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Abstract. This paper presents a new method of obtaining hard test problems for
global concave minimization problems. The method starts from a three-satisfiability
type of problem and it transforms it into a minimization problem over the unit cube

with quadratic or cubic concave objective function. An alternative proof of the
N P-hardness of such problems is also given.
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1. INTRODUCTION

In this paper we present a new way of obtaining hard test problems for global
concave minimization problems. The same issue was addressed by several authors;
see for example (2, 4, 6, 7). The approach taken here is diferent: we show how to
transform 3-SAT problems (known to be N P-complete) to concave minimization
problems whith quadratic or cubic objective functions. This paper was inspired by
a recent paper by P. Gritizmann and V. Klee [5] and it also contains an alternative
proof of the main result of [5], i.e. the proof that the problems CUBEMAX and
PosDEF-0-1-MAX are N P-hard. The transformation used is very simple and the
time required is bounded above by a constant times the size of the input. Details
are given in Section 2.

We now decribe the classes of problems and the notation to be used in this
paper. First of all, we will consider minimization rather than mazimization of
functions; however the notation CUBEMAX and POoSDEF-0-1-MAX will be retained
(as in [5]) to avoid confusion and introduction of too many names and symbols.
As usual, Z, N and R will denote the integers, the positive integers and the reals

respectively.
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The cubic concave minimization problem over [0, 1]* may be desribed in deci-
sion form as follows:

CusiCoNc.
Instance: n € N: a cubic polynomial P € Z[z;,... ,z,] strictly concave on
[0,1]"; an integer A.
Question: Does there exist a vector z € [0,1]" such that P(z) < A7
Similarly, by the quadratic concave minimization problem we mean:

QuADCONC.

Instance: n € N; a quadratic polynomial P € Z[z;, ... ,z,] strictly concave on
R"; an integer A.

Question: Does there exist a vector z € [0, 1]” such that P(z) < A7

Notice that we require the cubic polynomials to be concave only on the cube
[0, 1]*. The reason is simple: If a polynomial P is concave on R" and if deg(P) < 3,
then deg(P) < 2. On the other hand, if a quadratic function is concave on a
(convex) set with nonempty interior then it 1s concave everywhere.

If in addition we require our quadratic polynomial to be homogeneous, we
obtain the problem CUBEMAX (compare with [5]):

CuUuBEMAX.

Instance: n € N; a negative definite symmetric integer n X n matrix B; an
integer A.

Question: Does there exist a vector z € [0, 1] such that zT Bz < \?

Since B is negative definite the function zT Bz is concave and it follows that
CUBEMAX is equal (see [5]) to the following 0-1 optimization problem:

PosDEF-0-1-Max.

Instance: n € N; a negative definite symmetric integer n x n matrix B; an
integer A.

Question: Does there exist a vector z € {0,1}" such that zT Bz < A?

In the following Section we describe how a three-satisfiability problem can be
converted into a global optimization problem with a quadratic or cubic objective
function. Although the transformation to CUBEMAX yields the strongest result (the
N P-hardness of CUBEMAX), the transformations to QuADCoNc and CuBiConc
require fewer variables and are thus interesting in their own right as sources of hard
global optimization problems with not too many variables.

The problem 3-SAT is mentioned in virtually every book that deals with N P-

completeness and related topics. The following formulation will be used in what
follows (cf. [3]):

3-SAT.

Instance: m € N;n € N; aset S = {Dy,..., D} of expressions of the form
pVqVr wherep,q,r€ {p1,...,pn} and p is either p or p.
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Question: Does there exist a truth value assignment for the variables py,... ,pn
which makes all expressions in S take on the value ‘true’?

The notation is somewhat simplified if ‘‘rue’ and ‘false’ are replaced by ‘1’ and
‘0" respectively. The logical connectives V and ~ then have the following “algebraic”

properties: pVg=p+q—pq,p=1-p.

Without loss of generality we will assume that each expression D; € S contains
three distinct variables. There are then eight possible truth value assignments for
the variables in D; and D; will take on the value 1 for seven of them. The values
in the remaining (eighth) assignment will be called the bad values for D;. For

example, p» = 1, p4 = 0 and p7 = 1 are the bad values for Dg = po V ps V p7- These
values will play an important role in Section 2.

2. THE TRANSFORMATIONS

Our first goal in this Section is to show how 3-SAT can be recast as a cubic
concave minimization problem over [0, 1]*. The obtained problem will have n vari-
ables, i.e. the same number as 3-SAT. We will use eight auxiliary functions which
will serve as building blocks in the construction of the objective function of the
resulting CuBICoNC problem. To begin with, let us consider the polynomial @

defined by
Q(z,y,2) = —zyz = 22* +y* + 2 )+ zy+zz+yz+zc+y+z+1.

It is easy to check that @ is strictly concave on the unit cube. Its minimum value on
[0, 1] is zero and is attained at all vertices of the cube except at (0,0,0). Consider
now the problem 3-SAT. Using the same notation as in Section 1, for each D; € S
we construct a cubic polynomial @; of three variables according to the following
rules:

a. If D; contains the variables p;, px and p; the polynomial @; will contain
the variables z;, z; and z;.

b. Use the following table to choose the polynomial Q;:

Type of D; Use of the polynomaial:
pVqVr Q(z,y,2)

pvVgVvr Q(z,y,1-2)
pvaqVvr Q(z,1 -1y, 2)
pVqVvT Q(z,1 -y, 1-2)
I;jqur Q(I—I,y,Z)
ﬁquF Q(I-—x!yll_z)
pvVqVr Q(l-=z,1-y,2)
pvqVvr Ql—-z,1-y,1-2)

In other words rule a changes the name of the variable (from p to z) but leaves
the subscripts unchanged. Rule b prescribes the coice of the polynomial depending
on the position of negation signs. For example, starting from the expression ps V
ps V pr we would obtain the polynomial Q(1 — z2,z4,1 = z7).
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The last step in the construction is to form the sum of the obtained polyno-
mials; the resulting problem is:

2.) Minimize P(z) = j;l Q;

subject to z € [0, 1]".

The objective function is clearly a cubic polynomial strictly concave and nonneg-
ative on [0,1]*. A closer look at the table in rule b reveals that each polynomial
i the right hand side column of the table attains the value 0 at seven out of eight
vertices of its (three-dimensional) cube; the only exception is the vertex whose co-
ordinates are the bad values for the corresponding expression in the left hand side
column. The objective function in (2.1) will thus attain the value zero if and only
if there exists a vertex of [0, 1]” such that its coordinates do not give bad values
to any expression in S. In other words, the question: Does there exist a vector
z € [0, 1]" such that P(z) < 07 and the question in 3-SAT have the same answer.
Moreover, any global minimizer of (2.1) will automatically yield a truth value as-
signment for which all expressions in S will take on the value 1, provided of course
that the minimum objective function value of (2.1) is zero. We have thus proved:

THEOREM 2.1. The problem CuBICONC 1s NP-hard. m

We will use the same 1dea to show how 3-SAT can be reformulated as a
quadratic concave minimization problem. This time, however, we need an extra
variable for each expression in S; the total number of variables in the obtained
problem will be n + m. Consider first the polynomial R defined by:

R(z,y,z,u) = —2(:.':2+y3+zg+u2)+a:y+xz+yz+(a:+y+z)u+3.

Again, 1t i1s easy to check that R is a concave function (on R*). The minimum
value of 'R on [0, 1]* is zero and for each (z,y,z) € {0,1}3, (z,y,2) # (0,0,0) it is
possible to chose u € {0, 1} such that R(x,y,z,u) = 0. It is clear that such a choice
of u is impossible if (z,y,z) = (0,0,0) because R(0,0,0, u) is positive for u € [0, 1].

Consider now the problem 3-SAT. For each D; € S we construct a quadratic
polynomial R; of four variables according to the following two rules:

a’. If D; contains the variables p;, px and p; the polynomial R; will contain
the variables z;, r, ; and u;.

b’. Treating u; as a constant, use the table from the rule b above to choose
the polynomial R;.

For example, starting from the expression Dg = pq V py V p> we would obtain the
polynomial R(1 — x4, 24,1 — 27, ug).

It is a straightforward, albeit somewhat tedious task to verify that if the =-
variables of R; are from {0,1} and are not the bad values for the corresponding
expression in the left hand side column of the table then it is possible to choose
u; € {0, 1} so that the value of R; is zero. Such a choice is impossible if the values



N P-Hard Problems and Test Problems for Global Concave Minimization Methods 49

are bad. The last step in the construction is to form the sum of the obtained
polynomials; the resulting problem is:

m
Minimize P(zy,...,Zn,u1,... ,um) = ) R;
=1

(2.2)
subject to z € [0,1]", u € [0, 1]™.

The remaining part of the reasoning is the same as above. We have thus proved

THEOREM 2.2. The problem QuaDCoNC s NP-hard. =

Our proof that CUBEMAX is also NV P-hard is very similar to the proofs above.
We will therefore give only a sketch of the proof, giving the details only where the
proof 1s different. We need a convenient homogeneous quadratic polynomial as a
starting point; a possible choice is:

T(z,y,z,u,t) = =2(z* + v’ + 2 +u®) + sy + 22+ yz + (2 + y + 2)u — 16¢°.

The minimum value of T on [0, 1]° is —19 and can be attained only at the vertices
that satisfy the following conditions: (1) the value of the t-coordinate is 1; (i1) the
r—, y— and z— coordinates are not all equal to zero. In other words, if (z,y,2) #
(0,0,0) then a suitable choice of u € {0,1} and ¢ = 1 will make 7 attain its
minimum value —19; this is not possible if (z,y, z) = (0,0,0).

The first rule 1s now:

a”. If D; contains the variables p;, p; and p;, the polynomial T; will contain
the variables z;, =, z;, u; and t.

Notice that we are using the same variable ¢ for all expressions in S. This is possible
because the same value of t ({ = 1) is intended in all cases. The only real role of t
is to make the auxiliary polynomials homogeneous.

The second rule is much like b’ above; the only significant difference is that z,
y and z are to be replaced, where indicated, by t — z, { — y and ¢ — z rather than
by 1—2z,1—yand 1l — z. This change makes sure that the auxiliary functions are
all homogeneous. For example, starting from the expression Dg = po V ps V p7 we
would obtain the polynomial R(f — z3, 24, — 27, ug,t). The rest of the proof is the
same as before (the optimal objective function value is now —19m, provided that
S is satisfiable). The number of variables in the CUBEMAX problem will be equal
to m+n+ 1. Finally, the obtained objective function should be multiplied by two,
in order to make the symmetric matrix B of the quadratic form an integer matrix.
The conclusion is:

THEOREM 2.3. The problem CUBEMAX s NP-hard. m

The transformations described above replace one expression at a time by a
polynomial (of 3, 4 or 5 variables). The time required for one such transformation
is clearly bounded above by a constant times the size of the expression and it
immediately follows that the total time needed is bounded by a constant times
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the total size of the input. Since the transformations are so simple it is clear that
they can be used to construct hard test problems for global concave minimization
methods. We are currently planning to test our method [1] and similar methods
on a number of randomly generated problems using the approach from this paper.
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