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�� Introduction

There are at least three reasons for solving extremal problems� The �rst one is
pragmatic� it is typical for mankind to search for the best way of using its resources�
and that is why a lot of problems of maxima and minima arise in the economics�
in solving technical questions� in managing various processes� The second reason
comes from the properties of the world around us� a lot of natural laws are explained
by extremal principles� Finally� the third reason is man�s curiosity� his wish to fully
understand something�

Let us state four famous examples�

�� Euclid�s problem� Euclid in his �Elements� �IVth century B�C�	 states
a solution of the following extremal problem�

Inscribe a parallelogram ADEF of maximal area into the given triangle ABC

�Fig� 
	� This problem was not motivated by an application of any kind� and it
does not explain any natural phenomenon� It was just an interesting geometrical
problem�

Fig� � Fig� �
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�� Kepler�s problem� In 
�

 Kepler was about to get married and so he
was concerned with the organisation of his household� That was a year when the
crop of vineyards in his surrounding was very good and there were a lot of wine
barrels that were carried near his home in Linz on Rhine� Kepler asked for some
barrels to be brought to his yard� and so it was done� Then came a grader who
determined the volume of barrels in a very simple manner� He put a measure�stick
into the hole on top of the barrel as in Fig� �� looked at the part of the stick which
was red and immediately told the price� It seemed odd to Kepler� the barrels were
of di�erent kinds� and the way of measuring was always the same� The curiosity
led Kepler to investigate the problem mathematically� As a result he made several
crucial steps in the birth of integral calculus� he described various methods of
calculation of areas and volumes and he also solved several extremal problems� He
wrote about this in his book �Stereometry of Wine Barrels�� He also solved there
the following problem�

Inscribe a rectangular parallelepiped of maximal volume into the given sphere�

We can see that this problem was also a result of curiosity and the wish to
fully understand a certain phenomenon�

�� Newton�s aerodynamical problem� The greatest scienti�c work of
Newton� �The Mathematical Principles of Natural Philosophy� appeared in 
����
There was a problem of technical nature in this book� Newton posed and solved
a problem about a rotating body with the given width and height� and giving the
smallest resistance in a viscous �uid �Fig� 
	� He added that his solution might
be �used for constructing ships��here is an example of a problem with pragmatic
nature�

Fig� 
 Fig� �

�� The brachistochrone problem� Another important event happened in

���� Iohann Bernoulli published an article titled �A problem� mathematicians are
called to solve�� The problem was formulated like this�

Given points A and B �in a vertical plane�� determine the path a body M
descends from A to B forced by its own weight� and using the minimum of time�

This problem was called the brachistochrone problem �Fig� �	�

Here� four results from the general extremum theory will be explained� which
are connected with four mathematicians� P� Fermat �
��
�
���	� J� Lagrange
�
�
��
�

	� L� Euler �
����
��
	 and L� S� Pontryagin �
����
���	� All the
concrete examples we have mentioned before will be solved�
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�� Problems without constraints� A theorem of Fermat �����	

Let f be a function of one variable �or� we can say� let f be de�ned on the real
axis R� then we write f � R� R	� Consider the problem� Find the extremum �i�e��
maximum or minimum� of function f without constraints� Formally� we will write

�P�	 f�x	� extr�

We will assume the function f to be di�erentiable� Recall the meaning of this�
Suppose that the increment f��x�x	�f��x	 can be written as the sum of the linear
expression ax and a remainder r�x	� where r�x	 is �small compared with x�� More
precisely� let

f��x� x	 � f��x	 � ax� r�x	� where lim
x��

jr�x	j
jxj � ��

The linear function y � ax is the main linear part of the increment� Number a
is called the derivative of function f at the point �x� It is denoted by f ���x	� The
following theorem is valid�

Theorem �� �Fermat	 If the function f is di�erentiable at the point �x which
is a solution of problem �P�	� then

�
	 f ���x	 � ��

Historical comment� Fermat did not know the concept of derivative� but
actually �in his letter to Robervall and Mersenne in 
�
�� who were used by French
scientists of the time for scienti�c correspondence�journals did not exist	 he liter�
ally explained the idea of �the main linear part� of a function and said that it has
to be equal to zero�

The concept of derivative was introduced by Newton and Leibniz� To Newton
the derivative was the measure of velocity of variation of a process� The result of
Theorem 
 was expressed by him as� �at the moment when a quantity attains its
maximum or minimum� it does not �ow� either forwards� or backwards��

To Leibniz� the derivative was the slope of
the tangent� So� in his words� Fermat�s theo�
rem says that �the tangent to the graph of a
function in an extremal point has to be hori�
zontal� �Fig� �	� Notice that even Kepler in
his �Stereometry� had a sentence also express�
ing the essence of Fermat�s theorem� He wrote
that �on both sides of the place of maximum�
decreasing is not essential�� Fig� �

Notice also that the equality f ���x	 � � is a necessary� but not a su�cient
condition for extremum� Point � is neither a point of maximum� nor a point of
minimum� for the function g�x	 � x�� but g���	 � ��
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Let us solve the Euclid�s problem using Fermat�s theorem� Let us look again
to Fig� 
� where a � AC� x � AF � DE� H is the altitude of ABC and h the
altitude of DBE� Using the similarity of triangles DBE and ABC� we obtain that
x

a
�

h

H
� The area of the parallelogram is

x�H � h	 �
H

a
x�a� x	�

So� the problem reduced to the problem of �nding the maximum of the function
f��x	 � x�a � x	 �we neglected the constant factor H�a	� with the constraint
� � x � a� But we can neglect this constraint� too� and we can consider a problem
without constraints

f��x	 � x�a� x	� max�

At the point of maximum� the equality f ���x	 � �� i�e�� �x � a�� has to take place�
And then

f���x� x	 �
�a
�
� x

��a
�
� x

�
�

a�

�
� x� � f���x	� x��

i�e�� f� attains its maximum at the point �x� without any constraints� and� a fortiori�
with our constraint� We have solved the problem�point F has to be the midpoint
of segment AC�

Let us continue by considering extremal
problems for functions of several variables�
Consider the Kepler�s problem� Suppose that
we have constructed orthogonal axes� and de�
note variables by x�� x� and x� �Fig� �	� Then
the sphere with radius 
 can be written as

x�� � x�� � x�� � 
 � ��

Let a vertex of a parallelepiped lying on the
sphere has coordinates �x�� x�� x�	 and denote
it simply by x� Then the volume of the paral�
lelepiped is equal to �jx�x�x�j�Fig� �

We have just mentioned two examples of functions of three variables�

f��x	 � �x�x�x� and f��x	 � x�� � x�� � x�� � 
�

For such functions� Fermat�s theorem has the same formulation as for functions of
one variable� only the derivative is now not a single number� but a collection of
numbers� For instance� in the case of three variables� if x � �x�� x�� x�	� denote

by jxj the expression
p
x�� � x�� � x��� Let f be a function of three variables �then

we write f � R� � R	� and let the increment f��x � x	 � f��x	 at point �x can be
represented as the sum of the linear part a�x� � a�x� � a�x� and the remainder
r�x	� small when compared with x� More precisely� let

f��x� x	 � f��x	 � a � x� r�x	�
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where a � �a�� a�� a�	 is a collection of three numbers� a � x denote the �scalar

product� of a and x� i�e�� a � x � a�x� � a�x� � a�x�� and lim
jxj��

jr�x	j
jxj � �� Then

we say that function f is di�erentiable at �x and that a is the derivative of f at the
point �x� denote it by f ���x	� The derivative f ���x	 is the collection of three numbers
�f �x���x	� f

�
x�
��x	� f �x���x		� where f

�
x�
��x	 is the derivative at zero of the function of one

variable g��x	 � f��x� � x� �x�� �x�	� similarly f
�
x�
��x	 and f �x���x	 are de�ned�

Consider the problem without constraints

�P �
�	 f�x	� extr�

where x � �x�� x�� x�	 or even x � �x�� x�� � � � � xn	 �function of n variables	� The
following theorem is valid

Theorem 
�� If the function f is di�erentiable at the point �x and this point
is a solution of problem �P �

�	� then f ���x	 � � �or� in the three�dimensional case�
f �x���x	 � f �x���x	 � f �x���x	 � ���

But there are few interesting problems without constraints of this kind� As
a rule� problems with constraints are more important �Kepler�s problem is one of
them	� A general method for solving problems with constraints belongs to La�
grange�

�� Finite
dimensional problems with constraints�
Lagrange�s multipliers rule �����	

Consider the problem

�P�	 f��x	� extr� f��x	 � ��

where f� and f� are functions of n variables� x � �x�� x�� � � � � xn	 �then we write
f � Rn � R	� There is a way of solving problems of the kind �P�	� belonging
to Lagrange� by which one has to form the function L�x� �	 � ��f��x	 � ��f��x	
with inde�nite multipliers �� and �� �this function is called Lagrange function and
� � ���� ��	 is a collection of Lagrange multipliers	 and �then search for maxima
and minima�as Lagrange wrote�as if the variables were independent�� i�e�� one
has to apply Fermat�s theorem to the problem L�x� �	� extr without constraints�
More precisely� the following theorem is valid�

Theorem �� �Lagrange�s multipliers rule	 Let functions fi be continuously
di�erentiable in a neighbourhood of �x and this point is a solution of problem �P�	�
Then there is a collection of Lagrange multipliers � � ���� ��	� distinct from zero
�j��j� j��j �� �	� such that

��	 L�x��x� �	 � �� i�e� L�x���x� �	 � �� L�x���x� �	 � �� � � � � L�xn��x� �	 � ��

Let us solve Kepler�s problem by Lagrange�s method� It can be formalized as

�i	 f��x	 � x�x�x�� f��x	 � x�� � x�� � x�� � 
 � �
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�we neglected the factor �	� Lagrange�s function is

L�x� �	 � ��x�x�x� � ���x
�
� � x�� � x�� � 
	�

Let �x � ��x�� �x�� �x�	 be a solution� then �xi �� �� i � 
� �� 
 �there is no parallelepiped
if some of them is zero	� By Lagrange�s theorem� L�x���x� �	 � �� and so ���x��x� �

����x� � �� or� multiplying by �x�� ���x��x��x� � ����x
�
� � �� Analogously� from

L�x���x� �	 � � it follows that ���x��x��x� � ����x
�
� � � and from L�x���x� �	 � � it

follows that ���x��x��x������x
�
� � �� If we let �� � �� we would get that �� � �� and

this contradicts the condition of the Theorem that not both of Lagrange multipliers
can be equal to zero� We see that

�xi �
���x��x��x�

���
� i � 
� �� 
�

This means the only possible solution is the cube for which �x� � �x� � �x� � �
�p
�
It is proved in Mathematical Analysis that a solution of problem �i	 exists�

but then it must satisfy Theorem � and there are eight solutions of equation ��	
for this problem� and all of them are vertices of the cube� Consequently� the cube
is the solution of Kepler�s problem�

Historical comments� Lagrange described his solution in the book �Theory
of Analytic Functions� in 
��
�


� Problems of Calculus of Variation� Euler�s theorem ���

	

It can appear to be strange that� when stating the names of mathematicians
that contributed to the extremum theory� I mentioned Lagrange before his elder
colleague Euler� as if I violated chronological order of things� multipliers rule is
dated 
��
� and Euler�s equation 
���� The reason is that the extremum theory
really made an unexpected jump� and it passed from functions of one variable
straight to functions whose arguments are curves� i�e�� to functions with in�nite
number of variables� Let us make it more clear on the example of brachistochrone�

Let us direct the Oy�axis vertically down� put the point A into the origin�
and let coordinates of point B be �x�� y�	 �Fig� �	� Let y��	 be a certain curve
�y��	 is the symbol for the function itself� y�x	 is the value of this function at
point x	� According to Galileo�s law� a body with mass m� descending along the
curve y��	� starting from the origin by the gravitational force� attains at the point

M�x� y	 the velocity
p
�gy�x	� regardless of the mass m and the path it followed

to come to point M � Consequently� when moving along the curve y��	� from the
point M�x� y�x		 to the point �x� dx� y�x� dx		� for small dx� the path it passed
is approximately equal top

dx� � dy� �
p
dx� � y���x	 dx� �

p

 � y���x	 dx�

and so� the time dt for passing this path is approximately equal to the ratio of the

path and the velocity� i�e�� dt �

p

 � y���x	 dxp

�gy�x	
� And so� the full time of passing
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the path from A to B is equal toZ x�

�

p

 � y���x	 dxp

�gy�x	
�

We have reformulated the brachistochrone problem� one has to 	nd the minimum
of the stated integral �considering all curves y��	 satisfying the conditions y��	 � ��
y�x�	 � y��
 in other words �Z x�

�

p

 � y���x	 dxp

y�x	
� min� y��	 � �� y�x�	 � y�

�we neglected the factor 
�
p
�g	�

In the 
����s� there was a young man who started coming to lectures given by
I� Bernoulli� and the lecturer immediately paid attention to him� The young man
was Leonhard Euler� I� Bernoulli posed to Euler the problem of 	nding the general
method of solving problems analogous to the brachistochrone problem� and Euler
really did �nd such method� He generalized the brachistochrone problem in the
following way� Let f � f�x� y� z	 be a function of three variables and y��	 a function�
di�erentiable on the segment �x�� x��� Then the number

R x�
x�

f�x� y�x	� y��x		 dx

depends on the curve y��	� This is a �function of the function� �sometimes they
called it� and some call it even now� a �functional�	� Denote it by J�y��		� For

example� in the brachistochrone problem� f�x� y� z	 �

p

 � z�p
y

�f does not depend
on x	�

Euler developed a method of solving problems like

�P�	 J�y��		 �
Z x�

x�

f�x� y�x	� y��x		 dx � extr� y�x�	 � y�� y�x�	 � y��

Function f is called an integrand in problem �P�	� Problem �P�	 is called the
simplest problem of the Calculus of Variation� We have

Theorem �� If the function f is di�erentiable �as a function of three vari�
ables�� and the function �y��	 is a solution of problem �P�	� then the following dif�
ferential equation is satis	ed�

�
	 � d

dx
fz�x� �y�x	� �y

��x		 � fy�x� �y�x	� �y
��x		 � ��

Equation �
	 is usually called the Euler�s equation�

If f does not depend on x� then equation �
	 has an integral

�
�	 �y��x	fz��y�x	� �y
��x		 � f��y�x	� �y��x		 � const�

Let us apply �
�	 to the brachistochrone� We have

y�fz � f �
y��p


 � y��
p
y
�
p

 � y��p
y

� � 

p
y
p

 � y��

�
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i�e��
p
y
p

 � y�� � const �

p
C� and so

r
C

y
� 
 � y�� Substitute y � C sin�

�

�
�

Then�
dy

dx
� C cos

�

�
sin

�

�
� But�

ctg � �

s
C

y
� 
 �

dy

dx
�

dy

d�
� d�
dx

�

and� consequently�
dx

d�
� C sin�

�

�
� So� we obtain a solution in the parametric form

x �
C

�
�� � sin �	� y �

C

�
�
� cos �	�

This curve is called a cycloid� And so� the brachistochrone appeared to be a cycloid�

Historical comment� In 
���� Euler published his famous memoir �A
method of �nding curves having maximal and minimal properties� or a solution
of the isoperimetric problem� taken in the widest possible sense�� in which he de�
veloped the basics of the Calculus of Variation� and� particularly� introduced the
Euler�s equation�

�� Problems of optimal control� Pontryagin�s maximum principle �����	

More than two hundred years have passed since Euler�s memoir was published�
and the Calculus of Variation have almost reached its �nal form� Particularly� the
following class of problems� similar to �P�	� has been investigated�

�P �
�	

I��y��		 �
Z x�

x�

f��x� y�x	� y
��x		 dx � min�

I��y��		 �
Z x�

x�

f��x� y�x	� y
��x		 dx � �� x�ti	 � yi� i � �� 


�problems like that where called �isoperimetrical in the widest sense� by Euler	�
The same idea of Lagrange that was considered earlier� can be applied to this
problem� Namely� in order to solve �P �

�	� one has to form the Lagrange function

L�y��	� �	 �
Z x�

x�

���f��x� y�x	� y
��x		 � ��f��x� y�x	� y

��x			 dx

and looking at the minimization problem of this function� one has to write down
Euler�s equation

�
�	 � ��
d

dx
f�z�x� y�x	� y

��x		 � ��f�y�x� y�x	� y
��x		

� ��
d

dx
f�z�x� y�x	� y

��x		 � ��f�y�x� y�x	� y
��x		 � ��

solve it� and try to satisfy the condition I��y��		 � �� �Equations of the type �
�	
are called Euler�Lagrange equations	�
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Let us show how these equations can be applied in the following example�Z �

�

y� dx� max�

Z �

�

y�� dx � 
� y��	 � y��	 � ��

Here� equation �
�	 has the form ���y�� � �oy � �� or y�� � 	y � �� where 	 �

������� Boundary conditions are satis�ed by the sequence yn�x	 �

r
�

�

sinnx

n
�

The maximum value is attained for the function y� �
p
��� sinx�

And two hundred years later� during 
����s and 
����s� it was the need of
Control Theory� Economics� Space Navigation� Military industry� that brought the
necessity to make supplements to the theory of Calculus of Variation introduc�
ing new constraints�the constraints containing inequalities about variable control�
When applied to problem �P�	� such constraints are imposed to the derivative of
the function y�x	� We can write it down in the form y��x	 � U � where U is a certain
subset of R �say� �nite segment �a� b� or the semiaxis R� � fx � � j x � Rg� or
even a �nite set of points	�

The �rst problem of optimal control was�
without doubt� Newton�s aerodynamical prob�
lem� In his �Mathematical Principles�� he
just stated the answer� without formalization
and solution� Two of his contemporaries�I�
Bernoulli and his student l�Hospital�formali�
zed the problem and tried to solve it analyti�
cally� They directed the body along x�axis� but
if they had directed it along y�axis� they would
have come to an easier expression for the inte�
grand� and they would have come to the prob�
lem Fig� �

�ii	 I�y��		 �
Z x�

�

x dx


 � y���x	
� min� y��	 � �� y�x�	 � y��

�But this is just a problem of the Calculus of Variation�you might say�problem

�P�	 with the integrand f�x� z	 �
x


 � z�
�� Moreover� there is something strange

here� if one takes a cogged prophile with large slopes as in Fig� �� then y�� can be
very large and the integral in �ii	 can become arbitrarily small�

One of serious specialists in Control Theory� L� Young� in his interesting book
�Lectures on Calculus of Variation and Optimal Control Theory�� stated a brutal
objection to �illiterate� Newton� He wrote� �Newton formulated a variational
problem about rotating body� causing the least resistance while moving in the
gas� The physical law of resistance he applied was absurd� and as a result the
given problem had no answer �the more cogged is the prophile� the resistance is
smaller	�� Alas� Young himself expressed here a stunning �illiteracy�� he wrote
a book on the Calculus of Variation and Optimal Control� but he did not realise
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that Newton�s problem was not a variational problem� but a problem of optimal
control� since monotonicity of the prophile� i�e�� the inequality y� � �� was to be
understood� And Newton�s solution was absolutely right�

The following problem is a particular� but important example of an optimal
control problem�
�P�	

I�y��		 �
Z x�

x�

f�x� y�x	� y��x		 dx � min� y�x�	 � y�� y�x�	 � y�� y��x	 � U�

where U is a certain subset of R� In Newton�s problem� f�x� z	 �
x


 � z�
� and

U � R�� The following theorem is valid�

Theorem �� �Pontryagin�s maximum principle for problem �P�		 If the func�
tion f is di�erentiable as a function of three variables� and �y is a solution of problem
�P�	� then the following conditions are satis	ed� there exists a function p��	 such
that

�p��x	 � fy�x� �y�x	� �y
��x		 � ����	

max
u�U

�p�x	u� fy�x� �y�x	� u		 � p�x	�y��x	� fy�x� �y�x	� �y
��x		����	

If U � R in �P�	� then relation ���	 can be di�erentiated by u� As a result�
p�x	 � fz�x� �y�x	� �y

��x		 and ��	����	 is just Euler�s equation� So� Pontryagin�s
maximum principle is a generalization of Euler�s equation�

Historical comments� In the 
����s� L� S� Pontryagin got interested in
control problems� He attracted his disciples�V� G� Boltyanskii� R� V� Gamkrelidze
and E� G� Mishchenko�to problems of this kind� They formulated a special class
of problems� called problems of optimal control� Necessary conditions for such
problems were called the Pontryagin�s maximum principle� It was V� G� Boltyanskii
who proved Pontryagin�s maximum principle for a wide class of optimal control
problems�

�� Concluding remarks

Let us solve Newton�s problem� The integrand f of this problem does not
depend on y� and so �from ��		� p�x	 � const � p and the following maximum
problem for a function of one variable has to be solved�

�iii	 g�u� x	 � pu� x


 � u�
� max� u � �

�here� u is the variable� and x is �xed	� Clearly� p � �� otherwise max g ���

If x is small� then maximum in �iii	 is attained at zero� This is the case
until the moment when the value at zero becomes equal to the second� positive
maximum of this function� Critical point of function �y��	� being the solution of
Newton�s problem� is characterized by the equation

p �
��y�
	


�
 � �y��
		�
� 
 �





 � �y���
	
� py��
	�
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It can be deduced that �y��
	 � 
� 
 � �p� And then� solving the equation g�x � ��
one can obtain the solution in the parametric form

�iv	 y � c

�
ln




u
� u� �




�
u�
�
� x � c

�



u
� �u� u�

�
�

Constant c can be determined from the condition y�x�	 � y��

The curve �iv	 is called Newton�s curve� We see that the solution of Newton�s
problem has a corner point �Fig� �	� This has also provoked a doubt among many
engineers� whoever has seen that a �ship� has a  at� and not sharpened edge in the
front! And Newton� after calculating the corner�point angle to be ���� said that
even this note may be �not useless� for con�
structing ships� And once again� he appeared
to be right� This �note� really appeared to be
�not useless� for constructing �ships�� name�
ly supersonic planes and space crafts� moving
in the space where the atmosphere follows the
model of �Newton�s thin surrounding�� In fact�
the optimal control was stimulated� among oth�
er things� by space problems� And when it came
to construction of crafts having to  y with huge
velocities and on great heights� Newton once
again became one of the most cited authors� Fig� �

In this article� we have told about the evolution of one phragment of the theory
of extrema�about necessary conditions for the extremum� It is of interest to note
that� in all the cases� two ideas where of the greatest importance�Kepler�s idea
�that in a neighbourhood of a maximum of a di�erentiable function� �decreasing
is not essential�� which brings us to Fermat�s theorem	� and Lagrange�s idea that
when dealing with problems with constraints� one has to consider the extremal
problem for Lagrange�s function �as if variables were independent�� We have seen
how these ideas work in �nite�dimensional problems and in problems of the Calculus
of Variation� With small changes� the same ideas can be applied to problems of
optimal control� Pontryagin�s maximum principle also follows Lagrange�s idea�
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