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Abstract: The paper gives a view of interior point methods for linear programming
inspired by the work of Karmarkar. Two possible classifications of the existing
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1. INTRODUCTION

The introduction of polynomial-time interior methods is one of the most
important developments in mathematical programming in the last decade. The first
step In that direction was made in 1984 when Karmarkar in his seminal paper [35]
proposed a new polynomial algorithm for linear programming. The method had not
only a better complexity bound than the earlier method of Khachian [37] but it also
enjoved computational efficiency on practical problems. Karmarkar’s paper stimulated
an enormous research interest which has resulted in the development of numeros
interior point methods both for linear and nonlinear programming problems and for
certain discrete optimization problems. The ten years of research resulted in about
2000 papers dealing with interior point methods (see Kranich’s bibliography [41]).
Recently, Nesterov and Nemirovskii [55] have developed a general framework for
polynomial-time interior point methods, based on self-concordant functions. Interior
point methodology has also been used to develop a new approach to the theory of
linear programming, including duality and sensitivity analvsis (see [34]).

This paper reviews the most important aspects of interior point methods for
linear programming inspired by work of Karmarkar. Section 2 describes the main idea
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of interior point methods and gives two possible classifications. Section 3 is devoted to
projective methods with the emphasis on the original method of Karmarkar. Affine
methods, including the original and modified version of Dikin’s method [18, 19] and
Gonzaga’s polynomial modification [27] are analyzed in Section 4. Section 5 describes
the main idea of path-following methods on the example of Gonzaga's method [25].
Section 6 gives a survey of search directions in interior point methods with the
emphasis on numerical stability problems. Finally, Section 7 discusses some details
related to practical implementation of interior point methods.

2. THE BASIC PRINCIPLES OF INTERIOR POINT METHODS

Consider the linear programming problem in standard form

min cTI

(1)
Ax=0b x=0

where A=[a;j]n<, , c€ER", xeR", beR™, m<n, rankA=m and assume that A, b and ¢
have integer entries (which is equivalent to the assumption that the entries are
rational). Let X be the feasible set of (1) and, for the sake of simplicity, assume that X
is bounded and ri X={xeR" | Ax=b, x>0}=@. 1t is well known that the problem dual to
(1) can be written in either of the two forms:

max b y max b’ y
(2)
ATy-sc' ATy-i-z:cr. 220

The idea of interior point methods for solving (1) is quite opposite to that of
the simplex method: instead of visiting different extreme points of X, a typical interior
point method generates a sequence (x*) ¢ ri X, with the property that for £k large
enough the approximate solution x* can be transformed into an optimal solution x,,, .
The most important issue in this approach is to estimate polynomially the number of
elementary operations (additions, multiplications, comparisons, etc.) needed to get an
optimal solution. In addition, it has to be shown that generated points have
polynomial descriptions. This is usually done by showing that it is sufficient to do all
the calculations in certain fixed precision which depends on the data of problem (1)
(see e.g. [64]). We shall here shortly discuss a theoretical background for the
transformation of x* into x,,,,, .

We shall denote by <h> the number of bits needed for binary representation

of an integer h. Then <h> =1 + [logs ( | A | + 1) |. Let r be the bit length of the input
data in problem (1), i.e.

r=<a)) >+..+<@p, >+t<¢ >+..+<¢, >+<b>+...<b, >

and let L=r+<n>. The next Lemma, basically due to Khachian [37], shows that the
quantity 2'L can be used for the identification of the optimal solution.
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Lemma 1. Suppose that the feasible set X of problem (1) is nonempty and bounded

and let f,,, = ¢7 x,, be the optimal objective function value. If X is an arbitrary

T

extreme point of X then either ¢'x = [, or Tx> fope + 2l m

Interior point methods for linear programming use the results of Lemma 1 in
the following way: Suppose that the optimal value [, 1s known and that we seck a
point where it is achieved. Let (x*) be a sequence generated by an interior method and
suppose that for some & we have

L'TI* ‘fo;n‘ < 2—1’. 13)

Furthermore, suppose that the point x* is transformed into an extreme point x of X
with the property ¢T¥ <¢Tx* Then according to Lemma 1 ¢'x = fopt» 1€. X is an
optimal solution (equal to x,,,, in the case of the unique solution). An obvious difficulty
with this approach lies in the fact that in general case [, is not known and there are
several ways to get around it. Karmakar in [35] proposes replacing problem (1) with a
new problem in which the duality gap, known to have 0 as the optimal value, is

minimized. Several authors propose generating a sequence (y*, %) of dual feasible
solutions. Since L‘T.Tup, FbT}'W,, -0 and b7 y* < hTy,,p, we have (25)7x% = ¢Tx* ~bTyE

— T xk ‘L’T.Inp, +bTJ’n,tH‘ b7 yE el x* -c’xﬂp, and the test (3) can be replaced by

eTx* _pTy* <27k or (%) x*< 2L There are also more efficient approaches which
avoid exphieit evaluation of dual vanables (see e.g. [63]).

It remains to be seen how a point X satisfying (3) ecan be transformed into an
extreme point ¥ with the property ¢Tx < ¢Tx* Such transformations are often called

rounding procedures. The idea of the rounding procedure below is to start from x*
and at each step generate a feasible point which has at least one more zero coordinate
than the previous point and at the same time does not increase the objective function
value. The Algorithm is taken from [20], see also [40].

| f—rm

Let x* >0 be a feasible point and let the vectors z', 2 constitute a
basis of the vector space N(A)=|x € R"|Ax =0 |. Let us note that 2. ...z"™ ¢anbe
obtained with 0(n3) operations by pivoting on the matrix A. Namely, if matrix A 1s
transformed into the matrix [Z,, M] then the rows of the matrix (M" —1, , | are a
basis of N(A), where /,, and [, ,, are the unit matrices of order m and n-m,
respectively.

Algorithm 1.
Step 0: Set s=n-m, y=x*

Step 1: Set z=2z¢ . If ¢'2* <0 set 2=-z¢, Compute
A=min{y;/z;z; >0}=y,/2,.

Step 2: Compute y = y - Az. If s=1 set x = y STOP. Otherwise compute
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2/ =27 (2! /2,)z2, j=1..,8-L
Step3:Set y=y, 2/ =z/,j=1,..,s-1 replaces bys-1and go to Step 1. ®

It can be shown that the point x generated by Algorithm 1 is an extreme
point of X with the property ¢Tx < ¢"x*. Since each cycle of the algorithm uses 0(n?)
elementary operations and the number of cycles is 0(n), the total complexity is O(n?).

All known interior point methods use the outlined ideas for the
transformation into an exact solution. The difference occurs in the rule for generating
the sequence (x*) and the number of steps needed to get a solution satisfying (3) or a
related stopping criterion. A possible classification of interior methods, based on the

geometric interpretation, 1s the following:

1. Projective methods (Karmakar [35], Anstreicher [3], De Ghellinck and Vial [14],
Todd and Ye [64], Ye [73], Yamashita [72], Gonzaga [26], etc.).

2. Affine methods (Dikin [18, 19], Barnes [9], Gonzaga [27], Vanderbe1 et al. [68],
Monma and Morton [51], Monteiro et al. [53], Ye [74], ete.).

3. Path-following methods (Renegar [57], Gonzaga [25, 30, 31], Roos and Vial [59,
60], Den Hertog et al. [16], Monteiro and Adler [52], Kojima et al. [38], etc.).

In Sections 2, 3, and 4 we will shortly outline typical representatives of the
three classes. Interior methods can also be classified according to the type of problem
being solved as:

1. Primal methods, working on (1), (Karmarkar [35], Anstreicher [3], De Ghellinck
and Vial [14], Ye [73, 74], Gonzaga [30, 31], Roos and Vial [59, 60], Den Hertog et al.
[16], Dikin [18, 19], Barnes [9], Vanderbei et al. [68], etc.).

2. Dual methods, working on (2), (Yamashita [72], Gonzaga [25], Monma and Morton
[61], Renegar [57], etc.).

3. Primal-dual methods (Todd and Ye [64], Monteiro et al. [53)], Monteiro and Adler
[62], Kojima et al. [38], etc.).

3. PROJECTIVE METHODS

The original version of Karmarkar's method [35] is the most important
representative of the class of projective methods. Karmarkar’s method is formulated
for the problems in the following special form:

minr:'T.r
(4)
Ax =0, ET.'I‘:I. x 20
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where A=[a;lmxn, rankA=m, xceR", e=(1,. .., 1)eR" and all the coefficients
in A and ¢ are integer. Let X be the feasible set of problem (4), 1.e. X = N(A)~ S,
where S is the (n-1) - dimensional simplex, S=!{xeR" | elx=1, x20! It is
assumed that Ae=0, 1.e. the center of S defined by a=(1/n)e is feasible, and that the
optimal objective function value f,,=0.

Karmarkar’s algorithm can be described as the steepest descent method with
the projective transformation at each iteration. At the iteration & the transformation

1s defined by

where D = diagixf, .. ,x¥) and x* > 0 is a point generated at the iteration k-1. It is
easy to see that the transformation maps S into itself, that the extreme points remain
fixed and that x* is mapped into a. Let X be the mage of X. Then
X = N(A)AS, A = AD. The inverse transformation is given by

Dy
el Dy

b e —

The next so-called potential function plays an important role in the analysis
of Karmarkar's algorithm:

f: R! 5 R fl=nhnc"x)-YInx

=]
Let F be the transformed potential function defined by f_'{_v.-r = f(x). Then

T n i n "
- LI- # x "f =
fiy)=n In TDJ' j= 22—l cly- Y Iny, —Elnxi"
e'Dy ;5 e Dy =) )

-

where ¢ = De, Le. functions F and [ are of the same form.

The k-th iteration of Karmarkar's algorithm can now be shortly outhned as
follows:

- With the projective transformation y = D 'x | e’ D 'x map the feasible set X onto X ;

the image of x¥1s a=(1/nle,
- Take one step of the projected gradient method for decreasing f on X, 1Le. compute

¥ =a-APVf(a) /| PYfia)].
- Get x**1 as the inverse image of y .

The precise formulation of the method 1s:
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Algorithm 2 (Karmarkar):

Step 0: Let L>0 and 0<a<1 be given. Set A=a/Jnin=1), x"=a, k=0.

Step 1: Set D = diagixy ..., x;). Compute A=AD, ¢=Dec. Let

P
B=|
7

L <] un

be the matrix defining X

Step2: Let P=1 - BT(BB" ' B be the projection matrix onto N(B). Compute
h = PYf(a)/|PYf(a)||=Pe || PE]

Step 3: Set y =a —4h.

Step 4: Compute x**1 = Dy/ FTD.E

Step 5: Replace k£ by k+1.1If ¢'x* = 27F STOP, else go to Step 1. @

Let us note that

BB' :HF%] -

‘-l‘
L

Pl i
AA 0 (BBT ! -
0 n

AAT? o
0 1/ n

so that the main computational effort in one iteration of Algorithm 2 is the inversion
of AAT = AD?’AT_ We shall see that this is the case with all interior point methods.

The next theorem shows that Algorithm 2 1s polvnomial:

Theorem 1 ([35]). Let r be the length of the input data in (4), let L=r+<n> and
a<1/3. Then Algorithm 2 in 0(nL) iterations finds a point x* satisfying ¢/ x* <27 =

Since the number of elementary arithmetic operations per iteration of
Algorithm 2 1s 0i29), it follows that the overall complexity of Algorithm 2 is 0(n4L).
Karmarkar also shows that Algorithm 2 can be modified using partial updating so that
the complexity bound 1s reduced to 0tn?3L). The rate of convergence of Karmarkar's
algorithm 1s analyvsed by Asi¢, Kovacevié-Vujcic and Radosavljevié-Nikolié in [7]. Under
the assumption that x =(x,,..., x,.0..,0Lx, =0, x, >0 is the umque solution of
(4) 1t is shown that

lim el x*H i Jtn—lltn—m—lﬂm +1) —atm + 1)

ks o 2K JIH ~Wn—m—-1m +1) +aln-m-1)
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Furthemore, ASi¢ et al. show in [8] that the normalized sequence of search directions
in Karmarkar’'s method converges, 1.c.

o+ [
. X X
hm = .

Pata ﬂxkﬂ N 1..{-“

where the components of s are uniquely determined by the reduced cost vector at the
optimal vertex. Intuitively speaking, this means that the successive iterates tend to
line up along a direction which points towards the solution, In [42] Kovacevie-Vuyéic
uses this property in order to nnprove the rate of convergence of Karmarkar's method
by taking long steps in promising directions. Namely, given a sequence (x*), +* -5 ¥,
generated by Karmarkar's method, let ¥, k ¢ N, be defined as a point at which the

ray x* ' + t(x* —x*7') intersects the boundary of X. Then

tim 15 =51 _q,

e —p i_rl' -_"

g

ie. the auxiliary sequence (¥"), generated at a low cost (0(n) per step), converges
faster than (x*),

In [24] Gill, Murray, Saunders, Tomlin and Wright show that Karmarkar's
algorithm can be viewed as the Newton's method applied to the logarithmic barrier
function. Todd and Burrell [63] were the first to show that the assumption of known
optimal value in Karmarkar’s method can be removed using a lower hound technique.
A variant of Karmarkar’s method which works with linear programming problems in
standard form was developed by Gonzaga [26] and several other authors. Further
analysis of Karmarkar’'s method and descriptions of some other related methods
belonging to the same class can be found in [3, 12, 14, 20, 23, 28, 64, 72, 73, 76], etc

4. AFFINE METHODS

Soon after Karmarkar's method was published several authors have come up
with the idea to simplify it using affine rather than projective transformations.
(Barnes [9], Vanderbei et al. [68], ete.). It has come out later that the idea with the
affine transformation was used as early as 1967 in a paper by Dikin [18]. We shall
outhne here Dikin's method and its polynomial modification.

Consider the following linear programming problem:

(H)

where A=[a;]nxn . X,¢c € R", b e R" and rankA=m. We shall assume that an x’ such
that Ax?=b, x” >0 1s known. At the k-th iteration we have a feasible point x*, x* > 0



180 Vera V. Kovagevié-Vujéié /A View of Interior Point Methods for Linear Programming

] . ] a ;
which is used to define a linear transformation y = D 'x. where, as in Karmarkar's

method, D:dmgtrf.. x*). The image of x* is e=(1,.1), and the inverse

n
transformation is x=Dy. In the transformed space the problem is the following:

T v

min ¢

16)

where ¢ = De. A = AD. The algorithm takes one step of the projected gradient

method for decreasing the objective function of problem (6) starting from the point e,
ie. computes y=e¢— APc||Pc||, and then maps it by the inverse transformation to get

xk+1 The details are given in:
Algorithm 3 (Dikin)

Step 0: Let A and x? satisfving 0<Ai<1 and x?>0, Ax”=b be input parameters.
Set k=0.

Step 1: Set D = dmgle. .rf: ). Compute A= AD, ¢ = De.

Step 2: Let P=1]- AT(A A7) A) be the projection matrix onto N(A). Compute
h=Pcll|Pc|l

Step 3: Compute y =e - ih.
Step 4: Set x**! = Dy
Step 5: Replace k by k+1 and goto Step 1. B

It can be shown that for a suitable value of A (e.g. A=1/8) the sequence
generated by Algorithm 3 converges to an optimal solution x (see e.g. [9, 18, 65]). As
in the case of Karmarkar's algorithm 1t can be shown that the rate of convergence 1s
linear and that the sequence of normalized search directions converges [8, 56]. The
main result in [56] 1s that under the appropriate nondegeneracy assumptions we have

CT l."ffl -CT} 3 1 ;‘

ke o' x® —¢'x vn—m

The procedure proposed in [42] can again be used to speed up the convergence.

Recently, Dikin [19] has proposed an interesting modification of the affine
method. It 1s easy to see that Algorithm 3 can be reformulated as follows:
x¥ e, 2" =x*-2,D8k, A, = Akt e k22

n-n
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where now D, = diaglxy,...,xt), ¥ =c-ATy*, Y= (ADEAT)Y ' ADEc. The modified
method differs from the original only in the choice of the step-size:

x®=e, x**=xk ~DE*, A, =21 minlrf.sf}

and it has a nice property that without any nondegeneracy assumptions it can be
shown that both sequences (x*) and (y*) converge to optimal solutions in the interior
of the optimal faces of primal and dual problem, respectively.

Up to now it has remained unknown whether Algorithm 3 i1s polyvnomial or
not, although the results obtained by Megiddo and Shub [48] indicate that a negative
answer 1s to be expected. However, it 1s not hard to obtain different modifications that

are polynomial. One of such modifications is proposed by Gonzaga [27]. Gonzaga
assumes that the optimal objective function value is 0 and uses the following potential

function:

f: R 5R, fx)=glntc"x)-Y Inx;,

j=]

where g>0. The linear transformation y = D'y, D =diagix!, . x*). transforms the
potential function into

[y =qgnec"Dy)-Snxky =gnc’y-YIny, - YInx'

=] 1=} =]

and 1t is easy to see that

= q -
Vile)=——c~-e,
¢le

Algorithm 4 (Gonzaga)

Step 0: Let L and x” satisfying L >0, x>0, Ax"=5b be input parameters.
Set £=0.

Step 1: Set D = diagix),. ., x¥). Compute A=AD, ¢=De.

Step 2: Let P=1(/ ~AT(A AT)'A) be the projection matrix onto N(A).
Compute h = PVf(e)/ || PVf(e)l.

Step 3: Compute y =¢-0.3h,
Step 4: Set x**! = Dy
Step 5: Replace k by k+1. If eTx* < 27F STOP. Otherwise go to Step 1. ®

The next theorem shows that Algorithm 4 1s polynomial:
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Theorem 2 ([27]). Suppose that problem (5) has integer coefficients and let r be the
length of the input data and L=r+<n>.

(i) 1f g=n then Algorithm 4 stops after 0(n°L) iterations.
m) If g2 n +Jn then Algorithm 4 stops after 0(nL) iterations. B

The number of elementary arithmetic operations per step of Algorithm 4 1s
0in®). so that the overall complexity of finding ¥ by Algorithm 4 is 0(n3L) for g=n, 1.
OtnfL) for gz n +yn. As in the case Karmakar's method, using partial updating, the
later bound can be reduced to 0tn#3L). It should be noted that in Karmarkar’s method
we have Pe/||Pell= Wfta‘.ﬁflif”i’flu )|, which does not hold in the case of affine
methods. Namely, Dikin's method uses the direction Pc, while Gonzaga's polynomial
modification uses P‘i?ftvl. Using a different potential function Ye [74] proposes an
affine algorithm which finds a satisfactory approximate solution in 0(n%L) iterations.
The overall complexity of Ye's algorithm is 0(n?%L), 1.e. 0(n?L) if the partial updating
is included. The bound 0(n?L) is the best complexity bound obtained by now and it also
holds for most of the path-following methods, which are the subject of the next
section.

Affine methods have been studied by many other authors, e.g. Anstreicher
[4]. Freund [21], Anstreicher and Bosch [5], Monteiro et al. [53], Kojima et al. [39], ete

5. PATH-FOLLOWING METHODS

The i1dea of the path following methods will be illustrated on the example of a
simple dual method proposed by Gonzaga [25]. Let us consider the dual problem:

max b’ v
ATy<e
and denote by Y its feasible set. We shall assume that

mtY = = 7ol [AT_\' <el=0

and for the sake of simplicity that Y (instead of X 1s compact. Let

: "
[(y.00=b"y+1 Y lnte, - Ay
1=]

be a barrier function associated with (7), where >0 is the penalty parameter and A,,
1=1,..,n are the rows of AT, For a fixed ¢ the function [ is strictlv concave and the
problem

max [y, {)
(81

A"y-.t'
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has the unique solution vif). The trajectory y(#), (>0 is called the central path
associated with (7). The trajectory has the important property that it converges to an
optimal solution of (7) when 1 — 0.

The classical barrier method generates a monotone decreasing sequence (1),
[ — 0 and the corresponding sequence (y(/;)). In that way the constrained
optimization problem is replaced by an infinite sequence of uncostramed problems,
Although the computation of y(£;) is usually replaced by the computation of a suitable
approximation ¥*, since the number of steps needed to compute v¥ is not known in
advance we can roughly say that classical methods generate infinitely many infinite
sequences. Path-following methods for linear programming are characterized not only
by the fact that for each k a fixed (independent of £) number of steps 15 taken in order
to obtain y*, but it 1s also possible to estimate polynomially the overall complexaty
necded to produce a solution of (7). The simplest algorithm of this type is Gonzaga's
method [25], where p=1, 1.e. the penalty parameter i1s changed at each 1iteration.

Algorithm 5 (Gonzaga)
Step 0: Lot v €Y and £, > 0 be input parameters. Set k=0,
Step 2: Compute ., :

1
r =(1-
k+1 41..[;

) £,

Step 3: Compute vk*1

LR " 2 PURT IR I & i P

Step 3: Replace £ by £+ 1 and go to Step 1. ®

Let us note that Gonzaga's method uses Newton steps for approximate
maximization, which 1s the case with most of the path-following methods. It is easy o

see that

Vv h=b—tAD e VA [lv.l)=-tAD=A"

where D =dwgie, - Ajy, . ¢, - A, ¥), so that the main computational effort per

iteration of Algorithm 5 1s the inversion of the positively definite matrix AD ‘AT The
proof of polynomiality of Algorithm 5 can be obtamed directly [25] or as a consequence
of Kantorovich's theorem [58]. Namely, if /,, is the optimal value of the obhective
function in (7) the folowing result holds:

Theorem 3. Let all the data in (7) be integer with the it length rand let L=r+<n>
If y" is such that

| DAT (3" = yity ) || < 1720 (9)
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where U:dmglr:t-A]y“. U ~ A y"), then Algorithm 5 in 0(n?5L) iterations

generates a point y* such that
fo-bTy* <27l m (10)

It can be shown that a starting pomnt y” satisfving (9) can be obtained either
directly after a suitable reformulation of problem (7) (e.g. [47, 25]) or using so called
centralization procedures. It also should be noted that y* satsfyving (10) can be
transformed mto an exact solution y with 0(n¥) operations using algorithms related
to Algorithm 1 (see e.g. [57]). If Algorithm 5 is modified to include a stopping rule and
if 7 satisfies the conditions of Theorem 3, 1t 1s easy to see that the overall complexity
is 0(n?5L). The algorithm can be modified using the idea of partial updating so that
the complexity bound is reduced to 0(n’L) (see [25, 58]).

The central path can also be defined for the primal problem:

min cTr
(111

Ax=b x20

Consider the logarithmic barrier function associated with (11):

: rn
gla, ) =c"x -1y Inx;, xenX
=]
The function gix. ) is strictly convex and 1t is easv to see that

V, glx.)=c—tD e V< gix ) =tD;*

where D, =diagix,,.. ,x,). Under the assumption intY =@ it follows that the

problem
min gix, ()

i12)

Ax = b, x>0

has the unique solution x(/). The central path associated with (11) is defined as the
trajectory x(0), >0. There is an interesting relationship between central paths
associated with primal and dual problems which can be obtained from the optimality
conditions for (12). The necessary and sufficient optimality conditions have the form

¢c-tD'e=ATy  Ax=b, x>0, (13)

If z=¢-ATy is the slack variable and D. =diagtz;, . ,z,) it follows that D =z
and (13) reduces to

D.D.e=te
Ax=b, x>0 (14)

ﬁr_'s‘ =y oS
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A point x(f) i an optimal solution to (12) 1if and only if there exist vit) and zt/) such
that xif), ytt), 2({) 1s a solution to (14). It is easy to show that yi/) 1s precisely the
optimal solution to (8) (see [47]), Hence, we can say that the svstem (14) characterizes
central paths of both primal and dual problems and for that reason the central path s
often defined as the triple x(/), yi(), z2t0) satisfving (14) (see eg [T1D. Many path-
following methods operate directly on the system (14) or on some of 1ts equivalent
formulations. We shall illustrate it on the example of a primal-dual method which uses
Newton's method for finding approximate solutions of (14).

Let (x*, y* 2k} be an approximate solution of the system (14) for 7=/, and let
(xkh+1 yk+1 2k 1) he an approximate solution of the system:

-

FD]D_.I"-lk,II';
Dix, v, 2)=| Ax—b
LAT}'+ zZ-¢ _!

= 1)

obtained from (x*, v¥ =¥ using one step of Newton's method Let p=ip,, p. p.).
p1=r**’-I*,;:{,.=}‘"”-J"‘,p:=z“’-z* be the Newton's direction. As it 1s well known, p s
the solution of the svstem

h_k

b.z*!p = ‘tbt.r"“.y )

Jixk, y

where o/ 1s the Jacobian of @, 1e, p,, p, and p. satisfy the system

- - r e i o - o " -Iu
Px H_.i- 0 Dllr Py fhey ¢ D:"" L'."* .
Jix*, v*. 24 Py A 0 0 Py b Ax"
p- 0 R 7 11| p. ¢ _ ATy ok |
where Dj, = diaﬂxf,....x,'f hy Dy = diagzf,.... 25,

There are obviously three sets of equations induced by the blocks of /. From the third
set we obtain

p. =-A"p, +e-ATy* -2,
and the first two sets of equations can be equivalently transformed into

e Skl

- A
kaDJ, ] i ATJ'

b - Ax*

From the first subsystem we have

Py = H:;:D!*A.rpy +D_]:Brktih,ﬂ:f. e-c+ATy¥h)
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and p, can be eliminatod from the second subsystem, yvielding
ADLD y A" p, = AD D 4 (e "hl”.ll- e-ATy" ) b - A

Computational effort for computing p, s Oy, whale p, and p. can be obtmned by a
direct pubptitution,

Path-following mothods arve subjoct of investigation of many authors, eg
Renognr [67], Kojima et al, [38], Monteiro and Adler [52], Roos and Vial [59, 60], Den
Hortog ot sl [16]). A unified appronch to path-following methods s given eg. in [58,
71}, while the recent book by Den Hertog [17] gives a systematie analysis of short-,
medivm- and long-step path-following methods for lincar, quadratic and convex
programming. Analytical properties of the central path as well as the defimtion and
proporties of trajectories  associated  wath  projective and  affine methods  were
mvestigated by Bayer and Lagarins [10,11], Witzgall et al. [70], Megiddo and Shub [45]
und othery

6. SEARCH DIRECTIONS IN INTERIOR METHODS

Consider the pramal-dual pair of problems (1) and (2) and suppose that
X, it Y0 As we have indicated, imterior methods can be classified into primal,
dunl and primal-dual methods. Typmeally, a primal method generates (x%)c r X, with
the property ¥* s x 0 dunl method generates (v intY with the property v 5 v,
while primal-dual methods generate simultancously %), (%) and 2% =e-ATyv%), All
these methods can be viewed as iterntive procodures which at each iteration make
posttive steps in cortain search divoctions, Yamashita [72] was the first who noticed
that senveh divections i difforent methods are hinear combinations of the same twao
voetors, the so called affine sealing divection and centering divection. ‘I'he imvestigntion
in that divection was continued by other authors (Gonzaga [25], Den Hertog and Roos
[15], ete ). We shall shortly outline the results from [15],

Lot poy and p,, respectively denote the atfine and the centering direction
associnted with the problem (1), For a given x and D, = diegixf, ..., x5 we define

P = ~Dt =D ATADIAT VY AD D, ¢
The primal contering direction is defined as
Peoms = Dyt =D ATADIAT Y AD, ) e

It can be proved that p,,, 15 in faet Newton's direction for the problem of finding the
analvtical conter of X. Roos and Den Hertog show that the search directions for a
variety of primal mothods and primal versions of dual methods (Gonzaga (25, 27, 28,
30, 31], De Ghellinek and Vial [14], Gay (23], Ye and Kojpima [76], Ye [73, 74], Barnes
(9], Dikin [18] Vanderber ot al. [GR], Gall ot al. [24], Roos and Vial [59, 60], Renegar
(57], Don Hertog ot all [16], Fround [21], Anstreicher and Bosch (5], vt and Imai [33]
e piven by
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Px = pnﬂ’ TP eony -
where u varies with the method.

The affine and the centering direction associated with the dual problem 12) at
1y, 2) are defined by

dar = (AD;2ATY 1, deet = ADZAT ' ADT e

where D. = diagle; — Ay, ¢, - A, ¥)=diaglz,.. . 2,). Itis shown in [15] that search
directions in manyv dual methods as well as m dual versions of primal methods are of
the form

Po= u'"”. +ad s

The values for g are obtained in the following cases: Gonzaga [25, 27, 29, 30, 31].
Yamashita [72]. Barnes [9]. Dikin [18], Vanderbe: et al [68], Gill et al. [24], Roos and
Vial [59, 60], Reneger [57], Den Hertog et al [16], Freund [21], Ye [74], Anstrewcher
and Bosch [5], Ir1 and Iman [33].

In primal-dual case let D_ =(D'D)'* = diagiyx, / z; .Jx,, '.?:,:1 and let
the directions at x and (y, 2) be defined by
=D (1-D_ATADLATV'AD D, ¢,  d,; =(ADEAT) b
Dosne = Dipd =D AT\ ADEATY ' ADD_De, d,.p =—ADLATY'AD e,

It is shown that primal-dual methods move from x in the direction
¥ o
p! - pﬂff +ﬂpt “inl

and from v in the direction
] L]
Py = rIn'H = .\"dﬁ‘nf '

(which uniquely defines the direction at z). This result is obtamned for the methods:
Monteiro et al. [53], Kopma et al. [38, 39), Monteiro and Adler [52], Todd and Ye [64).

From the results in [15] 1t follows that interior point methods at the k-th
iteration use a direction defined by the matrix (ADFA" 7', where Dy 1s equal to
D D} or (DD )" and D 4, D, are the diagonal matrices with x* and 24 at the

X 4 o i X L
diagonal. Another interesting property of interior point methods i1s that the majority

of them generate a solution sequence in which every limit point satisfies the strict
complementarity condition, 1.e. belongs to the relative interior of the optimal face (see

[32]). It 1s easy to see now that if the optimal face X =ix| Apxp =b,x520, x5 =0 |




188 Vera V. Kavacevie-Vuiéic /A View of Interior Point Methods for Linear Programming

is degenerate (rank Ag<m) then condl AIJEATI —x, k— = and all three classes of
interior point methods are faced with numerical stability problems, no matter which
computational technique s used to find the direction. Stabilization procedures are
analyzed by Asi¢ et al. [7] and Kovacevic-Vujéic [43]

7. IMPLEMENTATION OF INTERIOR POINT METHODS

Practical implementation of interior point methods imposes many problems
ranging from ill-conditioning to efficient data structures for handling large problems
and it is a subject of many papers. e.g. [1, 2, 13, 36, 44].

One of the most important 1ssues i the implementation of interior point
methods s the strategy for computing the direction. Instead of using the projection
formula indicated e.g. in Agorithms 2 and 3, a suitable hnear system 1s solved. As it 1s
well known, the projection of a vector /i onto the subspace defined by ADx = 015 the
solution to the problem

min [|h - x|*
Alx =0

In this case the Lagrange optimality conditions are given with

x+DA" r = h
i15)
ADx =0

or, equivalently, with

AD*AT r - AD)
x=h- UAT:‘

The first set of equations 1s usually solved by a stable Cholesky factorization, although
some authors recommend preconditioned conjugate gradients method, and x 1s then
obtained by a direct substitution. On the other hand. some authors tsee e g [6])
propose using the matrix structure of (15);

s

and choose the pivots so that the sparsity of the coefficient matrix 1s preserved, which
is an important issue for large problems. Minimum fill in strategies were analyzed by
Vanderbei [66], Vanderber and Carpenter [67] and others.

Another important issue is the so-called early rounding. The idea 1s to apply
Algorithin 1 or a similar procedure at early stages of an interior pomnt algorithm, when
a condition of the type (3) 1s not yet satisfied. Very often the obtained point turns out
to be optimal, which can save a lot of computational effort (see e.g [49, 61]).
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An interesting point is also the comparison with the simplex method. We shall
quote here a part of the results reported by Lustig, Marsten and Shanno [45] who
compared the OSL program for the simplex method developed by 1BM and the OBl
program for the primal-dual method developed by the suthors. The eomparison was
performed on the IBM RISC System 1600, model 530, A series of standard problems
I Table 1) was tested and the results are presented in Table 2, 1t 1s evident that with
growing dimension the interior methods become more efficient than the simplex
method, but that the simplex method stavs concurrent. The general conclusion 1= that
both approaches to linear programming will remain in use, with the recommendation
to use interior methods at early stages of the weration process and then switch o the
simplex method.

Table 1: Test problems

NAME #ROWS | #COLUMNS | #NONZEROS
| MARKAL { 5831 7689 ]| 59,435
PILOTS7 | 2030  as83| 73152
_Ml—*mmuﬁ 6507 13610 100,523
NCM ..3852] 16208 | 128,057
TRip oy 8Ba36) 21, 200 [ 161,160
FORD | a3387| 106908 | 189,864
OILCO 18,800 | 38,540 219 880

Table 2: OSLisimplex) vs. OB1linterior)

| OSL OB1 i)

NAME l #ZITER | TIME(sec) #ITER | TIME(sec) | OSL/OB1
[ MARKAL | 16041] cea22] a1 | . 12081 503
PILOT87 | 11578| 145942] 42 | 62115| 235
'MFMPTE16 | 27,257 | 201797| 30 | ~ 13376|  15.09
Nem | 8938 | 30906 44 | 69.04f . 447
(TRIP | 104687 | 1241722 | 41 | 41897| 2964
FORD | 19935]| 743095| 56 | ~ 63220| 1175
OILCO [ 95.857 19 889.51 b4 d 683 6 | 5.39

A great scientific activity indicates that further progress in the area of
interior point methods is to be expected. One of the open questions comes from the
fact that interior methods, similarlv as the simplex method, have much better
practical performance than the theoretical bounds indicate (20-60 1terations, almost
independent of the problem dimensions). Some attempts to explain this phenomenon
are given in [ 62, 75], ete. The next important issue 1s how to use the information on
the solution of a given program in order to solve a closely related program more efhic-
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entlyv. Namely, large programs are often heeng resolved after shght modification of
the input data, which can be done efficiently with a few 1terations of the simplex
method. It is still an open question how to make mterior pomt methods more etficient
if a possibly infeasible "warm start’ 1s gaven. Attempts in that direetion were made e
by Freund [22]. An Interesting issue is also the apphcation of interior point methods to
linear programming problems of the special structure and discrete optimization
problems (see e.g. [46, 50, 69]). Finally we make a brief reference to infeasible interior-
point algorithms for linear programming and linear complementarity problems which
work with strictly positive but infeasible pomts (e.g. [77, 78]
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