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Ahstrllct : The multi -source w eber problem requ ires locating m IWW facili t ies III

co nt in uou s spa ce in order to minim ize It su m of u-ansportatum costs to n fixed points
or custo mers ....nth kno.....n demands. Several heurisuc methods have been developed LH
solve th is problem . Typically, these algnruhms move In de scent directions frnm a
specified startillK solut ion until ulocalminimu m is reached . In this paper . we conside r
the «ngmel heuristic proposed by Cooper (1963 , 1964 , 19 721, wich has no inherent
neighbourhood s t ructu re. We show how II neig-hbourhood st ructu re can be defined and
II descent-asce nt procedu re employed to e nhance the Coo per algorithm.
Computational results an' repo rted .

I. INTROD UCTION

The multi-sou rce W('ber problem . also referred to as the unccpacuatod
loceuon-allocauon problem, is one of the basi c models in continuous locu t ion theory.
The objective is to J.wneraLe opt ima l s ites in con t inuous sp ace, notably N2, for m new
facilit ie s in order to m in im ize II su m of transportation custs tu a set of" fixed points or
cu stomers with known demands. Si nce ca pacity contraints an' not im posed on the
fac ilities. II customer will a lways he serviced hy the facili ty which is nearest to it . T he
rransportatmn cost a ssoClatl"{l Wit h a customer is then ~'l \'l'n by the t rave l distance to
it s neares t facility multiplied by II \\'('ighting factor which is proportional to the
customer 's dema nd rate.
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The model a m be formulated as follows te.g., see Love . Morris and
We~)lflwsky . 1988 , (Chapter 7» :

(1 )

s. t .
m
~ w· - = w" r e I , ... . n
~ ')
)" ,

• 0; "" (a il. a ,2) is the known location of eu storner i , i = l ,...•n ;
• X "" (X I• • . _, r ,.,) denotes the vector of location decision variables. with

..I) = (..Ij l .-fjv bei ng' unknown locat ion of facility j , j "'" 1, ...• m;
• Itj is the given total demand or flow requ ired III customer i, i = 1, .... , n ;
• W = ( w ,j) denotes the vector of allocation decision variables.

wh ere w,) gives the flow to costu me r i frum facility) , I = 1•....n.J .:::: l ....•m ;
• d (x,y) is II function which measures t he distance bet ween any two points

x,y E H2.

The objective function in (1) represents the total transportation costs in the system,
wh ile the const rain set e nsu res thut the demands arc sat is fied at a ll t he fixed points.

T he main diffi<...ulty in solving t tl a r ises from the fact that the objective
function is neither convex nur concave in all decision variables. and may contain
seve rallocal optima. Ai; an exa mple, consider the research of Eilun et al. (971 ) who
used a descent algorithm by Cooper 0 963. 1964, 1.972 ) a nd 200 randomly-genera ted
start ing solu t ion to obtain 61 local minima in a smgle problem with Tn = 5 a nd n = 50.
Furthemore, the worst so lut ion deviated from the best one fou nd hy 40 ,9'k l

Due to cxponentialy - increasing co mpu tat ional t imes, global optimization
methods for solving the location-allocat ion model are res tricted to relatively sma ll
problem-sizes ; e.g.. sec the bra nch-and-bound procedu res of Kuenne and So land
( 1972). and the set-reduct ion lind p-median a lgorithm of Love lind Morris ( 1975 ) for
rectangular distances. T hu s, heu rist ic procedures are requ ired to obtain solutions to
real pro blems where the customers are numbered in the hundreds or more. The first
heu ristic for solving l l) was proposed by Cooper 11963 , 1964 , 19 72 ). Subsequen tly,
Love und Juel (1982) developed. five heu ristics which arc based on the observat ion that
the dU1l1 fur mulntion is II concave min imizat ion problem. All t hese methods lire
descent- type algorithms. whereby an iteration is pe rmitted to a nearby so lu t ion on ly if
this solut ion is boner than the cu rrent one. Thus. for each of these methods. the
danger exis ts of be ing t rapped lit. a local minimum.

T he heu ristics of LoYI.' an duel (1982) have a well-defined neighbourhood
st ructu re. These algorith ms conside r u p to twu exchanges llf custo mer a llocations
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from one facility to another. In the dual formulation , this is equ ivalent to tJ.>sting
adiacent corner points in a radius up to two moves away from the current corner
point. Recently, Brimberg and MLldenovic (1994) demonstrated. that Tabu sea rch
rules can be applied. to the heuristics of Love and Juel usinJ: the same neighbourhood
st ructu re . (See Glover 0989. 1990) and Glover and Laguna (1993 1 for a general
introduction to Tabu search ). The main idea is to allow moves in ascent directions
when fu rther descent is.. no lonecr possible ; t.e ., a local minimum has been reached . In
Brimbcrg and Mladenovic, the iterations always proce-ed to the best neighbouring­
solution even if this solution is inferior to the current one. Thus, downward moves a n '
made in s tee pest descent fashion wh ile upward moves take mildest ascent directions .
The motivation . is to move in an opposite direction from the one in which the local
m inimu m was entered. (Fo r further discuss ion , see Hansen (1986) lind Hansen and
Jaumard (1990 ).} A Tabu list is also const ructed to avoid cycling back to a previous
local m inimum.

Hr i.mberg and Mladl'nuvic (1994 ) is a first application uf Tabu sea rch in II

c ontinu ou s set t ing. Fu r t bemore , the combinatorial nature of the customer allocations
has a com plexity of order m n (n > m J, while the :-t llndan l problems in the litcra tuu re
wh ich usc Tabu search treat lower order com plexit ies such a s n! nr nm . The objective
of th is paper is to pursue further of application od descent-ascent procedures in a
continuou s setting. This time we examine the earlier ulgurtthm by Cooper (1963 ,
1964, 1972), which has no inherent neighbourhood st ructu re . W", show that by first
defining an appropriate neighbourhood st ructu re. this type of a lgorith m can also be
augmented by descent-ascent rules to provide a systemat ic approach for exam ining:
different regions of the solut ion space. Computational results are provided to com pa re
ou r st ruct u red method with a multi-start version of Coo pe-r 's algorithm.

2. COOPER'S ALGORITHM WITH NEIG HBOUHHOOD SEARCH

W" begin by reviewing t he iterative proc edure proposed by Cooper t 1963 , 1964 . 19 72 1
to solve the location -allocation problem. Since the ueranons consis t of alternately
locating the facilit ies and then allocating demands to t hem. this method will lx·
referred to as the alternating algorithm or ALl' for shor t .

ALT Algorithm

Step 1: Choose initial location s fur the m facilit ies . These locat ions call he specified at
random , or using the judgement uf the decision-maker. (Typ ically the distance
function d (x,y) is a norm , a nd these locat ions a re restncu -d to th" convex hu ll of the
fixed points (He nsen. Perreur and Thisse <l980 ).) Allocate each customer to the
nearest faci lity, arbitrarily hrl'aking- a ny ties.

Step 2 : For the current set of allocations, optimaly locate the facilities by solving Tn

independent single facility minisum problems Ie.g.• USl ' a ge nera lized w etszfeld
procedure when d(x ,y) is an lp norm (Hrrm be rg and Love, 1993 )).

Step 3: He-allocate each cu stomer to it s nearest facility for the new set of facili ty
locations found in s tep 2 . If the new allocations are identical to those III the preceding
iteration, s to p. (A local minimum has been found.) Otherwise. retu rn to stop 2 .
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The tendancy of ALl' to he t rapped in 8 local minimum can be illustrated by a
simple numerical example. Consider three points in the plane , a \ = lO,OI, a 2 = lO,l l
and a3=(2 ,0). with weights WI = 2, W2=w3 = I , and Eu clidean t ravel distances. Suppose
that two facilit ies tF'L, .F'21 are to he loca ted to service these demands, and the in it ial

sites chosen in step I of ALT are given by xi '" (I, 01. xi '" (1.tJ. where the superscript

denotes the iteration number, Allocation cu stomers to the nearest facility results in a\
and a 3 belonf:,ring to F1 and U2 to 1"2. In ste p 2, the facilit ies are re- located to xl = lO, OJ

and x~ = (0, ll. The new allo cat ions in s tep 3 of ALT are found to be the sa me as in the
previous iteration . Thus, the algorithm is terminated with lin objective fu nct ion value
of w ;4d lu.1 , Xl ) = 2. The glnhaly opt imal solu t ion has Xl == 10, 0 ), X2 == (2, 0). and an
objective function value of W2dl a2' Xl ' == 1. W e see that ALT can get trapped in a local
ninimum even for very small examples.

This wea kness in Coo per 's algorithm is well-known te.g., see Eilon et. al .
11971)). To improve the chances of finding the best solution. or at least a reaso nably
good one. a multi-s tart version of ALl' ca n be employed. All we do is repea t the
algorithm for several randomly-generated start ing locations of the facilities. The a im
is to explore different regions of the solut ion space by using different star t ing
solu t ions. a nd hence. to ob tain a nu mber of local minima throughout the solu t ion
space . The best one of these will be re tained 8S the fmal solu t ion. Thus. the multistart
vers ion. which will be reffcrcd to as MALT for brevity , combines the elements (If
random sea rch with Cooper's algnrithm.

An important feature of Cooper 's a lgorithm is that there is no defined
neighbou rhood st ructu re. In proceeding from one iteration of loca ting facilities and
alloca ting demands to the next, the total number of exchanges of cu stomer a llocations
from one facility to another will be variable, taking on in general any value from
to.I.....,n-m). In addi t ion to this variable neighbourhood size. t he a lgorithm does not
pu rsue a local se arch. but rather. moves directly to one point in the neurh bourbood .

So me procedure is needed to force the algorithm to investig-ate different
regions of the solu t ion space. The random nature of the multi-start versio n provides a
means of achieving this. Eventually. if we fmd a su fficient number nf local minima
frnm randnm start ing points. the global solu t ion shou ld be among them. However,
depending on the shape of the objective function , t his can take a w ry. very long time .
A more systemat ic approach is desired. and to t his end we in t rodu ce a new algorithm
which combines Cooper 's local search with predefined neighbourhood s t ructu re. T his
will be gi ve n by the se t of a ll p oss ible points arou nd t he current loca l min imu m
obtained frum a specified numbe r of cu stomer excha nges frnrn nne facility to another.
The number of customer -to- facility exchanges is identified by parameter hi which ca n
he set experimentally by the analyst. The neighbou rhood constructed in this fashion is
a generaliza t ion of the neighbou rhoods defined in the H-heuris tic of Love a n .Juel
( 1982), wich U M' IIUl' or two exch anges.

A specified number of points in the neighhouhood are chose n for fu rt her
investiga tion . This nu mber . denoted by the parameter k 2 • is again sot by t he analyst.
The! neighbourhood points may he obtained in a random manner, t he aim being to mo-
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ve in differe nt di rections from the cu rrent selut mn A local mmimum is then
generated fro m each of t hese neighhllurhood po int s using Cooper 's lll~orithm , nod the
best 0 11(' is retained a s the new cu rre nt so lu tion. even if it is inferuu- to the
predecessor . T hu s. ascent direc tums art' permit ted . The next iterat mn pTlJCl'(·d s III till'
SlU U t' fash ion fr om t lu- now cu rren t solu uun. Sinn' only 11 few pouus (k:/.) In the
neighbourho od are chosen randomly at each iternt.iun , the likelihood of cychng is
almost zr-ru. Thus II Tabu list c o n l llin i llg' 1ll 0 V{' S which a re not allowed III the next
iteration is nut req uired. Algorithm is ter minated after a specified nu mber of
iterations ( k :J ) o r by sumo nther s topping criter ion .

The parameter hI mu st be set with h'l"{'at c ere. It shou ld 1)(' la r go!;' enuug-h til
e nsu re that each iterat ion moves til 11 lIPW rehrion III the solu t ion spnce ( i.e., new local
minimu m l. On t he other hand , if hI is toolarge. the sys temat .ic movement th rou gh the
so lu t ion space is replaced by a random movement s imila r til the multi -start \'('rs illn
iMALT !. Our Cooper a lgorithm augmented hy neighbou rhood search ru les IS
su mma rized below. Th is procedu re will tx· c alled H + ALT til mdicatc rluu a
nc ighbcu rhnod s t ruetu T(' s imilar to tl J(' OIW in the tl -heunsnc hilS 11('('11 Ilddt·d to AL'!' ,

II+ALT AIJ:"orithm

S tep 1: Hu n ALT to obtain a lo cal lIlUU lIlU lIl . Label th is soluuon as th..• cu r rent
solu t ion tCS I. Set cou nter -- 1.

Step 2: Choose k2 po ints in the neig-hlM lurhuod of CS . (T his nelghlM lurhnnd CII IlSlsts (If
a ll poss ible point s obtained by hI cu s tome r-to- facility c xcha r urcst . Fur Pilch of thcsr- h'J.
points , repent s teps 2 and :3 IIf ALT until II loca l min imu m IS reuclu-d . Of t he h'J. local
min im a th us obtained. retuin t he OIl(' with the lowest value fl l" t hl ' lIbjPct iv(' funct ion ,
and lah... l it as the new cu rrent solu tion (CSl.

S tep 3: AU bTJ1l<-'nt cou nte r by line . If cou nter -c k;J , ret u rn to step 2 ; othcrwi-e. stll!' .
T he final solu t ion is the IM' St Irom all the locel opnma obtaincd.

3. COM PUTATIONAL HESULTS

TWII sets of experiments W('l"P conducted. t lu- first 011(' lI :-m g" till' Hu spm i da ta [17 1 for
75 fixed po in t!' in the plane , while t il<' st'cond sot considered tes t problems random I}'
ge nerated ill a 100 x 100 squ are. In a ll ca:-('s , the .....eurhts w, W('Te mvcn a value- !If
unity . and Huck-dean du. tencc s were US('lI ; that is ,

d (x . y )

•

FOT the Ru spi ni data , the number of chungos of custome r ulluca tions .....a s se t
" I -- 30. Wl' found tha t thi s hlrgl' paranll' t t' r M,lt ing- wns roqu irod in urder til prllvlIll' II
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,
sufficiently large neighbourhood to leave some very deep local minima t raps. The
number of solut ions gene rated at random around a current local minimum was se t at
k 2:4. The H+ALT algorithm was run with MALT for different values of m. These
results are summarized in Table 1, where {opt denotes the lowest value of the
objective function found by either algorithm. The same sto pping criterion was used for
both of them; namely, 1000 calls to a Weiszfeld subrou tine for solving the single
facility minisum location (or Weber) problem. Thus, both algorithms had comparable
computat ion times as shown in Table 1. We see that as the number of facili ties to be
located increases, the quality of the solu t ion obtained by H +ALT becomes much
better than MALT. For example, when m =32 , a 42% improvement is obtained.

The random test problems varied in size from n= 10 to 100 in multiples of 10.
For each n, a different test problem was run for m=2,3, ,[nI2j, for a total of [nI2). 1
trials. The computational results are summarized in Table 2. The score in column 3
indicates how many trials H+ALT gave a better result than MALT, and how many
MALT was super ior . For example, a score 9 : 5 means that H+ALT was better than
MALT in 9 of the trials, while MALT was better than H + ALT in 5 of them. The
maximum deviations in Table 2 indicate the relative improvement of H +ALT over
MALT. The ' +' colum n gives the maximum % improvement of I-I+ALT, while '-'
column gives the analogous result for MALT. In all cases the following formula is
used: '

d . " (opt} - (opt 2euza LOn = ,
(opt]

where (optl and ( op/2 are the values of the objective function for the best solu t ions
obtained by MALT and H+ALT respectively.

Table 1: Results for Ruspini data, n = 75 (Computat ion times are for 1000 calls to a
Weiszfeld algorithm)

Objective function f ,nt CPU Time (sec) Improvement
m H+ALT MALT H +ALT MALT %

2 2385.548 2385 .548 4.723 4.763 0.000
3 1609.278 1609.278 3.274 4.269 0.000
4 854.620 854 .620 2.672 3.974 0.000
5 772.391 772.391 3.123 4.003 0.000
6 708.014 708.406 3.591 4.133 0.055
7 641.876 661.469 3.866 4.259 2.962
8 591.057 595 .779 4.270 4.398 0.793
9 544.512 561.776 4.674 4.579 3.073

10 504.604 552.990 5.184 4.800 8.750
11 476.901 518.918 5.402 5.031 8.097
12 442.898 540.159 5.805 5.276 18.006
13 421.888 510.957 6.238 5.530 17.432
14 402 .364 503.669 6.378 5.691 20.113
15 39 1.549 464.031 6.607 5.994 15.620
16 371.487 464.463 7.102 6.167 20.018
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Objective function L. CPU Time tsecl Improvement
m H + ALT MALT If +ALT MALT '*17 356.32 1 461.782 7.30 1 6 .378 22.838
18 :J47.258 419.114 7.550 6 .627 22 .679
19 333.155 426.39 1 7684 6.86 1 2 1.8G6
20 3 19.996 443.338 7.944 7.036 27.82 1
21 307.795 138.304 8.096 7.264 29.i76
22 308.957 401 .540 8.360 7.552 23 .057
23 299.046 430.822 8.288 7.686 30 .587
24 280.311 427 .454 8.449 7.924 34.423
25 280.073 384.715 8.542 8.169 27 .200
26 273.151 405.434 8.721 8 .26 1 32.627
27 249.972 383 .874 8 708 8 .575 34 ,1:'182
28 251.206 403 .712 9.064 8.835 37 .776
29 257 .929 377,949 9.142 8.990 31.756
30 242 .00 1 383.088 9.141 9.1 39 36829
31 223 .904 390.618 9.252 9.404 42.680
32 21 7.057 375.123 9.187 9.523 42 .137

T a ble 2 : Results for random test problems

Totalnu mber Maximu m Deviat ion t%)

n of t r ials Score + -
10 4 0:0 0 0
20 9 2:2 1.41 8 24
30 14 r . i 8.78 6 .62
40 19 9 ,5 14.04 4.44
50 24 13:5 12.27 3.98

60 29 16,6 20.15 8 65

70 34 21 ,7 21.86 3.20

80 39 25 ,10 20 .50 16 .93

90 44 28 ,12 24 .87 12.1 2

100 49 32:15 28 .02 20.05

We conclude from the results in Table 2 that H+ALT significan t ly out­
pe rformed MALT in the set of random test problems which we re run . It is interesting
to note that H + ALT gave consisten t ly better results for larger values of m . For
example, when n ::;;;; 50, H +ALT WIIS always su perior for m 2: 14; when n ::;;;; 100 ,
H+ALT was ulways su perior for In 2: 24. It appe llrs from these observations that the
structu red a pproach of H +ALT ou t-perfor ms the random approach of MALT when
the n umber of local minima is large .

•
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4. DISCUSSION AND CONC LUSION

A new a lgor ith m {1I+ALT l is presented which combines the features of Cooper's
descent algori thm (1963, 1964, 1972 l with the neigh bou rhood s t ructu re used in the H­
he ur-istics of Love and J uel ( 19R2 l. In addit ion , nujghlnmrhnod search rules are
incorporated wh ich per mit moves in ascen t de rect ion s. The multi -sta r t vers ion of
Cooper 's algor ith m lMALT) and the ll -heu ris t ic can III fact be viewed as special ca ses
of our new a lgorithm, when' the parameters defin ing the neighbourhood and the
nu mber of points investigated in this neighbourhood a re set to specific values.
Computllt iuIlnl ex periments comparing H + ALT with MALT confirm thut the
structu re d approach used by H + ALT to search for new local minima can produce
su hstant ia lly better re su lts than t he random a pproach of MALT, partieu la ry when the
objecti ve fu nction co ntains a la rge number of loca l minima .

Future rosearch includes studies related to fine-tun ing the pa rameters of the
neig-hhou rhood sea rch . A comparison of othe r location -a llocation heu rist ic with our
new algorithm shou ld he made .
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