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Abstract. An absorbing Markov Chain model is formulated to describe the queue
formation and dissipation process at a service facility. The model yields the average
time for a queue to dissipate and the probability for the queue to reach a certain
length, using the properties of the fundamental matrix derived from the canonical
form of the transition probability matrix of the Markov chain. The model is useful
in evaluating the time for a queue to dissipate at a facility which provides service
intermittently, for example, at a loading point of a transportation facility. At these
locations, a vehicle cannot depart until all the waiting passengers (or cargo) are
aboard the vehicle. The delay to a user is thus affected not only by the number of
persons ahead in the queue but also by the ones behind him in the queue and the
ones who join the queue during the boarding process. The total waiting time of the
first person in the queue is approximately equal to the vehicle standing time and he
experiences the longest delay since he also had waited the longest before the vehicle
arrived. The last person in the queue experiences the shortest delay. This paper
formulates the general purpose model for calculating delay, queue dissipation time,
and queue length fluctuation under such conditions. The model may be applied to
a number of queuing situations in which dissipation of the entire queue is the main
concern, including problems of the dissipation of traffic back-up at a traffic accident
site or road construction site.
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1. INTRODUCTION

In designing and operating any service facility, queue formation and dissipation
behavior is an important concern since it relates to the determination of the waiting
area size, service schedule, and control strategies. Among numerous examples of
queuing problems, this paper analyzes the behavior of a queue at a facility which
provides services intermittently in a bulk mode.

Units arrive randomly at the service facility, and form a queue; at a given time,
the facility opens and begins service; the length of the queue fluctuates due to the
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arrivals of more units and the departures of unts; eventually, the queue dissipates,
and when no unit arrives for a certain time the service facility closes until the next
service time. Typical examples of such a queuing pattern are seen in the passenger
boarding process at a shuttle bus terminal or in the vehicle loading process at a ferry
boat terminal where units wait for the arrival of a vehicle; once the vehicle arrives,
the passengers begin boarding; the vehicle departs when all passengers including
ones who arrive during the boarding process complete boarding (the entire queue
dissipates).

In the above case, the delay experienced by a unit is the sum of: the time spent
for waiting for the vehicle; and, once the vehicle arrived, the waiting time before
boarding the vehicle; and the time required to complete boarding of all the units
behind it. The longest delay is experienced by the first unit in the queue, since it
must wailt until all the units behind it board the vehicle, in addition to the time
it waited for the arrival of the vehicle, which 1s also the longest. An interesting
feature of this type of queuing problem is that the total delay experienced by a
unit i1s determined not only by the length of the queue in front of it but, also by
the length of the queue behind it.

The queuing process described above is schematically shown in Figure 1. In
the figure, a dot represents a unit. Its arrival time at the service facility is shown
by its location on the horizontal axis. Its location in the queue is shown by the
vertical axis. For example, unit (X') is in the queue when the service begins (when
the vehicle arrives); it waits for time (a) to reach the front of the queue; it spends
time (&) to board the vehicle; and then it waits until the whole queue dissipates;
at this time the vehicle departs. Unit (Y'), on the other hand, arrives and joins the
queue while some other units are waiting or boarding the vehicle and it departs
with unit (X) at the same time. To analyze the delay of this type, the conventional
queuing theory is not sufficient, since it only deals with the time for a unit to reach
the service channel. For the type of problem described above, the dissipation time
of the entire queue must be considered.

This paper develops a general purpose model which analyzes queue dissipation
time using an absorbing Markov chain. The model describes the dynamics of queue
formation and dissipation process, and yields the average queue dissipation time
(which is the average delay), and the probability that the queue length reaches a
certain value during the queue fluctuation process. In developing and explaining the
model, passenger arrival, waiting and boarding processes at a shuttle bus terminal
are visualized, only to facilitate the explanation. Many other situations may be
considered to illustrate the model, including vehicle loading process at a ferry-boat
terminal, train formation process at a freight car marshalling yard. In these cases,
the departure of the vehicle (bus, ferry-boat, train) is subject to the clearance of the
entire queue formed by the arriving traffic units (passengers, automobiles, freight
cars). The vehicle (bus, ferry-boat, or train) standing time at the terminal or
station 18 approximately equal to the time for the entire queue to dissipate, except
for the times for departure preparation.
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In practical analyses, the standing time of a vehicle at a stop has been com-
puted as the product of the average boarding time per passenger and the number of
passengers. This approach may suffice for planning purposes; however, in order to
look at the queue formation during the boarding process and to gain a more accu-
rate understanding of vehicle standing time and delay, an approach which enables
us to examine the dynamics of queue formation and dissipation must be employed.
This is particularily important for the situations in which boarding rate is small
and the variation of vehicle standing time is critical to the operation, for example,

container loading onto rail freight cars and the train formation at a marshalling
yard.

2. PAST STUDIES

In most deterministic models, the queue formation and dissipation processes
are usually analyzed by a diagram showing the relationship between the accumu-
lation of the units and time, in which the cumulative arrivals and departures of
traffic units are shown on the vertical axis and time on the horizontal axis. The
envelop formed by the cumulative arrivals and departures of traffic units represents
the total queue and the vertical difference between the two lines is the queue size at
a given time and the horizontal distance i1s the delay of a unit. Among many such
examples, Morales (1986) developed programs to compute highway traffic delay
by computing the area of the envelop formed by many combinations of traffic ar-
rival and departure patterns. For passenger delays at a transit stop, Vuchic (1970)
showed passenger accumulation and vehicle standing time using a similar illustra-
tion for his analysis of delay propagation. Hendrickson and Kocur (1981) also used
a similar queue dissipation model in analyzing the delay of commuters caused by a
traffic bottleneck. These graphical methods are deterministic and that they cannot
take the probablistic nature of the phenomena into account; such as the fluctuation
of queue size due to the random arrivals of units and variation of service pattern.
A problem of marginal delay caused by an additional traffic unit in the queue was
analyzed by Wohl (1970), in which he analyzed the effect of additional arrivals to
the queue dissipation time.

3. ASSUMPTIONS, NOTATION AND APPROACH

ASSUMPTIONS

(1) Assuming a close headway operation, passengers arrive randomly at the ter-
minal independent of bus arrivals. Only boarding takes place at the stop,
and passengers board through a single door. Those who arrive while the bus
is standing are also allowed to board the bus. The capacity of the bus is
sufficiently large for the demand so that all waiting passengers and the ones
arriving during the boarding process can board the vehicle.

(2) The events of passenger arrival at the stop and passenger boarding are observed
in the increment of a small time interval; 1n each interval, no more than one
passenger arrives, and no more than one passenger boards the bus. The time
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interval is designated as At, and this unit is used to count time in the Markov

chain model.

(3) Probability of one person arriving in At is p. Probability of one person board-
ing during At is m. The events of passenger arrival at the stop and passenger
boarding on a small interval (At) are assumed to be independent; the arrival
rate does not influence the boarding rate. The probability of no one arriving in
At is ¢ ( = 1 —p), and the probability of no one boarding in Atis [ (= 1- m).

(4) The initial queue size (the number of passengers at the stop when the vehicle
arrived) is a function of the time elapsed since the departure of the previous
vehicle and the passenger arrival rate, p. If the elapsed time is expressed by
kAt, the probability of z persons waiting at the stop when the vehicle arrived
(the initial queue size) is expressed as a binomial form as follows:

A; = Prob (z passengers at the stop, or initial queue = z)

_ (‘“)H (1)

(5) The vehicle leaves the stop as soon as the passenger queue is cleared (queue
dissipates).

NOTATION

— probability that a person arrives in At,
— probability that no person arrives in At ( =1 — p)
— (Canonical form of the transition probability matrix
Fundamental matrix of the transition probability matrix, P
— Absorption probability vector
1 — Average vehicle standing time at the station (including by-pass situation)
W, — Average vehicle standing time when the vehicle stops at the station

Sz oe
|

number of time intervals elapsed since the departure of the last vehicle

8
|

— number of passengers waiting in the queue at the time of vehicle arrival
(initial queue length)

— probability that z persons are waiting at the stop when the bus arrived

— probability that a person boards the vehicle in At

probability that a person i1s not able to board the bus in At, ( =1 — m)
— queue length (or the state of the system) at a given time

N ~3a
|

— Average time in (At’s) to reach the absorbing state from state 1
probability that queue length becomes j starting from 1

&~
il 75
| |

probability that the queue length becomes j

1. THE MODEL

Fluctuation of queue length and its eventual dissipation is modelled by an ah-
sorbing Markov Chain. In the model, the state is defined by the number of persons
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FIGURE 1. DNlustration of the Queuing Process Analyzed in the Model

FIGURE 2. Markov Chain Diagram of the Model
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in the queue (queue length). Since, in order for the bus to depart, the number
of persons in the queue must reduce to zero eventually, the passenger boarding
process can be considerd as an absorbing Markov chain process. The absorbing
state is the state in which the queue has dissipated and thus, the queue length 1s
zero. This section presents the following steps: (1) illustration of the absorbing
Markov Chain, (2) transition matrix, canonical form and fundamental matrix of

the

absorbing chain, (3) expected absorption time and average bus standing time,

and (4) the queue length probability.

MARKOV CHAIN DIAGRAM

The Markov chain diagram which depicts the dynamics of the fluctuation of

the queue length is shown in Figure 2. Its characteristics are summarized as:

State (s): number of persons in the queue in At,

Absorption state (s = 0): no person is in the queue and that the vehicle leaves
the stop,

Time unit (At); a small time interval in which no more than one person joins
the queue, and also in which a maximum of one person can board the vehicle.
The state of the system 1s observed in the increments of At.

Initial state (s = 7): the state when the bus arrived at the stop; the number
of persons 1n the queue when the vehicle arrived.

Transitions: possible transitions of state between two consecutive time periods
are:

1. no change in the queue length, no change in state (s — s)

No change in queue length occurs when either no person arrives and no one
completes boarding, or one person arrives and one person boards. The proba-
bility of no change in state is gl 4+ pm.

2. queue length increases by one (s — s + 1)

Queue length increases by one when no one completes boarding and one person
joins the queue. The probability of queue length increase by one is pl.

3. queue length decreases by one (s — s — 1)

Queue length decreases by one when one person boards and no one joins the
queue. This probability 1s gm.

[t should be noted that in order for the queue to dissipate eventually, gm must

be greater than pl, (¢gm > pl); only under this condition, the process eventually
moved to s = ().

Queue length limit (n): an artificial limit of the queue length. This limit is
necessary to define the size of the transition matrix. Thus, in the early stage
of the model development, persons who arrive at the stop when the queue
length s n, are assumed not to join the queue. Therefore, at s = n, the
possible transitions of state are n to n = 1 (no arrival and one boarding), and
n to n (no arrival and no boarding). However, in the later stage of the model
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development, this constraint will be relaxed by letting n be nfinity in order Lo
show the general case.

TRANSITION MATRIX AND FUNDAMENTAL MATRIX

The transition probability matrix for the Markov chain of Figure 2 is shown
in the canonical form in Table 1. In the table, the matrix is segmented into four
sub-matrices by dashed lines: I, an identity matrix, representing the absorption
probability; R, a vector showing the transition probability into absorption; O, a
zero vector; and Q, a transition matrix between nonabsorbing states.

0 | 1 2 3 4 n
i i T
0 1o 0 O __._. SR N SR L I 0_.
1 gm . gl + pm pl 0 0O 0 0
2 0, gm ql + pm pl 0 0 0
3 0! 0 gm gl+pm pl O 0 [ I | 0 ]
. I = e e
| R | Q
: :
n-—1 0: gm gl + pm pl
n | 0 0 gm gl +p

TABLE 1. Transition Probability Matrix in Canonical Form

The inverse of matrix I — Q is the fundamental matrix (IV), whose elements,
(z,7), represents the average number of times the process is in state j if it starts
from i. This matrix possesses interesting properties; by simple manipulations, it
yields the probability to reach an absorption state(s), and also, the average time
to reach the absorption state(s) from a given state. For detailed explanation of
the properties of the transition matrix of an absorbing Markov chain, readers are
advised to refer to Kemeny and Snell (1976).

The fundamental matrix, IN, is obtained as
n
N=I+Q+Q*+ =) Q*=1I-Q)". (2)
k=0
Elements of the fundamental matrix, N; ;, are obtained as
1 Janl pl ;
BN pl S
qm ;(qm) . )

— <p_) , fori< j (4)

m m
q k=j—1 9

Ni; =

where 1 < 1 < n, 1< j < n, (see Appendix 1) for derivation of (3) and (4).

The probability of reaching the absorption state from state i, B;, i1s given by
the product of NV and R, NR. In this case, there is only one absorption state, and
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the process always moves to the absorbing state (s = 0) regardless of the initial
starting state, thus, B, is a unit column vector,

AVERAGE ABSORPTION TIME (QUEUE DissiPATION TIME FROM A GIVEN STATE)

The average time to reach the absorption state from state i is computed as the
sum of the elements of the i-th row of matrix N as shown in (3) and (4):

T; = ZN,J_ZN._,+ Z Ni ;. (5)

j=1 71=t+1

Using the relationships m +1 = 1, and p + ¢ = 1 with (3) and (4), 7, average
absorption time, is obtained as:

() - -
I; = =n——1' 1
A S« Ze0E) ) e o

These two experessions can be combined and simplified (see Appendix 2):

et e 31 ¢ NN

L (m — p)? ' - -

So far, the analysis has been based on the Markov Chain which has a limited
number of states, n, an artificial bound of the queue size. However, as seen in (3)
and (4), the values of NV; ; are independent of n, and that n merely defines the size
of the transition probability matrix. Therefore, when n is set infinity, B is still 1,
which indicates that the Markov chain is still an absorbing chain, and hence, the
average absorption time is given by making n infinity in (8). Since ¢gm > pl,

d
= —. (9)

m—p

This expression represents the queue dissipation time from a given initial queue
length for the general case (no upper bound on the queue length).

AVERAGE QUEUE DissipaTION TIME

The average time for a queue to dissipate, W, is obtained from the product
of the probability of the initial queue length and the average absorption time from

the initial queue length:
k
=) AT, (10)

1=0
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where A, 1s the probability that the initial queue length is i, as given by (1) and
also T, is given by (9). Thus, the average queue dissipation time, W, is obtained

As.

k

1 k

W, = —— i(‘)p'qk". (11)
m-—-pl=0 i

This average includes the case in which the initial queue length is zero, in other
words, the case in which the vehicle bypasses the stop because no one is waiting
for the bus.

The queue dissipation time only for the case when a queue is actually formed,
W5, can also be developed as:

k
W, :ZA:'Ti (12)

1=l

where A, is the probability that the process reaches the absorbing state from any
non-absorbing state s = 1,... & (not including s = 0). This probability is obtained
using the Bayes rule as follows:
, A;
A; = — (13)
Za:ﬂ A“ Bﬂ

where B; is the absorption probability from state 7 and it 1s 1 as discussed before.
Therefore, the denominator of the above becomes 1 — Ag or 1 — ¢®. Equation (13)

1s now expressed as:
A'“l—q"(i%q | .

Therefore, the average queue dissipation time (standing time of the bus) when
it stops at the stop is:

K

_ I AN i K
Wz‘u—qff)(m—p)z(i)” | (15)

gi=1

PROBABILITY OF QUEUE LENGTH

During the queue dissipation process, the queue length fluctuates. It may
increase temporarily if more passengers arrive. The probability that the queue
length becomes a given value is also developed here, using the fundamental matrix.
According to Kemeny and Snell (1976), the probability that the process begins

from state i and reaches'j, h; ;, 1s given by:
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where N7 ! is a matrix whose diagonal elements are the same as those of N and
all other eiements zero, and h; ; is computed as follows (see Appendix 3):

1, 1> ] (17)
el R o
E@TE@T -
pmji LI k=g NI

As seen in Figure 2, if ¢ > j, h; ; 1s 1 since the process must pass j in order to
reach the absorbing state; while for ¢ < j, h; ; i1s less than 1, since it is not certain
that the queue length increases during the passenger boarding process. By mul-
tiplying the probability of the initial queue length A;, and h; ;, the unconditional
probability of queue length, L;, is derived as:

K
Prob(L;) = ) _ Ah; ;. (20)
y=1
5. EXAMPLE

A simple example of the model is presented, in which passenger arrivals follow a
Poisson distribution, and passenger boarding is deterministic, (a passenger always
boards the bus within At{, mm = 1). The transition probabilities of this case are
shown in canonical from in Table 2.

0'1 2 k-1 &k
0 F_l_:_[]__p___ﬁ___________D_
1 g,p O 0 0
2 O:q p 0 0 0
3 0,0 ¢ p O 0 [ I | 0 }
. o | —- —_— e = e = e e
! R | Q
; -
k—1 0'0 q p
k 0,0 0 q p

TABLE 2. Transition Probability Matrix in Canonical Form for Example Problem

The fundamental matrix 1s obtained as follows:

(1/q 0 0 ... ... 0]

l/g 1/g 0 0 ... 0

N=(I-Q)' = (21)

e Vg g
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The average queue dissipation time from a given tnitial stale is given by (9)
as:

i; = -, 1 =1,2,... K. (22)
The average vehicle standing time, Wy, is given by (10):

K
111_241‘ _—Z (1;‘);)‘(,“-". (23)

1=0 =1

The average vehicle standing time only when the vehicle stops at the stop, W5

1s given by (15):
N
Ws = E Lt 24
] q(l—q ) ( ) )

=1

Since the fundamental matrix is in rather simple form, the probability of ve-
hicle standing time given the initial passenger queue size can be developed by
examining the combination of passenger arrivals and initial states. For example,
the probability that the dissipation time 1s 2A{, given the initial queue length of 2
occurs when no person arrives for two consecutive time periods, ¢°. Table 3 shows
the probabilities under different combinations of initial queue length and the queue
dissipation time.

Queue dissipation Time in Multiples of At, u

0 1 2 3 4 ) 6 7
0 1 0 0 0 0 0 0 0
1 0 q Pq p*q r°q piq p*q P®q
2 0 0 q” 2pq® | 3p%q? | 4p®¢? | 5p'q® | 6p°¢?
3 0 0 0 g3 3pq? 6p%q> | 10p*q® | 15p%¢?
4 0 0 0 0 4q* 4pq* 10p%q* | 20piq?
5 0 0 0 0 0 q® 5pq® 15p2q?®
0 0 0 0 0 0 p>q 6p°g?

TABLE 3. Probability of Queue Dissipation Time (in pAt) for Given Initial Queue Length (x)

In the table, the sum of the products between the initial queue length prob-
ability, Az, (given by (1)), and the corresponding element of column u represents
the probability that the queue dissipation time 1s uAt. Such probability, Cy, 1
summarized in general form as follows:

" o u— |l ) .
Z< )(Hl) e n \0)

=0

i B R K
u K o K 9
g ;(IL)(Z.H), u> K (26)
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6. CONCLUSION

The fluctuation and eventual dissipation process of a queue was modelled using
an absorbing Markov Chain. For given arrival and service rates and the initial queue
size at a service facility, the model yields the time for the queue to dissipate, and
the probabilities of various queue lengths during the queue size fluctuation process.
The expressions for these are derived using the properties of the fundamental matrix
developed from the canonical from of the transition probability matrix.

The model is useful in computing boarding or loading delay at a passenger or
freight transportation terminal where vehicles arrive intermittently and they depart
only when all the waiting passengers or cargo are aboard. In these cases, delay to
an individual is the time for the queue to dissipate counting from the time when
he joined the queue, this includes the time to reach the service channel and the
time for the queue behind him to clear, as well as the boarding time. The average
vehicle standing time 1s the sum of the product of the queue dissipation time from
the initial queue length and its probability. The probability of the initial queue
length 1s influenced by the time elapsed from the departure of the last vehicle and
the passenger arrival rate.

The model may also be applied to analyze train formation time at a railroad
marshalling yard or container loading time onto a ship, in which the departure of
the traip or the ship is contingent upon the clearance of the queue.

APPENDICES

1. Derivation of Fundamental Matrix
2. Derivation of Average Queue Dissipation Time

3. Derivation of Maximum Queue Size
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APPENDIX 1.
DERIVATION OF THE FUNDAMENTAL MATIRIX
From Eq (2), N=(I-Q)',

(I - Q)N = I (A1)
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Elements of the fundamental matrix, N; ;, are derived from the simultaneous equa-

tions represented by (A.l):

1. forj=1
(Pl+?m)N1J—P’N2J={0' for 2< j < k
—qmN;_1; + (pl+ gm)N;; = pINiyj =
(1, fori=j,2<i<k-1,2<j<k~1
_{0, fori#j,2<i<k-11<j<k-1

1, forisk

It e { 0, for1<j<k-—1

From Eq (A.5) and (A.7), it can be easily shown that:

Nij = Ne—1j = Ne—2j = -.. = Njy1 ;= Nj 5.
By introducing Nj41; = N;; in Eq (A.4):
1
Nj,j = q—T; + Nj_1.

From Eq (A.5):

I

1 [
Nj-1,; (p )"‘NJ’—?J

1/ pl 773
N3.3' = (P ) +N2,j

1 /ol \V 72
Ny ; = (p ) +N1,j

qm

By introducing Eq (A.12) in Eq (A.3), N;;, 1s

1\’ "}
o (2)
gm \ gm

From (A.13), (A.12), (A.11), ..., (A.10) and (A.())

[
Ell
N,
P i
X’

3
3|2
iy, T

-,
|
[ % |

+
P N
]

|
3=
b S

L.
|
\.._.V_J

NZ,J

I

1 1 \7-3 1 \i=2 g 51
= ()7 ()7 (2
T gm [ \gm gm gm

(A.2)
(A.3)

(A.4)
(A.5)
(A.6)
(A7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)
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Finally, from Eq (A.8), (A.13), (A.14), (A.15), ..., (A.16), we have

ML INEN
| - (*’—) for i > j (3)
gm qrm |
k=0
N;; = :
1 o pl .
— (—-—) o fori <y (4)
5% k=j—1 g
APPENDIX 2.
DERIVATION OF AVERAGE QUEUE DISSIPATION TIME
. . l
In order to simplify the equation(7), we let (—E—) be equal to p.
grm

1
qgm
1

qm
1

ﬁ

\

f

\

IZer Z n—k)p“}, 2<i<n

k=0 k=n—i1+1
n—i+1

= | | | |
— +(=—1)p”-*+1+(z—2)p“-=+?+...+p"-l}

l1—p

_{i(l T i l+1) + i :+1(1 :‘—1) _pn—:+l(1 : 1—}—(1 l)pi)}

L=y 1—p U—pF

qrrt
1 i(l=p)—(1=p)p"
gm (1-p)*

nen-ef-(2))() ™

: 2<1<n

(m — p)?

Since Eq (B.2) 1s the same as Eq (6), if i = 1, Eq (B.2) is valid for 1 < 7 < n.

APPENDIX 3.

DERIVATION OF MAXIMUM QUEUE SIZE (h; ;)

pl
As in Appendix 2, let — be equal to p.

qm
E P p’ -
No L L (I+p)  (p+p%) ..
~gm L (I+p) (L+p+p*) ... (C.1)
o] 1
N, — l [+ p
T gm L+ p+ p? (C.2)
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therefore
) ) _
l —gm P P
[+p L + p + p?
1 | L+p—gqm p+p°
(N-DNg = — L+ p l + p + p? (C.3)
L+ p+ p?
Then we have
= 1> ] (17)
a-em|3 () ] =3 (18
h'-,j — k= LAl

[:Zl q%)k] | L;(%)k] i<y (19)



