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Abstract. This paper presents a polynomial dynamic programming based algo-
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bandwidth-limited graph, where the number of cities to be visited by each of the M
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1. INTRODUCTION

Considerable interest has been shown for well-solved cases of travelling sales-
man problem (TSP). According to [8], there are two broad categories of well-solved
cases of TSP. In one category are the problems that are special because of restric-
tions on the matrix C of arc lengths; for example, C may be upper triangular or
circulant matrix. In the second category are the problems in which TSP is to be
solved over a network (graph) with particular structure, but with no restriction on
the lengths of arcs. In this category is the topic of this paper i.e. TSP on networks
having limited bandundth.

Let G be a loopless directed graph (digraph) on vertices 1,2,... ,N. G is
called a bandwidth-limited graph if there exists a positive integer S (S < N — 1)
such that for any arc (i,7) in G we have |i — j| < 5. The smallest such integer S
18 called the bandwidih of G and is denoted by w.

To each arc (i,7) of G a length (weight) c;; is assigned. We define ¢;; = 400

if the arc (i,7) does not exist in G. The matrix C = ]|c,;_,'||‘:"r is called the weight
matriz G. The length I( H) of a subgraph H of G is defined to be the sum of lengths
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of arcs of H. In particular, the length af a path is the sum of lengths of arcs from
which it consists. A path consisting from k arcs is called a k-path.

We formulate the M travelling salesmen problem (M-TSP): Given a weighted
graph G and a positive integer M, find a spanning collection of M disjoint paths
(salesmen’s tours) with minimal length.

Variations of this problem include limitations on the number of cities visited
by each of the M travelling salesmen. In particular, it is interesting to consider the
case when each salesman visits a constant number of cities. In this case, of course,
the number of vertices N of GG is divisible by the number of salesmen M. Note that
the reduction by Belmore and Hong [1] of the M-TSP to the TSP is not applicable
to the mentioned variant of the problem.

A TSP is called symmetric if the weight matrix is symmetric. Otherwise it is
called asymmetric.

In [9], [10] (see also [8]) a polynomial algorithm for symmetric TSP on
bandwidth-limited graph is described. It is based upon dynamic programming
approach. This paper extends the basic ideas of this algorithm for an asymmetric
TSP and generalizes it for M (M > 1) travelling salesmen. For M > 1 the numbers
of cities to be visited by each of the M travelling salesmen should be specified. Let

this specification be provided by a condition «a.

We give computational results on VAX/VMS concerning the case when the
equal number of cities are to be visited by each of the M travelling salesmen.

Our algorithm has been implemented within a programming package called TSP-
SOLVER [5].

2. DESCRIPTION OF THE ALGORITHM

Let G be a bandwidth-limited digraph. The algorithm which will be described
is related to the case when N, w, M are independent parametrs with obvious
restriction and basically stems from [2].

Let vertices of digraph G be represented as in Fig. 1 for a fixed j (w < j < N).

Aj B; C;
o 0 . ) 0 0 -0 0 0 -0
1 2 j-w—-1llj-w j—-w+1 -+ jlj+1 5742 --. N
Fig. 1

Let us define the sets:
A;i={1,2,...,j-w~-1},
BJ = {j—w,j—w+l,... !j]]

The algorithm is based on the fact that, due to the bandwidth w of the digraph
(7, there are no arcs from vertices of A; to the vertices of C;.
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Consider M disjoint paths satisfying condition a in digraph . Let H be a
digraph which has the same vertices as GG and only arcs from paths mentioned. Let
H; be the subgraph of digraph H induced by the set A; U B;. Digraphs H and H,
contain four types of vertices with respect to the values of vertex indegrees d~ and
outdegrees d:

1. 1solated vertices: d= = 0, d* = 0 (type 1),
2. starting vertices: d- =0, d* =1 (type 2),
3. termunal vertices: d~ = 1, d¥ = 0 (type 3),
4. internal vertices: d~ = 1, dt =1 (type 4).

Degrees of vertices in A; are the same in H; and H since in both G and H
arcs between A;, and C; do not exist.

Let us add vertex j + 1 to H;, so that the digraph H, 4, is obtained. Vertex
7+ 11s adjacent with 0, 1 or 2 vertices in B;, Fig. 2. Various possibilities of joining
vertex j + 1 and a vertex b € B; that yield a legitimate subgraph H,,,;, depend
not only on in(out)degree of vertex b, but also on paths in H; containing vertices
1n Bj.

The set B; contains w + 1 elements. Let 7 be the i-th vertex in B; (z] has an
absolute position j —w — 1+ 17 in (). For a vertex xf € B;, let uf € {1,2,3,4} be
its vertex type. Let tf = (u;’ : v;’ ,wf) be an assigned triple of nonnegative integers
defined as follows:

1. if 27 is isolated (internal) vertex, then «! =1 (u} = 4), and v} = w! = 0.

2. if :r: is starting (terminal) vertex, the u) = 2 (u) = 3) is the number of

arcs in a path with one endvertex z}, and w! is position (ordinal number) of the

other endvertex of the corresponding path. (If the other end of the path is in A;,
we have w! = 0).

Triple sequence T; = (.1, ... ,ti+1) descirbes the set B;, hence the digraph
H; in the extent necessary for futher analysis.

Let 7, be the set of all subgraphs H; and 7 ; be the set of corresponding triple
sequences Tj. Let us define an equivalence relation on the set 'H;.

DEFINITION. For a given j, two subgraphs H;, H are equivalent (H; ~ H') if the
corresponding triple sequences are equal ie. T} = T}

Reduced sets H; C H;, T, C T, of subgraphs H; and the coresponding triple
sequences T; respectively, induced by ~ are formed as follows: find the shortest
subgraph H; € H; in each equivalence class, include it in H;, and include at the

same time its ‘description’ i.e. corresponding T; € 7;.

The following algorithm A solves the given problem (M-TSP): (All subgraphs
H; are represented by corresponding triple sequences T}).
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1. STEP: Initiahzation: Determine initial set H, 4, (see Section 4).
2. STEP: For j=w+1,w+2,...,N do:

Add vertex j + 1 to every H; € H; thus obtaining Hj;; € 77,'4.1. (For
various possibilities of adding vertex j+ 1 that yield legitimate subgraphs
H; 4, see Section 3).

Sort triple sequences T;j;; € -’fjﬂ lexicographicaly. Sets of mutually
equal triple sequences correspond to equivalence classes of subgraphs

H;,1: Keep the shortest subgraph H,, in each equivalence class, thus
forming reduced sets 7,4, and H;4.

3. STEP: In set Hy find the subgraph Hy fo the shortest length. Stop: Digraph
H = Hpy 1s an optimal solution.

Algorithm A correctly solves the M-TSP problem as stated in the following
proposition:

PROPOSITION. Digraph H = Hpy determined in Step 3 of algorithm A 1s an optimal
solution of the M-TSP problem.

Proof. Any digraph F' € Hy has the property that each of its subgraphs Fj
belongs to the reduced set of subgraphs H;. Conversely, all subgraphs K with N
vertices containing M paths satisfying condition K; e H; (j=w+1,w+2,... ,N)
are in Hy.

It remains to prove that the digraph H, which 1s the solution of our problem,
has the property H; € H; (j = w+ 1,w+2,...,N). Suppose that for some j
we have H; ¢ H;. This implies that there is a H; € H; such that H] ~ H; and
I(H;) < I(Hj). Then, if H; is substituted with H; the resulting subgraph H' is also
solution of the M-TSP with shorter length. This is contradiction with assumption
that H 1s an optimal solution.

3. GENERATING TRIPLE SEQUENCES

All possibilities of connecting vertex j + 1 with a vertex in B; are depicted in
Fig. 2.

Fig. 2.c Fig. 2.d
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To avoid some technical difficulties in descirptions we shall consider a special
condition a: N is divisible by M where k = N/M — 1 and each salesman should
visit & + 1 cities.

Let us assume that the reduced set 7; of triple sequences corresponding to
subgraphs H; € H; is generated.

We generate several triple sequences Tj, from each triple sequence T; € 7; in
the following way.

- (¥ ¢ : — (41 i+ +1
Lot Tj = (8,8, ... ,8 ) and Tpqy = (7,837 ,. .. 2253).
~ For each kind of adding vertex j+1 from Fig. 2 we get a sequence T} 4. Triples
B 857 .t are obtained from triples £, ¢, ... ,t],+1 respectively by some

modifications depending on the cases in Fig. 2.

Rule A: adding an isolated vertex (see Fig. 2.a.) causes no modification except
for decreasing third triple coordinates by 1 if they were greater than zero.

Rules B and C: (connecting vertex by one arc Fig. 2.b and Fig. 2.c) We consider
triple t].
Its first coordinate is changed (vertex type) and other coordinates in the corre-

sponding way. If vertex has become an internal one, other two coordinates become
equal 0.

If a vertex z!, represented by triple sequence tf, becomes a starting or terminal

vertex, the second coordinate becomes equal to 1 and the third one equal to w + 1.

Suppose that before modification we had tf = (u;’,vf,wf) = (a,b,c) for 2 <
t <w+4 1. Then for ¢ > 0 in triple tf“ we should let second coordinate to be b+ 1,
and the third one to be w + 1.

If we had b = k, then this extension is forbiden since H would contain a path
of length greater than k.

Rule D: In the final case (connecting the new vertex by two arces as in Fig. 2.d.)
only the triples t-;, = (a,b,c) and t-; = (d, e, f) are changed.

First, such an extension is forbiden if there is a path between :cg; and x{, This

case is recognized by conditions ¢ = ¢ and f = p. (The extension is also forbiden if
at least one of the vertices is internal 1.e. a = 4 or d = 4).

When both vertices are isolated, i.e. a = 1 and d = 1 there are two possibilities:

(i) a=2(thend=3),b=e=2,c=¢q-1, f=p—1;

(i)a=3 (thend=2),b=e=2,c=q-1, f=p-1.

Fora=1and d # 1,41t follows a =d, b = e+ 2, ¢ = f —1; In this case
the extension is forbiden for e + 2 > k. If we had d = 2, we set new values d = 4,
e =0, f = 0. However, for f > 0 before transformation we modify the triple t/,;

its second coordinate becomes b + e + 2 and the third one p — 1. The extension is
forbidden if b + ¢ + 2 > k. We handle the triple t] analogously.

There i1s a special limitation for the modification of t‘;. Since this triple becomes
t’;H, the path which 1s perhaps attached to vertex I‘i+l must posses the desired
number of arcs, 1.e. k.
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We should describe now the building of triples tf;,"_;_ll = (a, b, c) following cases
from Fig. 2.

a)a=1,0=0,¢c=0.

b) Lett{:(d,e,f). Thena=3,b=e+1,c=f—1for f>0and ¢=0 for
f = 0. The extension is forbidden fore + 1 > k.

¢) The same as in b) with exlusion a = 2.

d)a=4,6=0,c=0.

Generation of new triples can be adapted so that in final solution paths of arbi-
trary, in advance fixed, lengths exist. In this way the algorithm can be generalized
to solve the M-TSP problem with given lengths of solution tours.

4. INITIAL SET CONSTRUCTION

The intial set H, 4, is formed in the following way. We introduce auxilary

vertices —w,—w + 1,... ,—1,0 into the digraph (see Fig. 3.).
= A; <)
0 o o ..+ © © 0 0 -+ 0 - o0 0
-w -w+1 -+ =-w+4+y -~ -1 0 1 2 -+ 3§ i w w+1
I B; —1
Fig. 3

For 0 < j <wlet

Aj ={~w,—~w+1,...,-1,0},
Bi ={-w+j,-w+j+1,...,j}

We assume that auxilary vertices are isolated in G. Form the set which consist
of digraph Hj induced by vertices —w,—w+1,... ,—1,0. (Ho does not contain any
arc). By the procedure described in Section 3 we determine successively sets H;
(= 1,2,... ,w+1). By passing from H; to Hj4+1, vertex j + 1 is not connected
to those from A; (vertices with a negative label).

5. FINDING THE REPRESENTATIVES OF EQUIVALENCE CLASSES

In this Section we shall describe some detail of the algoritm implementation
which have a considerable influence on the efficiency of the algorithm.

In Section 3 we have described how new triples sequences Ti41 € T4, are
generated from triples T; € 7; using rules A, B, C, D.

In order to reduce mutually equivalent sequences (subgraphs) we sort triple
sequences. This sorting is time consuming. The time for sorting can be substan-
tially reduced using a kind of address sorting at the cost of spending more memory
space.
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Let uy, ug,... ,uy4) be the first triple coordinates from a triple sequence. (The
sequence contains w + 1 triples, where w is the bandwidth). The first triple coordi-
nates represent vertex type, hence u; € {1,2,3,4}.

The number s = 4“ - u; + 4“1 . up + - - +4 - uy, + uy 4 uniquely determines
the sequence uy,us,... , Uy4;.

For w = 10 we have 4* = 4!° = (219)2 ~ (10%)? = 10° and the number s is
contained in the range of INTEGER*4 in FORTRAN.

Generated triple sequences are stored in a triple vector and each sequence gets
its ordinal number. When generating a new triple sequence we immediately check
whether an equivalent sequence has already been generated. This is achived by the
number s since equivalent sequences have the same value for s.

However, non-equivalent sequences can have equal number s. Therefore we
introduce a vector EQUI in which, at position s, we put information on already
generated triple sequences with the number s.

If EQUI(s) = 0, no generated triple sequences has the number s. If such
sequences already exist, i.e. EQUI(s) # 0, their ordinal numbers are chained in
another vector, and EQUI(s) contains a pointer to the first triple sequences with
the associated number s in the mentioned chained structure.

When generating a new triple sequence we establish in the described way
whether an equivalent triple sequence already exists. If it exists, from two eqivalent
sequences we selcet the shorter one (in the sense of length of partially constructed
salesman’s tours) and it is memorized. For each memorized sequence we store into
special vectors its length and origin (the sequences on the previous level of sequences
from which it is generated; this is useful in reconstructing salesmen’s tours at the
end of the algorithm).

We shortly mention some other details of the implementation. A triple is
internally coded by a unique integer. When generating triple sequence from 7,4,
starting from those from 7; we use records of the later ones whithout copying them
into a new memory space.

Consider a triple sequence from 7; coded by integers t;,12,... ,{,41 and a
pointer u. If u = p we read this sequences as t,,tp41,... ,tugr,t1,82,... i1,
Applying Rule A to this sequence we get the sequence whose code is the same with
only difference that u = p+ 1 and ¢, = 0. Indices addition is performed modulo
w+ 1.

Also some addional rules to reduce the number of triple sequences have been
implemented, but we shall not describe details here. They are based on the limi-
tation on the number of starting and terminal vertices being ends of paths whose
gsecond end is in the set A;.

6. COMPLEXITY ANALYSIS

We note the following theree observtions:

a) In order to evaluate the complexity of the described algorithm it is essential
to find a bound for the cardinality of the set H;.



22 D. Cvetkovié, M. Milosavljevi¢, V. Dimitrijevié

An element of the set 7; is a triple sequence Tj = (t],t3,... ,t,,,).

The first coordinates belong to the set {1,2,3,4}. The second triple coordi-
nates yield the number of arcs in paths that begin or terminate in these vertices.
The number of arcs in a path is at most k.

The third coordinates belong to the set {0,1,2,... ,w + 1}.

So, we can conclude that the number of triple sequences is at most 4“+! . p«+*.
(w + 2)«*1,

Since k < N/M, the number of element of the set H; is smaller then 4“** -
(N/M)“*! (w+2)“*!. Hence, the upper bound is a polynomial P, ;1(N) of degree
w+ 1.

b) When forming 7; 4, from a T; we get a bounded number of sequences T} 4,
say at most C. Therefore the total number of generated sequences T4, is at most
C- FP,41(N).

Now we have to sort sequences Tj, in order to find equivalence classes of sub-
graphs H;. It i1s known that the address sorting of L objects can be performed with
complexity O(L). Hence, the complexity of generating and sorting sequences T 4
1s QO(N«t!),

c) Forming 7; 4, from 7; (as in b)) has to be repeated for j = w+2,w+3,... | N
(N —w — 1 times).

This proves that the described algorithm is polynomial of degree at most w + 2.
However, the complexity estimate is not accurate; one should expect much better
performance of the algorithm. It seems to be rather difficult to derive a better
theoretical complexity estimtion.

Note that standard branch and bound algorithms for TSP remain of an expo-
nential complexity when applied to a bandwidth-limited graph. For example, con-
sider a branch and bound algorithm in which the relaxation task consists in finding
a shortest rooted arborescence with s arcs (s-arborescence), where s = N — M.
When branching we have to “destroy” vertices with outdegrees greater than 1. For
the simplicity let M = 1 and consider the rooted tree represented in Fig. 4.

OQQQO

1 2 3 4 5! 2n-2 2n-1 2n
Fig. 4

Suppose this tree is a spanning tree of a bandwidth-limited graph G. Suppose
further that arc lengths in this tree are very small when compared to other arc
lengths in G. The above branch and bound algorithm would generate 2" subprob-
lems since we have n vertices of outdegree 2.

However, a disadvantage of our polynomial algorithm when compared with
the exponential branch and bound algorithm consists of the fact that it works
a constant amount of time for all instances of our problem. Branch and bound
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algorithms are sensitive on the distribution of arc lengths so that there are problem
instances which are quickly solved while for some “difficult” cases an “exponential”
time is necessary.

7. IMPROVING THE BASIC ALGORITHM

In this Section we describe some improvements of our basic algorithm.

Experiments on computer with the above algorithm implemented have shown
a bad performance. The number of generated triple sequences is enormous for quite
modest values of N and w. Big memory requirements have implied the usage of
virtual memory and this contributed to higher execution times.

Therefore we have developed some procedures for reducing the number of gen-
erated triple sequences. The basic idea for these procedures consists in the following.

Some subgraphs H; (see Section 2) can have so big length that they do not
have any chance to be extended to an optimal solutions. Such subgraphs will not
be extended any more when putting next vertex into consideration.

Extending notation from Section 2, let G; and G’ be the subgraphs of G
induced by sets A; U B; and C; respectively. Let Hj = H — H;. Let D be an
upper bound for the length of an optimal solution H in G. For example, D can be
obtained by a quick heuristic for solving the M-TSP problem on G.

Suppose now d is a lower bound for the length of a shortest subgraph H;. The
bound d can be obtained by solving the relaxation task on G} which should be
modified in order to include arcs between B; and C; which could appear in H;.

If L is the length of H;, a solution H obtained by extending H; has the length
at least L+d. If L+d > D, then Hj, cannot be exetended to an optimal solution.
Therefore we introduce the quantity L, = D — d and call it a critical length.
Obviously one should further develop only those subgraphs H; whose lengths do
not exceeed length L..

The described reduction procedure can be applied each time when considering
next vertex. Alternatively, the reduction should be performed from time to time
considering at once a fixed number of addeed vertices or, adaptively, depending on
the number of triple sequences generated.

The heuristic for determining the upper bound D can be organized as follows.
Let F; C ‘H; and let us extend only subgraphs H; from F; to the solution H. The
length of the best solution H obtained in this way can serve as the bound D. Then
go back and extend all triple sequences whose lengths do not exceed the critical

length D — d, thus obtained.

One can play in many different ways with these reductions. It is also possible
to forget some triple sequences whose lengths are smaller than the critical length.
In this case our algorithm is transformed into a heuristic since optimal solution
could be excluded from consideration.

An extermal case would be to extend just one triple sequences from each set
H;j, i.e. one with minimal length. This heuristic 1s an analogon of the well known
nearest neighbour heuristic for ordinary TSP.
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The rate of reduction of triple sequences at early steps of the algorithm can

serve as the basis for defining complexity indices of particular problem instances.
Instances with small reduction rate would be classified as “difficult” while those

with a big reduction rate as “easy cases”. For some details on TSP complexity
indices see [6], (7], [3].

8. EXPERIMENTAL RESULTS

Initial experiments have been performed on a few bandwidth-limited graphs
with M = 2, N = 20 and w = 2,3,4,5 where each of two salesmen should
visit 10 cities. The number of equivalence classes of subgraphs H; (i < j) for
1=4,5,...,N, Le. the number of corresponding triple sequnces, is represented in
Table 1. In the empty fields of the table the number is greater than 80000.

w\j | 4] 5] 6 7 8 9 10 11 12 13
2 |41 | 77 | 124 | 190 | 290 | 432 | 624 | 874 | 1194 | 1152
3 [68[230| 526 | 968 | 1593 | 2517 | 3SS1 | 5841 | 8543 | 12617
4 |78 371 | 1481 | 3801 | 7663 | 13563 | 22246 | 35532 | 55328 | 75321
5 |78 |419 [ 2180 | 9852 | 28004 | 61366

w\j | 14 15 16 17 18 19 | 20

2076 | 2654 | 3338 | 4140 | 5072 | 6146 | 7561
16905 | 22969 | 30595 | 40051 | 51633 | 65669

e

Q) | QO BN

Table 1

1 4 | 5 0 7 8 9 10
without reduction | 61 | 341 | 1761 | 7253 | 19440 | 40507 73328}
with reduction 776
7 12 13 14 15 16
without reduction | 122011 | 192970 | 300715 | 457810 | 678781 | 980390 |
with reduction 20398 | 29304 | 44021 | 57067 | 69952 | 91976

Table 2

After realizing that it is hopeless to extend all triple sequences we applied the
reduction procedure from Section 7 after each 5 vertices. For finding the bound D
we used a 3-optimal heuristic and for the bound d we found a shortest forest with
suitable parameters [4]. The resulting reduction in the number of generated triple
sequences is shown in Table 2. In this example we had N = 16, w = o, M =2

Differences in the numbers of triple sequences between Table 1 and Table 2
are due to the fact that in the second experiment additional rules (see the end of
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Section 5) for reducing triple sequences have been implemented. Further experi-
ments with different kinds of reduction have indicated that it is possible to achieve
reasonable performances of the algorithm.
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