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A DISCRETE PROJECTION
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Abstract: In this paper we define a discrete quasi-Newton algorithm which uses only
function values for finding an optimal solution to the problem min{ ¢(x)| x e X },

where X is a convex polytope. It is shown that using this algorithm one can reduce the
initial problem to a finite number of subproblems of the type min { plx)| xeC },

where C is a linear manifold, It is also shown that each cluster point of the sequence
generated by the algorithm is an optimal point of the considered optimization

problem.
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1. INTRODUCTION

We consider the following minimization problem:

min{ p(x) [xeX }, X={ xeR" |Ax2b }, (1)

where A 1s an mxn matrix, b an m-vector.

We use in the sequel the following notation. We define the index set

*) This research was supported by Science Fund of Serbia, grant number 0401F, through
Mathematical Institute
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Ix)={ je{ L,.....m } ]a};x =b; }, the matrix A =(a;), j €l(x) associated with the
corresponding working set; g denotes the number of constraints in the working set. By
g Z we denote a matrix whose columns form a basis for the null space of A, g(x)

denotes the gradient Vo(x) and g,(x)= ZT g(x) denotes the projected gradient. The
vector e; denotes the i-th unit vector of the appropriate dimension.

Throughout the paper we make the following assumptions:

Ale ¢ R" » R is aconvex twice continuously differentiable function;

A2e X =0 and there exists a point x € X such that the level set
L={ xeX |px) < &) } is bounded;

A3e the matrixﬁo associated with the initial working set has full row rank ,

If (1) is solved by quasi-Newton method, the step s from the current iterate x
can be defined as s = Z s, where =

B,s, =-gp(x). (2)

Here B, denotes the current quasi-Newton approximation to the projected Hessian.
The next iterate is obtained as x +as, where a > 0 is the steplength parameter.

The BFGS {Brnyden;ﬂetcher-Goldfarb-Shannﬂ} fyuasi-Newton formula for
the updated projected matrix B, is (see [7]):

= 1 v, 1 T (3)
T i e S
p = Pp g;‘:sp EpBp ugsp pYp

where Sp =ZTs, Yp =ZTy, y = glx +as)— glx).

The earliest quasi-Newton method for linear inequality constraints was due
to Goldfarb, [8], and was based on an extension of Davidon’s method.

When a quasi-Newton method is implemented using updates to the Cholesky
factors, it is possible to avoid losing positive-definiteness. The Cholesky factorization
of the appropriate projected Hessian can be updated after each rank-one modification.
This procedure ensures that the matrix B, is always positive definite and hence that
the computed search direction is always a descent direction. The use of the Cholesky
factorization as an aid to the implementation of a numerically stable quasi-Newton
method was suggested by Gill and Murray, [3], Fletcher and Powell, [2].

In the algorithm presented in this paper we use the finite difference
approximation g, to g,(x). Namely, since only the projected gradient is required to
perform the update (3), the vector g,(x) can be approximated directly by taking finite-
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-differences of ¢ along the n-g columns of Z rather than with respect to each
variable. Then, using (2) and (3) we obtain the search direction. The steplength
parameter o along this direction is computed by the Armijo rule.

Since the direction s is defined by (2) this method falls into the category of
null-space methods, which tend to be more efficient as the number of constraints in
the working set increases. The larger the number of constraints active at x, the
smaller the dimension of the system of equations (2) to be solved for 5.

In such a kind of algorithms a good choice of Z plays a very important role. A
full discussion of different formulations for Z is given in [1], [5], [10], [11], [8].

Now we shall present the algorithm. For simplicity, we drop the subscript k
associated with the current iteration. It is assumed that an initial feasible point x; is

known. A technique for computing such a point is discussed, for example, in [4].
Because of assumptions Al and A2 it follows that the level set
L={ xeX |px)<qplxy) }is compact.

2. A DISCRETE PROJECTION QUASI-NEWTON METHOD

Firstly we shall present the complete algorithm. After that its constituent
parts will be presented. The complete algorithm is as follows.

The Main Algorithm

ke—0; p«0;

Given a feasible point x,, a full-rank working set ,30 and scalars g, g9,
0<ey <gy <1, v €(0,1); and a positive definite matrix Bg :
Determine Z; and a finite - difference interval- vector hg;

repeat
repeat
near stationary point « l]gi l<yPe;
if not near stationary point then
Apply Procedure s
end if
until near stationary point;
Compute the Lagrange multipliers estimates A
if =0 then
converged « 717 ¢g; <ey;
if not converged then
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Apply Procedure s
end if
else
v — the most negative Lagrange multiplier estimate A :
if ve-yP £ then
Delete constraint with multiplier estimate A,
g« q-1,
Z £ Zd; B p €« Bg;
Determine a new interval - vector h;
else
if yP &, <ey then
Apply & - procedure
else
Apply Procedure s

end if
end if
end if
until converged

Procedure s

From Main Algorithm available: a feasible point x;, a full-rank working set A, a

matrix Z;, an update Bf,, an approximation to the projected gradient gz and an
interval-vector hy:

s, « asolutions of the system of equations B, s = —g:
5 Zsp;

o « an Armijo feasible step along s;

a, <« the step to the nearest constraint;

Xe—x+as;, kek+];

g, < an approximation to the projected gradient atx;
if o <o, then

Yp *_Ep —&pr
B, « B, +-Ef—s—F- g, 8" +;—é?pyp ¥
XeX; pep+l;

else
Add constraint to the working set
qeqtl;

Z«Z,; Bpe—B;; X €= X;
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Determine a new interval- vector h;

end 1f
£ - procedure

From Main Algorithm available: a feasible point x;, a full-rank working set A, a
Lagrange multipliers estimate A,, ascalar g,, 0<g, <1, a set of indices [, =1{ 1

~ &y <[ Ak ]<0 }, an update Bj; an interval-vector hy; A" « the pseudo inverse of
Al
sleg) « £, E{fi")rem:
mel,
x(ey) € x +sley);

Compute the Lagrange multipliers estimate A ? corresponding to the point x(g,):

(A2 -A), «min{ (A2 -&)), iel, };

converged «— (A2 -X), >0
if not converged then
Delete constraint with multiplier estimate A,

qe<q-1
. d,
Z Zd, Hp = BP'
Determine a new interval- vector h;
end if

The Algorithm for Computing
the Approximation to the Projected Gradient

I+1
Given a feasible point x,, a full-rank working set ;!,, ;
Determine Z; and a finite - difference interval- vector ;.
while 7 € n-gdo

e « Ze;;

z; « the -th element of the vector ¢;;

- n
hj « Zil bj z, I
Jl:l.'

x, «—x+he;;
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[ 2, ]- {-—%_I[ plx ) =plx) |;

i+l

end do

(By | # » |, we denote the forward-difference approximation to an i-th element of the

projected gradient g, (x, 1)

Note 1. When we sdd or delete a constraint we must modify the representation of Z
to correspond to the new working set, If we add a constraint, the relationship between

the old Z and new Z, may be expressed as: )
ZQ - (Z,7), wherez is the g -th column of Q@ and @  denotes a  sweep of plane
rotations (see [8]), The corresponding relationship between the old B, and the new

B;: (Hoe [8]) 18!

. B!
QTBFQ =| P 1‘ :

that is, we delete the last row and column from the matrix QTB,,Q to get the matrix

ﬂ: (the dimension of BT is smaller by one).

If we delete a constraint, the relationship between the old Z and new Z; may
bo expressod as Z,; = (Z 2), where z 18 the (g +1)-th column of Q@ (see [8]). The cor-
responding relationship between the old B, and the new B: (see [8]) is:

B, 1]

that s, the dimension of H: is larger by one.

4 d
Zd szd = HF =

Note 2 We use the finite (forward)-difference approximation to the projected
gradient, We wish to obtain a "sensible” interval-vector A that will produce reasonably
necurate approximations to the projected gradient throughout the course of the
minimization ( see 4.6.1.3, and 85.6.25. in [7]). A vector h (that is, a set of intervals (A, ,
t = 1,..nshould be specified nt the initial point x, . Unfortunately, since Z changes
complately when the working set changes, there is no guarantee that the set of
optimal intervals computed at one point has any straightforward relationship to the
set of optimal intervals at another point. One strategy that often gives good results for
lineraly constrained problems used in the presented method is discussed in [7).

Note 3 As we know, at the solution x° to (1) it holds that

gix*) = ATy (4)
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for some vector of Lagrange multipliers. Although there are no Lagrange multipliers
at a non-stationary point, it is important to have some means of estimating Lagrange
multipliers at points for wich (4) does not hold. Any such estimate should be

consistent, 1.e. 4; should have the proprty that x;, — x" implhes i, —» 1"

In addition, a method for estimating Lagrange multipliers should use the same
factorization involved in representing Z. Possible forms for a Lagrange multiplier
estimate are given in [6], [12].

Note 4. The known property of a convex continuously differentiable function ¢: R" —

- Risthat | glx+as) ]Ts 1s a nondecreasing function of o .

Consequently, for any o =0 we have [ glx+as) ]Ts 2| glx) ]Ts. For some
a>a it follows that | glx +as) ]Ts 2| glx+as) ]Tsz]: glx) ]Ts, that is, for such «
we have [ glx +as) ]Tsz[ glx) ]Ts. Hence, the condition __st:[ glx + as) ]Ts

- &(x) |s > 0 is satisfied. (Since we know (see [7]) that the BFGS update used in the

Projection Quasi-Newton Algorithm has the property of hereditary positive
definiteness if and only if y7s > 0).

3. CONVERGENCE

The following lemma shows that linear independence of the working sets is

Lemma 1. If the matrix AD associated with the imitial working set has full row rank,
and if s, satisfies A;.s;, =0 for everyk = 0, then zi,, will have full row rank for all 2>0.

P r o of. See [8].

In the following lemma we shall show that we may delete any constraint
corresponding to a negative ;.

Lemma 2. Let x belong to the manifold defined by the index set I = I(x) and suppose

g, = 0. If we delete from the working set the constraint corresponding to a negative
A, then the vector s =-ZB;' g, in the subspace corresponding to the new index set

I=1\ {i,} is a feasible descent direction because the conditions
u;r{x +as)>b,, «>0 and glx)’s <0

are satisfied, where g, denotes the projection of g onto the new subspace.
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P r o of We shall assume g, = 0. By g we denote the finite-difference approximation

to gix).

It follows that g = > A ;a;. Consequently,
Jel
g,=Z"T =zT @i=AZ (5)
Ep=Z2 gx)=2" 3 \ja;=AZ a;#0

Jel

since A, <0 and the vectors a;, J el are, by assumption A3, linearly independent.

By Z we denote a basis matrix for the null space of the new working set
A=(a;), jel. Wehave

gls= ~gTEB;1 Ep = “lETg}TB;I AV E ~E§ B;] g, <0 (5a)

since B, is positive definite and g, # 0 by (5).

Since | g - g(x)] =0(h) (see [7]), by the continuity of the product (s)'s it
follows from (5a) that g(x)7 s <0, too. Finally,

als=-alZB,'Z" %ljaj =-4,(ZTa,)" B;}(ZTa,)>0 (6)
J

because B! is positive definite, A, <0 and ZTa, #0 by linear independence of vectors
aj, J€ I (follows from assumption A3 and Lemma 1). Since a;r:c = b,, we obtain, using

(8) al (x +as)=al x+aals> b, o >0, and that is what we had to prove.

Note. However, when a constraint is deleted from the working set based on a
negative multiplier estimate, it is not true that every definition of the search direction
with the new working set will be feasible with respect to the deleted constraint. See [6]
for a more detailed discussion of techniques for testing the accuracy of Lagrange
multiplier estimates and of the conditions that must apply in order to guarantee a
feasible descent direction for quasi-Newton methods.

In the following lemma near-zero Lagrange multipliers estimates are
considered. By I, we denote the set of indices of contraints with near-zero multipliers

and the corresponding point by x . If each constraint ufx =b;, j €l is perturbed by a

small positive scalar € and the Lagrange multipliers estimates are recomputed it is
possible to determine the nature of the curvature in the neighborhood of x .

Lemma 3. Let x(e) be such that

b.+e, jel
a}-xta}: d J 5
b_j. Jel,
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then x(e) = x + s(e), where s(e) =¢ zm +1TEI, and A* =(ATA)'AT is the pseudo-
Jelg

inverse of A.
Proof See[5]

This lemma implies that the decision to drop or retain a constraint with a
near-zero multiplier will depend upon whether the sign of the corresponding element

of A" — A is negative or positive ( A° denotes the Lagrange multiplier estimate at the
point x(&)).

In the following theorem we shall give the proof of convergence.

Theorem. Let assumptions Al-A3 be satisfied. Then each cluster point of the
sequence generated by the algorithm presents an optimal point to the problem (1),
This algorithm reduces the initial problem (1) to a finite number of subproblems of
the type min{ @(x) |x eC }, where C is a linear manifold.

P r o o f. By the Mean Value Theorem we have

plxg +as,) = tp[xk)+ug(§,}Ts§. Ep =xp+0,as;, 0,e(0,1] a>o0.

Since g sp =& Z(By) gy =—(Z"g) (B ' g) = -(gp) (Bf) gy <0 if gk <0 by
assumed positive definiteness of B% and since | g(xy)— gl = O(hy), it follows by the
continuity of the product (#)7 s; that g(x)" s, <0 for x in some interval (x, x) about x;,.

Hence, by the continuity of glx) we have that g{!;,,]'rsk <0 for sufficiently small
a, 0 <o <o Hence, ¢lx;, +as,) < plx), that is, { % tcL={*eX | plx) < @lxy) 1
where L is by assumptions Al and A2 a compact set. Consequently there exists a
subsequence { X } such that Xg; > x' €L as j - =, By continuity of ¢ we have

wixb } = @lx") as j — ». From the Algorithm it follows that g?, —0ask »=. By

continuity of g,(x) it follows that (X ) —» gp{x".l =0asj—»® Since from the

Algorithm we have A(x") = 0, it follows that x” is an optimal point to the problem (1).
Let us prove the second part of the theorem. At a A-th iteration one of the

two following cases can be realized. For simplicity, we drop the subscript k associated
with the current iteration.

Case 1. x is a near optimal point of ¢ on the subspace corresponding to the index set
I = I(x); that is, we obtain

[ 2p |<vPer
After some finite number of steps we shall ge
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l Kp || “og, Yy Ssegnnd A2,
that s, we lind an optimal point x = x,, to the problem (1)

If | &, |<y”e) and A, the most negative Lagrange multiplier estimnte

antisfion the condition A, < ¢"e; we delete the constraint corresponding to the index
1, nnd repont the procodure of optimization on the new so defined subspace

O, nftor sgome finite number of steps we shall obtain

I TR R LU

and we proceed to chock optimality conditions on an e, -~ active manifold, that is, to
choek the sign of

(A2 4r), Lal,,

whore 1,  denotes  the index wot  of  the noar-zero  multipliers,  If
min [ (A2 <a), del, }= "% <A), <0 wo delote the consteaint corresponding to the

indox «, and ropent the procedure of minimization on the new so defined subspace;
otherwise we have found an optimal point x = x,, .

During the above deseribed procedure we must stay in the feasible region X,
Our stopesize is o« min| a,a, |, whore adenotes an Armijo step along the given

direction and a, denotes the stop to the nearest innctive constraant, If o« a,, the
working set s modified to indicate that a new constraint is satisfied exactly. After the
conntraint defined by o, s added to the working set, Aand Z change accordingly and
the next iteration procoeds in the same fashion,

In this way.either wo find a nenr optimal point of @ on the subspace
corresponding to Hix), or the procoss in interrupted iF o« @, . In both cases the last

obtiined point s used an n starting point and the minimization procoss proceods, From
Loamma 2 and the fest part of Theorem it follows that the segquence of function values
{iplay )} I monatonienlly docronsing,

Camo 2y in not n nonr optimal point of ¢ on the subspace corresponding to the index
pot 1 o= 1tx); that ik, we obtain

I Kp ERALTE

In that case we proceod to look for the minimum of ¢ on the current subspace until we
either find an optimal point on that subspace ll By I*.-. ¥ ey) or wo attach n new const-
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raint if a =a,. . In both cases the last obtained point is used as a starting point and
the minimization proceeds.

In both cases we also obtain decreasing values of ¢ since we make a positive
step « > 0 along a descent feasible direction s=-Z B;l g, by positive definiteness of

- _ b,-alx
Bp}. ( If a=a,, we have a, = min{ _JT_J u}hscﬂ,jif } Since bj—u?;

J a,s
J

x< 0,
J €1, it follows that a_ > 0).

From the above consideration of Case 1 and Case 2 it follows that either we
find an optimal point on a subspace or we add a new constraint to the set of active
constraints. Since, by assumption A3 and Lemma 1 the vectors a,, tel(x) are

linearly independent, such an extension of the set of active constraints must be
finished after a finite number of iterations, which cannot be larger than n, where n is
the dimension of the problem (1). Since the sequence {p(x;)} is monotonically

decreasing, all the sets I(x;) are different. Since all index sets I(x)c {1..... ,m} it

follows that their number is finite (the number of subsets of a set consisting of m
elements). Therefore the number of problems min {g(x)| x € C}, where C is a manifold

corresponding to the index set /(x;) must be finite.

4. CONCLUSION

We can conclude that the presented method has the following advantages:

1. This algorithm requires only evaluations of function values: namely a finite-
difference quasi-Newton algorithm will differ in other respects from a method for
exact gradients because of the n - g function evaluations required to obtain a
projected gradient approximation.

2. With the values of intervals {(h,, 1 = 1,....n} determined according to Gill and
Murray (1972, 1981) the cheaper forward-difference formula is used untal x; 1s in
a neighbourhood where || g, || is small, in which event a switch to central
differences is made. At present, quasi-Newton methods using these technmiques
are generally more effective than any other methods which utilize only function

values.

3. The use of the Cholesky factorization allows us to avoid the loss (through
rounding errors) of positive definiteness in the Hessian (or inverse Hessian)

approximation.

4. When properly implemented, finite-difference quasi-Newton methods are
extremely efficient and have the same rapid convergence as their counterparts
with exact gradients.
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