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Abstract: The multi-source Weber problem requires locating m new facilities in
continuous space In order to minimize a sum of transportation costs to » fixed points
or customers with known demands. Several heuristic methods have been developed to
solve this problem. Typically, these algorithms move in descent directions from a
specified starting solution until a local minimum 1s reached. In this paper, we consider
the original heuristic proposed by Cooper (1963, 1964, 1972), wich has no inherent
neighbourhood structure. We show how a neighbourhood structure can be defined and
a descent-ascent procedure employed to enhance the Cooper algorithm.
Computational results are reported.

1. INTRODUCTION

The multi-source Weber problem, also referred to as the uncapaatated
location-allocation problem, is one of the basic models in continuous location theory.
The objective is to generate optimal sites in continuous space, notably A%, for m new
facilities in order to minimize a sum of transportation costs to a set of » fixed points or
customers with known demands. Since capacity contraints are not imposed on the
facilities, a customer will always be serviced by the facility which 1s nearest to it. The
transportation cost associated with a customer is then given by the travel distance to
its nearest facility multipled by a weighting factor which is proportional to the
customer's demand rate.
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The model can be formulated as follows (e.g., see Love, Morris and
Wesolowsky, 1988, (Chapter 7)):

n
E}leunlw ydla;, x;) (1)
8.1
Jwy=wy, t=1..,n
Jj=1
Wy =20, Vi,J
where:

a,- = (a;;, a;2) is the known location of customer i, = 1,....,n

. = (x;, ..., X,,) denotes the vector of location decision variables, with
= mﬂ,.zjy being unknown location of facility j, j = 1,..., m;
af, is the given total demand or flow required at customer i, 1 = 1, ..., n;
W = () denotes the vector of allocation decision varmbles.

where w;; gives the flow to costumer ¢ from facility j, i =1,..n, 7 =1,...m
d(x,v) is a function which measures the distance between any two points
xy € R2,

The objective function in (1) represents the total transportation costs in the system,
while the constrain set ensures that the demands are satisfied at all the fixed points.
The main difficulty in solving (1) arises from the fact that the objective
function is neither convex nor concave in all decision variables, and may contain
several local optima. As an example, consider the research of Eilon et al. (1971) who
used a descent algorithm by Cooper (1963, 1964, 1972) and 200 randomly-generated
starting solution to obtain 61 local minima in a single problem with m = 5 and n=>50.
Furthemore, the worst solution deviated from the best one found by 40,9%!

Due to exponentialy - increasing computational times, global optimization
methods for solving the location-allocation model are restricted to relatively small
problem-sizes; e.g, see the branch-and-bound procedures of Kuenne and Soland
(1972), and the set-reduction and p-median algorithm of Love and Morris (1975) for
rectangular distances. Thus, heuristic procedures are required to obtain solutions to
real problems where the customers are numbered in the hundreds or more. The first
heuristic for solving (1) was proposed by Cooper (1963, 1964, 1972). Subsequently,
Love and Juel (1982) developed five heuristics which are based on the observation that
the dual formulation is a concave minimization problem. All these methods are
descent-type algorithms, whereby an iteration is permitted to a nearby solution only if
this solution is better than the current one. Thus, for each of these methods, the
danger exists of being trapped at a local minimum,

The heuristics of Love an Juel (1982) have a well-defined neighbourhood
structure. These algorithms consider up to two exchanges of customer allocations
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from one facility to another. In the dual formulation, this is equivalent to testing
adjacent corner points in a radius up to two moves away from the current corner
point. Recently, Brimberg and Mladenovi¢ (1994) demonstrated that Tabu search
rules can be applied to the heuristics of Love and Juel using the same neighbourhood
structure. (See Glover (1989, 1990) and Glover and Laguna (1993) for a general
introduction to Tabu search). The main idea is to allow moves in ascent directions
when further descent is no longer possible; i.e., a local minimum has been reached. In
Brimberg and Mladenovié, the iterations alwavs proceed to the best neighbouring
solution even if this solution is inferior to the current one. Thus, downward moves are
made in steepest descent fashion while upward moves take mildest ascent directions.
The motivation. is to move in an opposite direction from the one in which the local
minimum was entered. (For further discussion, see Hansen (1986) and Hansen and
Jaumard (1990).) A Tabu list is also constructed to avoid cyeling back to a previous

local minimum.

Brimberg and Mladenovié (1994) i1s a first application of Tabu search in a
continuous setting. Furthemore, the combinatorial nature of the customer allocations
has a complexity of order m” (n > m ), while the standard problems in the literataure
which use Tabu search treat lower order complexities such as n! or n™ . The objective
of this paper is to pursue further of application od descent-ascent procedures in a
continuous setting. This time we examine the earlier algorithm by Cooper (1963,
1964, 1972), which has no inherent neighbourhood structure, We show that by first
defining an appropriate neighbourhood structure, this type of algorithm can also be
augmented by descent-ascent rules to provide a systematic approach for examining
different regions of the solution space. Computational results are provided to compare
our structured method with a multi-start version of Cooper 's algorithm.

2. COOPER’'S ALGORITHM WITH NEIGHBOURHOOD SEARCH

We begin by reviewing the iterative procedure proposed by Cooper (1963, 1964, 1972)
to solve the location-allocation problem. Since the iterations consist of alternately
locating the facilities and then allocating demands to them, this method will be

referred to as the alternating algorithm or ALT for short.

ALT Algorithm

Step 1: Choose initial locations for the m facilities. These locations can be specified at
random, or using the judgement of the decision-maker, (Typically the distance
function d(x,y) is a norm, and these locations are restricted to the convex hull of the
fixed points (Hansen, Perreur and Thisse (1980).) Allocate each customer to the

nearest facility, arbitrarily breaking any ties.

Step 2: For the current set of allocations, optimaly locate the facilities by solving m
independent single facility minisum problems (e.g., use a generalized Weiszfeld
procedure when d(x,y) is an /, norm (Brimberg and Love, 1993)).

Step 3: Re-allocate each customer to its nearest facility for the new set of facility
locations found in step 2. If the new allocations are identical to those i the preceding
iteration, stop. (A local minimum has been found.) Otherwise, return to step 2.
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The tendancy of ALT to be trapped in a local minimum can be illustrated by a
simple numerical example. Consider three points in the plane, a;=(0,0), a; = (0,1)
and a3=(2,0), with weights w,=2, w;=w3=1, and Euclidean travel distances. Suppose
that two facilities (F1, F2) are to be located to service these demands, and the mitial
sites chosen in step 1 of ALT are given by x; =(1,0), x5 = {1,-;-1, where the superseript

denotes the iteration number. Allocation customers to the nearest facility results in a,
and a3 belonging to F1 and ay to F2. In step 2, the facilities are re-located to .1:]I =10,0)

and xj = (0,1). The new allocations in step 3 of ALT are found to be the same as in the

previous iteration. Thus, the algorithm is terminated with an objective function value
of wydlay,x,)=2. The globaly optimal solution has x; =(0,0), x, =(2,0), and an
objective function value of wyd(ay, x;) =1. We see that ALT can get trapped in a local
ninimum even for very small examples.

This weakness in Cooper’s algorithm is well-known (e.g., see Eilon et. al.
(1971)). To improve the chances of finding the best solution, or at least a reasonably
good one, a multi-start version of ALT can be employed. All we do is repeat the
algorithm for several randomly-generated starting locations of the facilities. The aim
is to explore different regions of the solution space by using different starting
solutions, and hence, to obtain a number of local minima throughout the solution
space. The best one of these will be retained as the final solution. Thus, the multistart
version, which will be reffered to as MALT for brevity, combines the elements of
random search with Cooper’s algorithm.

An important feature of Cooper’s algorithm is that there is no defined
neighbourhood structure. In proceeding from one iteration of locating facilities and
allocating demands to the next, the total number of exchanges of customer allocations
from one facility to another will be variable, taking on in general any value from
(0,1.....,n-m). In addition to this variable neighbourhood size, the algorithm does not
pursue a local search, but rather, moves directly to one point in the neighbourhood.

Some procedure is needed to force the algorithm to investigate different
regions of the solution space. The random nature of the multi-start version provides a
means of achieving this. Eventually, if we find a sufficient number of local minima
from random starting points, the global solution should be among them. However,
depending on the shape of the objective function, this can take a very, very long time.
A more systematic approach is desired, and to this end we introduce a new algorithm
which combines Cooper’s local search with predefined neighbourhood structure. This
will be given by the set of all possible points around the current local minimum
obtained from a specified number of customer exchanges from one facility to another.
The number of customer-to-facility exchanges is identified by parameter k&, which can
be set experimentally by the analyst. The neighbourhood constructed in this fashion is
a generalization of the neighbourhoods defined in the H-heuristic of Love an Juel
(1982), wich use one or two exchanges.

A specified number of points in the neighbouhood are chosen for further
investigation. This number, denoted by the parameter k; , is again set by the analyst.
The neighbourhood points may be obtained in a random manner, the aim being to mo-
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ve in different directions from the current solution. A local minimum is then
generated from each of these neighbourhood points using Cooper’s algorithm, and the
best one is retained as the new current solution, even if it is inferior to the
predecessor. Thus, ascent directions are permitted. The next iteration proceeds in the
same fashion from the new current solution. Since only a few pomts (ky) in the
neighbourhood are chosen randomly at each iteration, the likelihood of cyeling is
almost zero. Thus a Tabu list containing moves which are not allowed in the next
iteration 18 not required. Algorithm is terminated after a specified number of
iterations (k3) or by some other stopping criterion.

The parameter k£, must be set with great care. It should be large enough to
ensure that each iteration moves to a new region in the solution space (Le., new local
minimum). On the other hand, if & is too large, the systematic movement through the
solution space is replaced by a random movement similar to the multi-start version
(MALT). Our Cooper algorithm augmented by neighbourhood search rules is
summarized below., This procedure will be called H+ALT to indicate that a
neighbourhood structure similar to the one in the H-heuristic has been added to ALT.

H+ALT Algorithm

Step 1: Run ALT to obtain a local minimum. Label this solution as the current
solution (CS). Set counter=1.

Step 2: Choose kg points in the neighbourhood of CS. (This neighbourhood consists of
all possible points obtained by %, customer-to-facility exchanges). For each of these &,
points, repeat steps 2 and 3 of ALT until a local minimum 1s reached. Of the &, local
minima thus obtained, retain the one with the lowest value of the objective function,
and label it as the new current solution (CS),

Step 3: Augment counter by one. If counter < k4 , return to step 2; otherwise, stop.
The final solution i1s the best from all the local optima obtained.

3. COMPUTATIONAL RESULTS

Two sets of experiments were conducted, the first one using the Ruspini data [17] for
75 fixed points in the plane, while the second set considered test problems randomly
generated in a 100 x 100 square. In all cases, the weights w, were given a value of
unity, and Eucledean distances were used; that 1s,

1
Y

dix, y) = ({xy; — ¥ 12+112~y2r2} ; R®,

v,y

im

where x=(xy,x39), y=(¥1,¥2).

For the Ruspini data, the number of changes of customer allocations was set
ky = 30. We found that this large parameter setting was required in order to provide a
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sufficiently large neighbourhood to leave some very deep local minima traps. The
number of solutions generated at random around a current local minimum was set at
ko=4. The H+ALT algorithm was run with MALT for different values of m. These
results are summarized in Table 1, where f,,, denotes the lowest value of the
objective function found by either algorithm. The same stopping criterion was used for
both of them; namely, 1000 calls to a Weiszfeld subroutine for solving the single
facility minisum location (or Weber) problem. Thus, both algorithms had comparable
computation times as shown in Table 1. We see that as the number of facilities to be
located increases, the quality of the solution obtained by H+ALT becomes much
better than MALT. For example, when m=32, a 42% improvement is obtained.

The random test problems varied in size from n=10 to 100 in multiples of 10.
For each n, a different test problem was run for m=2,3,......,[n/2], for a total of [n/2] - 1
trials. The computational results are summarized in Table 2. The score in column 3
indicates how many trials H+ALT gave a better result than MALT, and how many
MALT was superior. For example, a score 9 : 5 means that H+ALT was better than
MALT in 9 of the trials, while MALT was better than H+ALT in 5 of them. The
maximum deviations in Table 2 indicate the relative improvement of H+ALT over
MALT. The '+’ column gives the maximum % improvement of H+ALT, while -
column gives the analogous result for MALT. In all cases the following formula is
used: ' '

‘L, s bt
deviation = ~2P1__Topt2

opil

where fo,; and f,,2 are the values of the objective function for the best solutions
obtained by MALT and H+ALT respectively.

Table 1: Results for Ruspini data, n = 75 (Computation times are for 1000 calls to a

Weiszfeld algorithm)
Objective function f, CPU Time (sec) Improvement

m H+ALT MALT H+ALT MALT %
2 2385.548 2385.548 4,723 4.763 0.000
3 1609.278 1609.278 3.274 4.269 0.000
4 854.620 854.620 2.672 3.974 0.000
5 772.391 772.391 3.123 4,003 0.000
6 708.014 708.406 3.591 4,133 0.055
7 641.876 661.469 3.866 4.259 2.962
8 591.057 595.779 4.270 4.398 0.793
9 544,512 561.776 4.674 4.679 3.073
10 504.604 5562.990 5.184 4.800 8.750
11 476.901 518.918 5.402 5.031 8.097
| 12 442 898 540,159 5.805 5.276 18.006
13 421.888 510.957 6.238 5.530 17.432
14 402.364 603.669 6.378 5.691 20.113
15 391.549 464,031 6.607 5.994 15.620
16 371.487 464.463 7.102 6.167 20.018
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Objective function f ., CPU Time (sec) Improvement
_m H+ALT MALT H+ALT MALT %

356.321 461.782
18 347.258 449.114 7.550 6.627 22.679
19 333.155 426.391 7.684 6.861 21.866
20 319.996 443.338 7.944 7.036 27.821
21 307.795 438.304 8.096 7.264 29.776 |
22 308.957 401.540 8.360 7.552 23.057 |
23 299.046 430.822 8.288 7.686 30,587
24 280.311 427454 8.449 7.924 34.423
25 280.073 384.715 8.542 8.169 27.200
26 273.151 405.434 8.721 8.261 32.627 |
27 249.972 383.874 8.708 8.575 34 882
28 251.206 403.712 9.064 8.835 37.776 |
29 257.929 377.949 9.142 8.990 31.756 |
30 242.001 383.088 9.141 9.139 36.829 !
31 223.904 390.618 9.252 9.404 42 680 |

217.057 375.123 5 42.137

a4 BN e 2 il
L en. o offpinls. s L Boare .l e o o) e
10 4 0:0 0 0 |
20 9 Z:2 1.41 8.24
30 14 7:1 8.78 6.62
40 19 9:5 14.04 4.44
50 24 13:5 12.27 3.98
60 29 16:6 20.15 8.65
70 34 21:7 21.86 3.20
80 39 25:10 20,50 16.93
90 44 28:12
32:16

We conclude from the results in Table 2 that H+ALT significantly out-
performed MALT in the set of random test problems which were run. It is interesting
to note that H+ALT gave consistently better results for larger values of m. For

example, when n = 50, H+ALT was always superior for m = 14; when n = 100,
H+ALT was always superior for m = 24. It appears from these observations that the
structured approach of H+ALT out-performs the random approach of MALT when

the number of local minima is large.
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4. DISCUSSION AND CONCLUSION

A new algorithm (H+ALT) is presented which combines the features of Cooper’s
descent algorithm (1963, 1964, 1972) with the neighbourhood structure used in the H-
heuristics of Love and Juel (1982), In addition, neighbourhood search rules are
incorporated which permit moves in ascent derections. The multi-start version of
Cooper’s algorithm (MALT) and the H-heuristic can in fact be viewed as special cases
of our new algorithm, where the parameters defining the neighbourhood and the
number of points investigated in this neighbourhood are set to specific values.
Computational cxperiments comparing H+ALT with MALT confirm that the
structured approach used by H+ALT to search for new local minima can produce
substantially better results than the random approach of MALT, particulary when the
objective function contains a large number of local minima.

Future research includes studies related to fine-tuning the parameters of the
neighbourhood search. A comparison of other location-allocation heuristic with our
new algorithm should be made.
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