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1. INTRODUCTION -

It 1s well known that meaningful complete characterizations of optimality exist
only for convex programs and their convex-like generalizations, e.g., [2, 6]. In this
paper we consider general (possibly nonconvex) programs

(P) Min £°(2)

f'(z) <0, ieP={1, ... ;m}
where all functions f°, f* : RN — R, i € P are assumed continuous. We study those
programs (P) with the property that, for some arbitrary splitting of the variable z
into z = (z,0), the functions f°(-,8), f*(-,0) : R® — R, i € P are convex for every
f# € RP, where N = n + p. Many highly nonconvex programs share this property,
for example the following two:

1.1. EXAMPLE.

Max L

a.b. Z3
z1 + 29 <1 (11)
Z1 + 2923 Z 1

2y 20, 2220, z321.
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The feasible set of this program has a peculiar property: Along zz > 1 it is a
threedimensional convex body, at z3 = 1 it is a line segment, and at 0 < z3 < 11t
1s a point.

1.2. EXAMPLE. ,
Min (zy = 2)% + 23
(1—21)3—2220 (12)
21 Z 0! z7 Z 0‘

This is a classical example introduced in [6] to demonstrate that the so-called
constraint qualification may not be satisfied.

For the sake of convenience we denote the programs, that are “convexifiable-
by-a-splitting” in the above sense, by

(P,0) Min f°(z,6)
fi(z,6) <0, i€P

Note that, for a fixed 8, (P, #) 1s a convex program. The paper provides a solution to
the following problem: Given a feasible point z* = (z*,0") of (P), where z* = z(6")
is an optimal solution of the convex program (P,6*), find a condition that is both
necessary and sufficient for z* to be globally optimal for (P). The answer follows
by deduction from some recent studies in parametric optimization and point-to-set

mappings, e.g., [10, 11, 12].

2. A CHARACTERIZATION OF OPTIMALITY

We consider an arbitrary convexifiable-by-a-splitting program (P), written in
the form (P, @)..For every 6 we denote by

F@)={z: f(z,8) <0, i € P}
the corresponding feasible set in the variable z and by
f:{@F(G)#@}

the set of all #’s for which the feasible set of ( P) is nonempty. Clearly F : RP — R"
18 a point-to-set mapping.

Around a fixed candidate for optimality z* = (Z(6*),6*), we also consider, at
the # level, another point-to-set mapping F” : RP — R", defined by

FF0)={z: f'(z,0)<0, i € P=(67)}.
Here we recall, at any given @, the notation
P=(0)={i€P:z € F(0) = f(,0) = 0).

In our characterization of optimality we require that the mapping F' be lower semi-
continuous. The latter notion is recalled for an arbitrary mapping (see, e.g., [1, 4,

12]):
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2.1. DEFINITION. A point-to-set mapping I' : R — R" is lower semicontinuous at
8* € F, relative to ¥ C RP, if for each open set A, satisfying ANT(8%) # &, there
exists a neighbourhood N(68*) of 8* such that ANT(8) # @ for each # € N(6*)NF.

REMARK. Since the mapping F for (P,#) is closed, lower semicontinuity of F
implies its continuity (e.g., [1, 4, 12]).

We need more notation. The complement of the index set P=(#) is denoted
by
P<(0) =P\ P=(9).

The Lagrangian function to be used in describing optimality of z* = (Z(6*),0") is
Lw) =)+ Y wh)
i€P<(8°)
We will study its behaviour on the set
{FZ(8), F)

in R™ x RP. Denote by ¢ = card P<(8*), the cardinality of the set P<(8*) and by
% = {z € R° : z > 0} the non-negative orthant in R°. The main result of the
paper follows.

2.2. THEOREM. Consider a convezifiable-by-a-splitting program (P) and 1ls feasible
point z* = (Z(0%),0%), where Z(0*) 1s an oplimal solution of the conver program
(P,8%). Assume that the point-to-set mapping F 1s lower semiconlinuous at 8"
relative to F. Then z* 1s a globally optimal solution of (P) if, and only if, there
er1sts a non-negative veclor function & = u(@) € RS such that

LS(s*u) < L2, 0(6%)) < LE(2,(0)) (2.1)
for every z € {F7(0),F} and every non-negative u € RS .
Proof. (Necessity:) Let z* be a globally optimal solution of (P). Then
f(z%) = f2(2(8°),6") < f°(=,6)

for every z € F(8) and 8 € F. We follow the general ideas from the proof of
[12, Theorem 4.2] but with several modifications. First, for the sake of simplicity,
assume that P<(6*) == {1,... ,¢c}.

For every # € F, define the two sets in R°t!:
K,(8) = {y Ly 2> [jﬁ(::,ﬂ) fl(:c,ﬂ) f‘(r,ﬂ)]T for at least one z € F',:(f?)}

and

Ki={y:y<[f°(z") 0 ... 0"}
Since F=(0) is convex, so is K (). Convexity of K3 is obvious. We claim that the
two sets do not have a common point, 1.e.,

K](Q)HKQ =
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for every 8 € . Otherwise we would have
f(z,0) < (%)
fi(z,0)<0, i€P<(6°)
for some 8 € F and z € F=(8). Hence z € F(6) and the optimality of z* is violated.

The two convex sets are now separated by a hyperplane: There exists a nonzero
vector 4 = u(#) and a scalar a = a(f) such that

i'y' >a>a'y? (2:2)

for all y* € K, and y? € cl K, (closure of K3). Clearly, all components of u are
non-negative. (Otherwise #Ty? — 400 by an appropriate choice of y* € K3). After

specification
£z, 0) (")
0 0
o Rl P
Lfe(=,9).- A
for some z € F(6), the inequalities (2.2) yield
Wof'(z") Shfi()+ ), @f(2), (2.3)
i€P<(6°)

The next crucial claim is that ug i1s positive for every above fixed 6. If not, then
o = 0 and (2.3) yields

Y wfi(z)20. (2.4)

i€P<(6°)
Recall that z = (z,8) with z € F; () and take 6 € F close to #* and
e F)C F ()
such that |
f(z,0) <0, i € P<(9).

Then, in particular,

fi(£,0)<0, ieP<(@8"). (2.5)

The last step follows from the fact that F' is assumed lower semicontinuous, implying
P<(6*) C P<(f) for every § € F sufficiently close to 6*, e.g., [7, 12]. But (2.5)
contradicts (2.4). So we can set iy = 1, and (2.3) becomes

)<+ ) w(0)f(2) (2:6)
iEP<(8%)

for every z in the set {F=(8),F}.
Let us specify z = 2* in (2.6). We obtain

> w0 20,

EP<(8°)
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But also the reverse sign holds, by the feasibility of z*. Hence

Y. @) =0 (2.7)

tEP<(8*)
and, after adding this term to the left-hand side of (2.6), we find that
LS, W(6Y)) < LS (2, (D)) (2.8)

1.e., z* minimizes £ (z,u) for some u = %(#) > 0 on the set {F~(#),F}. The
necessary condition for optimality is proved.

(Sufficiency:) Going in reverse, we assume that (2.8) holds on the set {F, F}.
Because of (2.7), which follows after setting u = 0 in (2.1), we have (2.6) holding
for every feasible z. (Note that F(8) C F-(0) for every 8 € F.) For such z’s we
have f'(z) <0, i € P, so, definitely, f(z*) < f°(z), establishing global optimality
of 2*.

REMARK. From the proof of Theorem 2.2 we see that if 2* is optimal, then z*
optimizes L£$(z,%(0)) on z € {F7(8),F} for some #(f) > 0. The left-hand side
inequality in (2.1) is used only in the proof of sufficiency to guarantee the comple-
mentarity (2.7).

Conditions under which the set
{F(9), F}
in the necessary part of Theorem 2.2 can be replaced by the simpler condition
{F=(67), 7} (2.9)

are called “input constraint qualifications” (abbreviated: ICQ). Conditions under
which that set can be replaced by

{F=(0), F}

are called “modified input constraint qualifications” (abbreviated: MICQ). For a
study of these conditions in input optimization see [9]. The results given in that
paper are easily adopted to convexifiable-by-a splitting programs. A sample result

follows.

2.3. THEOREM. Consider a convezifiable-by-a-splitting program (P) and ils feastble
point z* = (£(0%),0"), where £(0*) 1s an optimal solulion of the conver program
(P,0%). Assume that the point-to-set mapping F' 1s lower semiconlinuous at 6°
relative to F. Also asume that an inpul consirainl qualification holds al 68*. If 2*
is a globally optimal solution of (P), then z* minimizes the Lagrangsan LS on the
set (2.9) for some non-negative functions u; = 4;(0) > 0, i € P<(0").

Some of ICQ’s and MICQ’s are essentially different from the ones known in
usual (nonparametric) mathematical programming, as the following adaptation
(from [9]) demonstrates.
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2.4. ADOPTATION: Consider a convexifiable-by-a-splitting program (P). If
(FAN(@)) C {6: F(6°) C FZ(0))
for some neighbourhood N(8*) of 6*, then the following condition is an ICQ:
For every § € F N N(8*) and for every z € F=(8) such that
f'(z,0) <0, i€ P<(6%)

it also follows that |
fl2,8") <0, i€ P<(87).

The above is a condition on the constraints at the z-level. On the other hand, some
ICQ conditions are familiar, such as Slater’s condition:

f'(£,0') <0, i€P forsome € R".
This condition is both an ICQ and a MICQ. Moreover, under this condition
F:(8)=F(0)=F~(")= R
for every 8 € N(6*) N F, where N(8*) is some neighbourhood of 8*.

Let us illustrate the above results on the examples from Section 1.

2.5. EXAMPLE. We want to know whether 2* = (1,0,1)T is a globally optimal
solution of the program (1.1) from Example 1.1.
After specifying z; = z,, 29 = 5, 23 = 0, the program is convexified by a
splitting:
Mgn fo = —31/9

f1= 171+172—1_<_0

fZ:—Il—IQO“"lSO (210)

fP=-21<0

ff=-2220

P==0+1<0.
The point to be checked for optimality is

2i=1 =2=0 =1,
Since P<(6*) = {3,4}, the Lagrangian is
T
Lole,u;0) = —'bl + ug(—z1) + ug(—1x3). (2.11)

The mapping F' is lower semicontinuous at 6* relative to perturbations in F =
[1,00). The mapping FJ is determined by

F:—'(G) = {.‘C '+ 29 <1, z; + 02, > 1}
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For the choice ug = uy(0) = 0, uy = uq(0) = 1/6, the complementarity condition
(2.7) is satisfied and z* is optimal if it solves

Max (1/0)(z1 + z2)

T, +22<1
Ty + 0zxy > 1
g > 1.
Clearly, this is the case, so z* is a global minimum for (2.10).
In the next example we demonstrate how ICQ’s can significantly simplify iden-

tification of minima.

2.6. EXAMPLE. Again we consider the program (1.1) and the same z* as in Example
2.5. Since the constraints f* i € P<(6*) = {3,4} do not depend on 4, the ICQ
from Adoptation 2.3 is satisfied. Theorem 2.3 now says that if z* is indeed a locally
optimal solution of (1.1), then z* must optimize (2.11) on the set (2.9) for some
uz = u3(f) > 0 and ug = u4(f) > 0. Again, choosing u3(6) = 0 and @4(0) = 1/8,
the equivalent program becomes

Max (1/6)(z1 + 22)
‘1?1+.',Il'2=1 (212)
g > 1.

Clearly, z] = 2] =1, 25 = 2f =0, 8* = z5 = 1 is an optimal solution of (2.12), so
z* passes our necessary condition for optimality.

2.7. EXAMPLE. Finally, consider the program (1.2). We want to check how z} = 1,
z5 = 0 passes our necessary condition for optimality. After the splitting z; = 8,
zp = z, the program is convexified:

Min fO=(0-2)7%+ 22
8.%.
fl=0-1P+2<0

fP=-2<0
fP==0<0.
Now we have to check 2 = 0* = 1 and z; = z* = 0 for optimality. Since

P<(8*) = {3} and there are no z’s in the third constraint, the ICQ from Adoptation
2.3 is satisfied. If z* is indeed an optimal solution of (1.2), then 2* must minimize

LE(z,u;0) = (0~ 2)% 4+ 2% + uy(-0)
on the set {F=(6*), F} for some uz = u3(f) > 0. Since
F=(0*)={z: (0" -1 +z=0, —z =0} = {0)
the latter means that z* must solve
Min (6 — 2)* + 2* + iia(6)(-0)
z={ (2.13)
§ <1
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for some ug(#). Specifying, e.g., t3(f) = 0, it is obvious that #* = 1, z* = 0
solve (2.13). Hence 2z} = 1, z} = 0 passes the optimality test. In order to actually
establish optimality of z* one can use Theorem 2.2.

3. IMPORTANCE OF LOWER SEMICONTINUITY

The characterization of optimality in Theorem 2.2 requires lower semiconti-
nuity of the point-to-set mapping F. The result is not valid if this assumption 1s

dropped as demonstrated by the following example.

3.1 EXxAMPLE. Consider the program borrowed from [8, 10]:

Min 2123
s.t.

2 <0 (3.1)
(21 — 22)23 < 0
max{z + z5 — 1,0} < 0.

This program is convexifiable by a splitting. Namely, choosing z; = z;, z2 = 23,
z3 = @, the program becomes

l\;l%n f%=2z0
1 _
f =250 (3.2)

f2=(2f—22)0% <0
f2 = max{z? + 22 - 1,0} < 0.

The feasible set at the (z1, z2)-level, as @ varies, is

01 T& < < _1: —
F(B)z{[ a]T 0<ac< for § =0
[0,0]*, for @ #0.
Clearly, z* = 0 is an optimal solution of (3.1), i.e., z} =0, 25 =0, * = 0 is an

optimal solution of (3.2). Note that F' is not lower semicontinuous at * = 0. Does
r] =0, z5 =0, 6 =0 minimize

LE(z,u;6) = 210 + uszy

on the set {F;7(8), F}, for some uy = 93(#) > 07 It the answer was affirmative, we
would have

L(2,(0)) 2 £(2",ia(67)) = 0
€.,

- I1 3,
ur(f) > ——0 = —
2(0) > ~rabal ~

for a fixed 6 # 0 along the path z; = z{, 1 < 0 in F=(0). Now r; — 0 would
imply t3(f) — +00. We conclude that such Lagrange multiplier does not exist.



Characterizing optimality in nonconvex optimization 11

4. CONNECTIONS WITH CONVEX OPTIMIZATION

If (P) is a convex program then no splitting of z is needed to characterize
optimality. In that case we can identify z = z independently of #. The mapping
F. reduces to

FZ={z: f'(2) <0,i € P~}
= {z: fi(z) = 0,i € P7)
= F=

where |
P=={teP:z€eF = f'(z) =0}
and

F={z:f(2)<0,ieP)

is the feasible set. Since, in this situation, F' does not depend on 6, the mapping is
trivially lower semicontinuous. Moreover, one can remove the nonactive constraints
from the Lagrangian. We recall that the active constrainis at 2* correspond to the
index set

P(z*)={i€P: f(:*) =0}
while the constraints f*, i € P\ P(z*) are nonactive. From (2.7) it follows that
u;(07) =0, i € P\P(z").

Moreover, in the fixed @ situation, the corresponding Lagrange multipliers in the
right-hand side of (2.6) are also equal to zero:

u;(0) = u;(0%) = 0, i € P\P(27).
Thus we have the following special case:

4.1. COROLLARY. Consider a conver program (P). A feasible point z* is optimal
if, and only if, z* minimizes the Lagrangian

L3(zu)= )+ ), wif'(z)
i€P(2°)\P=

on the set F= for some non-negative numbers u; = u; > 0, 1 € P(2*) \ P=.

Since £LS(-,u) : R® — R is a convex function for u = @ = (4;) > 0 and F~
is a convex set, the statement of Corollary 4.1 is equivalent to saying that there

exists a subgradient
hedls(z",u)

such that
h(z—2")>0 forevery z€ F~

or, more formally, h belongs to the following polar set

he {FF -2}t ={2-2":2€ F7}* (4.1)
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(We recall that the polar set of an arbitrary set M is defined by M*={v:vTz2>0
for every r € M}, e.g., (12]).

In order to see the light in this situation, we recall the definition of the cone
of directions of constancy of f': R® — R at an arbitrary z* € R":

D7 (z*)={d: f'(z* + ad) = f*(z"),0 < « € @, for some @ > 0}

see, e.g., [3]. The intersection of all cones of constancy of the functions belonging
to the index set P=, at z*, 1s denoted by

D=z ye= ﬂ D" )

i€P=

Although
F= =2 C D7(z2") (4.2)

generally with a strict inclusion, 1t is curious that the polars of these two sets
concide:

4.2. LEMMA. Consider the convez program (P). Then, at any feasible z*,

{F==2"}T = {D7(2")}".

Proof: From (4.2) we conclude, using the properties of polar sets, that
(DN C{F= - "}7

so only the reverse inclusion has to be proved. To this end, take any d € D=(z").
Since

fi(z* + ad) = fi(z") = 0, { € P=
it follows that
> +ad€ F~

for all sufficiently small a > 0. Hence
ad=(z"4+ad)—2"€ FT - 2", (4.3)

At this point, using (4.3), we oberve that for an arbitrary ¢ € {F= — 2*}* we have
g7 (ad) > 0 and ¢gTd > 0 since a > 0. Hence

g € {D=(z")}".
We have, indeed, shown that
{(F= =2} c{D=(=")}*
which completes the proof.

Using Lemma 4.2, the relation (4.1) can be rewitten as

h € {D=(:))*
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and Corollary 4.1 assumes the following form:

4.3. COROLLARY. Consider the conver program (P). A feasible point z* 1s optimal
if, and only if, the system '

RO+ 3T wh e (DI())Y
i€P(:* )\ P=
u; 20, 1eP(*)\P~

1s consistent for some h* € 8f*(z*), i € {0} N {P(z*) \ P=}.
If the convex functions in (P) are all differentiable, then the above yields
another result from [3], but here proved using different arguments:

44. COROLLARY. Consider the conver program (P), where all functions are as-
sumed differentiable. Then a feasible point z* s optimal if, and only if, the system

V) + Y, wVF(Z") e (D7)
tEP(z2*)\P=
u; 20, 1€P(2”)\P~

15 consistent.
This deduction would be incomplete without mentioning Slater’s condition:
f(2) <0, t€P for some 3 E R,
The condition, for convex programs, is equivalent to P~ = @&, in which case
DF(z*)= R* and {D~(z")}T =0
The statement of Corollory 4.4 is further simplified:

4.5. COROLLARY. Consider the conver program (P), where all functions are as-
sumed differentiable. Also, assume that Slater’s condition is satisfied. Then a
feasible point z* 13 optimal if, and only if, the system

VG + ) wVf(2") =0
1EP(z2°)
Uy _>_ 01 1 p(z*)

18 consistent.

The latter is the classical result of Karush, Kuhn and Tucker (e.g., [3, 5, 6]).

Of course, one can state corresponding results for convexifiable-by-a-splitting
programs, assuming that the set {F,~(8), ¥} is convex.
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