prsa]  Blreg) — R+

Fooot P Py + Pl b +Plaaa) + Pl — K k

It holds that & = Cp,; = ppy) + pjg)+-- + P, and consequently,

foon (@) =A{ pra)(prap+ Prajt- +p( )+ Pl (Plap+ o +P[p) M+ Plra)Pr) *
A BBt + Plraa) Plra) + Plrsalt -+ P Praa] + Plrsa) - +Pra)) 1=
=1 PPy + Papte- 4P+ PlafPa) e 4P e PPy }+
+{ Bl aalPron) * Plrsa] Pl i) * Plrsa] -+ P Plra] * Plosa -+ Bpaca)) 1+
PR

r=1 r

n -1 n
Let feon(s, V=Y pyy X Py foon's.2) = 2 Py X Py and foonls,3)= 2 ‘"(i:]

i=] J;‘—_l-““l i=r+2 }=l+1 1=r+]
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Then, feon(s)=Aeon(s. D+ feon's,2) +feon(s,3)) holds. The following
lemmas hold (we omit the proofs, since they are quite obvious):

Lemma 1. fpon(s,1) is independent of the sequence of jobs occupying the places 1 to
r, and constant for a given subsequence of s.

Lemma 2. fron!(s,2) is independent of the sequence of jobs occupying the places
(r+1) to n, and constant for a given subsequence of s.

Keeping in mind that the position r defines a set early and a set of tardy jobs
[3], [9] one can observe that, because of Lemmas 1 and 2 and the form of the term

fecon's,3), that is a sum of squared processing times of jobs J,,; todp,), the

minimization of foon(s) can be achieved by sequencing the shortest (n-r) jobs in the

last positions of the optimal sequence. Furthermore, Lemmas 1 and 2 guarantee that
any possible permutation of the jobs associated with the term
feon's, 1) and/ or feon(s,2) also leads to an optimal sequence. The number of the

alternative optimal sequences of a sequence s with n jobs is r/ (n-r)/.
3.2. Using the SLK method

Working similarly, a primary optimal sequence as well as all alternative
optima can be found by the following algorithm:

Algorithm 2

Step 1: From a given sequence s in K construct the sequence sgpr , by arranging
the set of jobs in non-decreasing order of their processing times.
Step 2: Use Theorem 4 to obtain the position r (r is the position of a job J[ i whose

waiting time erj is equal to the optimal slack ¢°).

Step 3: Let C be the set of jobs occupying the places 1 to (r-1) in the sequence sgpr,
and D the set of jobs that occupy the places r to n in the same sequence.
Obtain all sequences s,,,(SLK) derived from all possible combinations of job
sequencing in each of the above sets.

Theorem 6: For any specified sequence s, assuming that the weights of jobs are
proportional to their processing times, the minimization of the total weighted absolute
lateness is achieved by the s,,,(SLK) sequence determined using the above algorithm.

P roof: fg x(s) has essentially the same structure as froon(s). Therefore (because of
Theorems 3 and 4, and ¢" = Wir] = P1) + Pt~ + P (3) can be written as follows:

r=1 n
o (s) =% 2 ppy (@ - Wi +2 2 ppy) Wy =a") =
=1 i=r+l

=21 P[l]{PIE]+p[3j+"‘+pir-1§}+p{2]{p[3]+'”+p[r—ll]+“'+P[r-2]er-l] }+
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{1 P[] *+ Praz) Ppy) P[]+ 4P Pe) + Pl - +P[aa)) T4
+(pf?i] +p[22]+...+pﬁ_,!} }

=2 =l n sii=1
As ab(]VE, let fs;ﬁg{S, )= Z pM Z pm, fg;ﬂ (8,2)= Z pM Z p[ f-l, and f.'::’LK 15, 3) =
=1 J=i+1 i=r+l J=r =

r-1

It holds that fgrx(s) =A (fspx (s, D+ [k (s, 2) + fg x (5, 3). The following lemmas hold
in this case:

Lemma 3. fg(s,1) is independent of the sequence of jobs occupying the places 1 to
(r-1) and is constant for a given subsequence of s.

Lemma 4. fg; (s, 2) is independent of the sequence of jobs occupying the places r to n
and 1s constant for a given subsequence of s,

Due to Lemmas 3 and 4 and to the term fg; (s, 3), that is a sum of squared
processing times of jobs J1) t0 Jj,y), the minimization fg;x(s)can be achieved by

sequencing the longest (n-r+1) jobs in the last positions of the optimal sequence. Any
possible permutation in the former and/or in the latter subsequences defined above is
an alternative optimal sequence. The number of the alternative optimal sequences of a
sequence s with »n jobs is (n-r+1)/(r-1)!=r!(n-r)!

4. ANUMERICAL EXPERIMENT

A set of five jobs is given with processing times as shown in the first row of
Table 1. In Step 1, a primary optimal sequence is obtained and after the computation
of the position r (Step 2) all the possible alternative optimal sequences are found (Step
3). All the above optimal sequences for the CON as well as for the SLK method result
in f,5/(s) = 363 A, while for the former method it is 2" =22, and for the latter ¢"=19.

It 1s easy to observe that both algorithms, by means of which the set of all
optimal sequences is provided, have a similar structure. Additionally, there is a form
similarity between the alternative optima of the above methods. Each one of the
optimal sequences can be partitioned into two subsequences subseql and subseq2, in
respect to the position of r. For example, with reference to the CON method, an
optimal sequence can be partitioned into subseql, with job Jm tuJ[rI, and subseq2,

with jobs J[Hl] to J[n]. By interchanging the positions of subseql and subseq2, an
optimal sequence for the SLK method is provided. Consequently, if the alternative

optima derived from the application of one method are known, then those derived
from the application of the other can be easily found. More details on the form

similarity of the above methods can be found in [11].
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Table 1: A numerical example

init.ially 15, 12, 10, 8, 6)

CON method SLK method

Step 1 (12, 10, 8, 6, 5) (5, 6,8, 10, 12)

Step 2 r=2 =4

Step 3 (12, 10, 5, 6, 8) (5,6,8,12,10)
(12, 10, 6, 5, 8) (6,5, 8,12, 10)
(12, 10, 6, 8, 5) (6,8,5,12, 10)
(12, 10, 8, 5, 6) (8, 5,6, 12, 10)
(12, 10, 5, 8, 6) (5,8,6,12, 10)
(10, 12, 8, 6, 5) (8,6,5,10,12)
(10, 12, 5, 6, 8) (8,6,5,12,10)
(10, 12, 6, 5, 8) (6, 5, 8, 10, 12)
(10, 12, 6, 8, 5) (6,8, 5,10, 12)
(10, 12, 8, 5, 6) (8,5,6,10,12)
(10, 12, 5, 8, 6) (5, 8, 6, 10, 12)

5. REMARKS AND CONCLUSION

This paper has examined the static, single machine scheduling problem of
optimizing the due date determination and sequencing of n jobs, when the weights of
jobs are proportional to their processing times. The performance eriterion has been
the minimization of the total weighted absolute lateness. Both CON and SLK methods
have been used for the assignment of the appropriate due dates. Two algorithms, one
for each method, presented, by means of which the complete set of optimal sequences
can be determined, while the structural similarity of the two methods has also been
indicated.

The above work is an extension of that on the non-weighted problem [10],
which, in comparison with previous methodologies presented so far [9], has been
proven to give the optimal solutions much faster. Considering computational
complexity measures, the superiority of the algorithm of Karacapilidis & Pappis [10]
has been illustrated, since it requires only nlogn MADs (ie., Multiplications and
Additions) and n assignments, while the algorithm of Gupta et al. [9] requires
nlogn+Tn+4 MADs, 2n assignments and n +3n2/4 comparisons.

The algorithms presented in this paper have the same computational
complexity, as a consequence of their similar structure. Regarding the CON method,
its computational complexity is:

Step 1:  requires nlogn MADs for the construction of sy py;

Step 2:  requires 2n° MADs (in the worst case). Our algorithm performs n times 2n
MADs in order to determine the position r (see Theorem 2):

Step 3:  requires n assignments for each optimal sequence.
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Therefore, in the worst case, both algorithms require nlogn+2n2MADs and n

assignments for the determination of an optimal sequence. In order to extract each
alternative optimal sequence, n assignments should be additionally charged.
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