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Abstract. This paper is devoted to those readers who are professionally engaged
in dealing with the questions of teaching and learning elementary school geometry.
It consists of three lessons from a postgraduate course taught by this author at the
Teacher’s Training Faculty, University of Belgrade.

Appearance of things in the surrounding world changes but some stable charac-
teristic properties of their shapes stay unchanged. J. Piaget classifies these properties
as topological projective and Euclidean and the spontaneous development of a child
follows that order of ideas. It is a normal interest of a specialist in education to know
how these ideas are mathematically established without wading through the books on
these subjects which are often unapproachable to him or her. The aim of this paper is
to make a direct approach to mathematical clarification of these ideas, based only on
the reader’s knowledge of the secondary school mathematics.
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1. A search for lost meanings

Si donc il n’y avait pas de corps
solides dans la nature, il n’y aurait
pas de géométrie.

H. Poincaré

From the rise of first human beings until the time of Greek schools of philoso-
phy and mathematics, geometrical ideas had been inherent and they sprang as the
result of man’s efforts to establish a more intelligent relationship with the variety of
shapes of physical objects existing in the surrounding space. At the Grecian time,
particularly starting with Pythagorean school, such ideas became inner represen-
tations of abstract concepts, certainly developed on the basis of visualization but
logically used in a way independent of the generating processes.

As we know it from history of mathematics, Thales of Milletus proved that an
angle inscribed in a semicircle is a right angle relying his arguments on the other
simpler and more evident facts. In a period of about three centuries, from Thales
to Euclid, the ancient Greek geometers reduced the number of simple, evident ge-
ometrical facts to a system of a priori acceptable, initial truths called postulates,
which the reader certainly knows from his or her school geometry course. Accep-
tance of such a system of axioms and deduction of all other geometrical facts from
it, turned the Greek geometry into a perfect, logically organized subject.
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It was Euclid who exposed all main contributions of Greek mathematics in his
thirteen books of “The Elements”. For centuries “The Elements” served as the only
source for learning geometry. Even when some simplified versions were written, it
was still difficult to approach geometry using them. Only older students with the
help of their masters were able to grasp the contests of this subject. With a sequence
of basic concepts denoted by undefined terms and those, given by definitions, with
axioms as a basis for deductive conclusion, such a course of geometry had to be
difficult for a beginner who lacked the necessary imagination, which could be formed
only in touch with more concrete realizations of geometrical ideas. Didactically
motivated, further and further simplifications of “The Elements” have been made,
resulting in what we now see as school books in Euclidean geometry.

Following of the Euclidean tradition has always been stressed as the best way
of development of logical thinking. To make possible a successful approach to such
abstract geometrical thinking, the necessity of training in visualization has also
been felt for a longer time. The models of solid geometric bodies, which could be
seen in classrooms were an evident manifestation of these efforts.

Euclid did not write his books to be used by children in schools. “The Ele-
ments” were designed as a scientific treatise which have been a model of perfect
and rigorous exposition. Therefore nothing bad exists in a course following Euclid,
the preparation of students for such a course may be bad.

Different standpoints on what geometry is and how has to be taught are ex-
posed in Freudenthal [4], chapter titled “The case of geometry”. Expressing his
own view, Freudenthal says: “Geometry can only be meaningful if it exploits the
relation of geometry to the experienced space. If the educator shrinks this duty, he
throws away an irretrievable chance”.

In the same chapter, the work of educators in the Netherlands who approach
introductory geometry as science of physical space, is presented. From nineteen
twenties onwards Tatiana Ehrenfest-Afanassjewa created her propedeutic geome-
try using concrete material and letting children be experimenting with it. The van
Hieles and van Albada followed this approach to geometry enriching concrete ma-
terial and expanding activities to include: paper folding, cutting, gluing, drawing,
painting, measuring, paving and filling.

Up to which degree such activities could be mere playing for children and do
the encountered miracles of space impress them is one thing to question, the other
one is indisputable that they contribute much to the bridging of the gap between
reality and geometrical abstractions. On the other side, for majority of children,
geometry should not be a challenge for their intelligence but a rational relationship
with the surrounding reality.

The investigations of the ways how children form geometric concepts, carried
out by J. Piaget, have certainly inspired curriculum planners to enrich geometric
contents of the first classes of elementary school and to establish an order of ideas
which follows spontaneous development of the child. According to the Piaget’s
experimental findings: “A child’s order of development in geometry seems to reverse
the order of historical discovery. Scientific geometry began with the Euclidean
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system concerned with figures, angles and so on, developed in the 17th century the
so-called projective geometry (dealing with problems of perspective) and finally
came in the 19th century to topology (describing spatial relationships in general
qualitative way—for instance, the distinction between open and closed structures,
interiority and exteriority, proximity and separation). . . . Not until a considerable
time after he [a child] has mastered topological relationships does he begin to
develop his notions of Euclidean and projective geometry. Then he builds those
simultaneously.” [7, p. 3].

Geometrical concepts usually scheduled in the curriculum of the first four class-
es of elementary school begin to exist at the sensory level. Gradually, by means
of their iconic representation and through their verbal expression, they become
more and more abstract, approaching so the level of abstractness supposed in the
Euclidean geometry. The efforts to establish a new more concrete and realistic
meaning to these concepts we call here the search for lost meanings.

And to show somewhat clearer and so more technically what metric (Eu-
clidean), projective and topological properties of geometric objects are, we write the
following sections, starting first with the description of the structure and function
of the eye.

2. How the eye functions

Perception invites comprehension, that is the thought mechanism by which
the mind manipulates the perceived. And that what is comprehended may also be
expressed in words or symbols. This looks like a road from the outside to the inside
of the mind and backwards. The outer part of this road is clearer and now we turn
our attention to it.

According to Aristotle, there are five, now called, classical senses: vision, hear-
ing, touch, taste and smell (and contemporary psychology considers some others:
movement sense, sense of balance, etc.). The greatest amount of information about
the surrounding world is gained through our sense of vision, which also has been
studied more than any of the others.

We see objects, which emit or reflect light and, quite obviously, using our
eyes. A simplified scheme of the eye is given in Fig. 1, and its functioning can be
compared to that of a camera.

Fig. 1 Fig. 2
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Pupil is the opening of the eye which admits light (aperture of the camera),
lens which focuses light, being a transparent bag filled with a half-fluid, half-solid
crystalline substance (camera lenses) and the back wall of the eye, called retina
upon which the light image is cast (film of the camera). The retina is capable of
continuous operation recording thousands upon thousands of images throughout
our walking hours. Iris is the front wall of the eye (its colour is the colour of your
eyes) and its muscles, which form pupil are controlled by the amount of light (while
the camera aperture is set).

The light projected by an object that we see forms its image on retina, which
stands upside down (Fig. 2).

Since the retina is a two-dimensional surface, we see only what is projected
upon that surface. How then we see depth, which is the third dimension? There is
a number of cues for it, called monocular (one-eye) which allow a single eye to see
some depth or binocular (two-eye) which arise in looking with both eyes.

Monocular cues are:
Overlap, when one object blocks part of the view of another object and when

the blocked object appears to be farther away.
Linear perspective, when the farther away an object is, the smaller its image

on the retina is.
Haziness, when distant objects appear hazy.
Shadows, when the farther away an object is, the more shadowy is its view.
As a binocular cue, retina disparity is of highest interest. Since each of our eyes

views an object from a slightly different angle, two its images on two retinas are
slightly different. The famous painter Leonardo da Vinci was the first to diagram
this effect (Fig. 3).

Fig. 3

Being blocked by a cube, the left eye does not see the part AB and the right
eye the part CD of the presented line. They both see the whole line and the shaded
area is seen by neither of them. Together the two eyes can see around the cube
taking in almost the whole background, what causes the effect of depth. The two
cubes in Fig. 3 look different, showing so what each of the eyes sees.
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3. Metric and Euclidean properties

One of the man’s fundamental ideas is that of equal things. The way, how
to compare things and create patterns to produce them have been occupying the
man’s mind at all times. For instance, today, the mass production of necessities of
life depends upon our ability to make parts that are almost exactly alike, what is
to say equal in size and shape.

Attempting to exhibit the unity of perception and geometry, first we express
natural dependence of geometric ideas on the features of solid bodies in the sur-
roundings. Namely, a solid body A is conceived as a pure geometrical idea A, when
we forget all of its physical properties. Then, the idea A, taken to exist indepen-
dently of A, is called a geometric object. To be more precise, two solid bodies A1

and A2 can be different and the two ideas A1 and A2 equal. For instance, a wooden
ball A1 and a plastic one A2, both of diameter 10 cm are examples of different solid
bodies, producing equal geometric ideas A1 and A2, respectively.

In [4], Chapter XVI, Freudenthal quotes a case from Diana van Hiele’s lesson
on congruence. The teacher’s first examples were the congruent chairs in the class-
room. The way how the students expressed congruence was very beautiful indeed:
“The objects that cannot be distinguished.” But should we talk of congruent chairs
or of them being equal in size and shape is a matter to think of.

Two physical objects equal in size and shape produce two images in mind,
which differ by their position in the inner space, and if we have to conceive them
as pure geometric objects, only their positions make them different. Representing
them iconically, two drawings on a leaf of paper should be equal in size and shape
and then, we speak of congruent figures represented by iconic signs.

Space is a fundamental category, basic to all our cognitive processes. The
French philosopher H. Bergson says: “ . . . the higher we rise in the scale of intelli-
gent beings, the more clearly do we meet with the independent idea of a homogenous
space.” [2].

In mathematics, a straight line is taken to be a one-dimensional space. When
a point O is fixed on such a line, then a one-to-one correspondence between the set
of points of the line and the set of real numbers can be established.

Fig. 4

Two points A and B with the attached numbers x and y are at the distance
which is measured by the length of the segment AB, what will be the number

d(A,B) = |x− y|.
A plane is a two-dimensional space. When it is supplied by a coordinate system,
then a one-to-one correspondence between the points of that plane and the set of
all ordered pairs of real numbers can be established.
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The distance between the points
A(x1, y1) and B(x2, y2) is the length
of the straight line segment AB, what
is the number

d(A,B) =
√

(x2 − x1)2 + (y2 − y1)2.

When we speak of three-dimensio-
nal space, we think of outer, physical
space in which everything real exists.
But it is wrong to situate our abstract
geometric ideas in it.

Fig. 5

When we imagine a thing, we necessarily “see” it expanding in, what is called,
the inner space. Thus, the inner space can be taken as our mental representation
of the outer space.

In the Greek geometry, there was no explicit idea of space. But implicitly, the
idea of space existed as an epiphenomenon, a frame within which geometric objects
expand. In modern geometry, we have its symbolic codification as the set of all
ordered triples of real numbers. Observation of outer space as a receptacle of real
things and evocation of mental space as a receptacle of imagined things are not the
learnt abilities but the natural gifts of human beings. Thus, we never seek for an
explanation what the space is, neither we try to find one for our students.

In mathematics, a set of points, which are in one-to-one correspondence with
all ordered triples of real numbers is called a three-dimensional space. The three
numbers x, y, z of the triple (x, y, z) corresponded to a point A are called its
coordinates. The subsets of the space corresponded to these subsets

{ (x, 0, 0) : x ∈ R }, { (0, y, 0) : y ∈ R }, { (0, 0, z) : z ∈ R }
of the set of triples, are called x-axis, y-axis and z-axis, respectively. For two points
A(x1, y1, z1) and B(x2, y2, z2), the straight line segment AB is defined to be the set
of points corresponded to the following subset of triples

{ (λx1 + (1− λ)x2, λy1 + (1− λ)y2, λz1 + (1− λ)z2) : λ ∈ [0, 1] }.
Then, the length of the segment, and thus the distance of the points A and B, is
defined to be the number

d(A,B) =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

We leave out further details, which are known to the reader from his or her
analytical geometry course and which have normally been learned by means of
visualization. A drawing representing a coordinate system—three straight lines
standing perpendicularly to each other, is what such analytical geometry lessons
begin with, while three mutually perpendicular edges of walls of a room are a very
good materialization of such a system. Whereas here, in order to attain a distinction
between the intuitive and the formal, we shortly went into a more logically founded
exposition.
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Fig. 6

Thus, mathematically defined three-dimensional space is denoted by R3 and
is called the Euclidean 3-dimensional space. Then, 1-dimensional space can be
identified with x-axis and 2-dimensional space with xy-plane in R3. These two
spaces are denoted by R1—the Euclidean 1-dimensional space and by R2—the
Euclidean 2-dimensional space, respectively.

Once we have the concept of Euclidean space R3, we can define a geometric
object to be any subset of R3, though of real interest are only very regular subset
as straight lines, circles, triangles, spheres, pyramids, etc.

Let X and Y be subsets of R3. A mapping F : X → Y is called an isometry
if for each pairs of points A and B in X,

d(f(A), f(B)) = d(A, B).

Thus, we see that isometries are those mappings, which preserve the lengths of
straight line segments and that two different points A and B have different images
f(A) and f(B). Hence, an isometry f : X → Y is a one-to-one mapping. When
such a mapping is also onto, two objects X and Y are said to be isometric or
congruent.

Two congruent geometric objects share exactly the same set of properties and
they “cannot be distinguished” except by their position in the space, what is not
taken to be a relevant geometric property. A property preserved under isometries
is called a metric property. For instance, such properties are: lengths, areas, vol-
umes, diameters, measures of angles, etc. The reader certainly knows for many
other metric properties from his or her school geometry course, as well as, for the
statements, with combinations of equal parts that make triangles congruent.



48 M. M. Marjanović

To prove that two geometric objects X and Y are congruent, we have to find
an isometry f : X → Y . To prove that X and Y are not congruent, we have to
find a metric property possessed by one of this objects and not by the other. As
an example, take the following three lines (Fig. 7)

Fig. 7

and, after a look at, we are ready to say that they are not congruent. To prove it,
we have to employ some metric properties. Let us say, the following two:
a) For each two different points A and B in X, the segment AB is contained in X.
b) There exists a pair of different points A and B in X, such that the segment

AB is contained in X.
The segment in Fig. 7 possesses both properties a) and b), the “el” line only

b) and the circle neither of them. Hence these lines are not congruent one to the
other.

For the sake of simplicity, we continue to consider the congruence, confining
the considerations to the plane R2. First of all, we will exhibit three important
examples of isometries.

1. Translation. Given a vector a, the mapping f : R2 → R2, which maps
each point A ∈ R2 onto the point A′ such that the vector

−−→
AA′ = a is called the

translation for the vector a. (The segments AA′ and BB′ are parallel and have
equal lengths, whence the equality of lengths of AB and A′B′ follows.)

Fig. 8
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2. Rotation. Given an angle α and a point O ∈ R2 the mapping f : R2 → R2,
which maps each point A ∈ R2 onto the point A′ such that the two segments OA
and OA′ are equal in length, and form the angle AOA′ equal to α, is called the
rotation around the point O, for the angle α. (∠AOB + ∠BOA′ = α, ∠BOA′ +
∠A′OB′ = α, whence ∠AOB = ∠A′OB′. From the congruence of the triangles
AOB and A′OB′, it follows that the lengths of AB and A′B′ are equal.)

Fig. 9 Fig. 10

3. Symmetry. Given a straight line p in R2 the mapping f : R2 → R2 which
maps each point A ∈ R2 onto the point A′ such that p is the perpendicular bisector
of the segment AA′, is called the symmetry with respect to p (and p is called the
axis of symmetry). (The two right triangles BCD and B′CD are easily seen to be
congruent, what implies ∠BDA = ∠B′DA′ and the equality of lengths of BD and
B′D. From the congruence of triangles BDA and B′DA′, the equality of lengths
of AB and A′B′ follows.)

Let f : X → Y be an isometry. If A, B and C are three non-colinear points in
X and A′, B′ and C ′ their f -images in Y , then for each point D (belonging to X
or not), there exists a unique point D′ such that D′ is at the same distances from
A′, B′ and C ′ as the point D is from A, B and C, respectively. Thus, the mapping
f is completely determined as soon as we know the images of three non-colinear
points and can also be taken as an isometry from R2 to R2.

Figuratively speaking, two plane geometric objects are congruent if it is pos-
sible to move one of them until it coincides with the other one. The following
beautiful theorem says that it can be done in at most two elegant moves.

Each isometry f : R2 → R2 is one of the following mappings:
(I) a translation,

(II) a rotation,
(III) a symmetry,
(IV) the composition of a translation and a rotation,
(V) the composition of a translation and a symmetry.

Relying on the fact that an isometry is completely determined knowing how
three non-colinear points are mapped, it is enough to show that a triangle ABC
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Fig. 11

can be made to coincide with its congruent f -image A′B′C ′ in at most two “ele-
gant moves”. The reader will enjoy seeing it by himself or herself, looking at the
pictures in Fig. 11. (Translated triangles 1′ and 3′ coincide with the shaded one by
symmetries with respect to the drawn axes and those 2′ and 4′ after two evident
rotations. The case, when analogous sides of two triangles are parallel, is treated
almost the same way.)

The above theorem is a foundation to define pairs of congruent objects having
the same or opposite orientation. If two plane objects are congruent and the con-
gruence can be realized using a mapping under (I), (II) or (IV), then we say that
they also have the same orientation. The three such pairs are given in Fig. 12.

Fig. 12
If the congruence is inevitably realized using (III) or (V), then we say that

they have opposite orientations. The three pairs of oppositely oriented objects are
given in Fig. 13.

Fig. 13
Figuratively speaking, two congruent figures of different orientation can not

coincide moving them in the plane without one of them is turned over. In math-
ematics, two different orientations are designed using terms “positive” and “nega-
tive”. In case of real objects whose shapes are of opposite orientation more common
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terms are “left” and “right”. Pairs of your hands, arms, legs, feet, ears, etc. are,
when conceived geometrically, the examples of congruent objects having opposite
orientations. Things as pairs of shoes, gloves, skis, etc. are such further examples,
as well as, left and right keys, left and right doors, etc.

It is very good when children are trained to distinguish two orientations as,
for example, the “right” (correct) and the “left” (incorrect) figure six in Fig. 13.
It is equally bad when we hear many a teacher saying for two differently oriented
figures that they are different in shape. Since there is no excuse for mistakes made
at any level of instructing, we now turn our attention to the concept of shape. But
first, let us consider one more mapping of the plane onto itself.

4. Homotety. Given a point O in the plane and a positive real number k, the
mapping f : R2 → R2, which maps each point A ∈ R2 onto the point A′ belonging
to the ray OA and being such that the ratio of the lengths of the segments OA′

and OA is equal to k, is called homotety with the centre O and the coefficient k.

Fig. 14

(From the similarity of the triangles OAB and OA′B′, it follows that d(A′, B′) =
kd(A,B).)

For an object X ⊂ R2, its homotetic image is denoted by kX and kX can
be viewed as, in all directions proportionally shortened (when k < 1) or prolonged
(when k > 1), object X.

In a very similar way homotety is defined in R3, kX denotes again the ho-
motetic image of X.

Let X and Y be two geometric objects. If there exists a k, (k > 0) such that
kX is congruent to Y (or 1

kY congruent to X), then it is said that X and Y are
similar or that they have the same Euclidean shape.

A property, which all mutually similar objects possess is called a Euclidean
property. In other words, a property is Euclidean if preserved under homoteties.
Apart from some very regular geometric objects, generally it is difficult to deter-
mine characterizing properties of the shape of an object. Thus, its shape can be
considered as the totality of all its Euclidean properties. And as we know it very
well, children start geometry in a holistic way, recognizing shapes of objects, before
they are taught to separate their properties and analyse them.
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Examples of objects having the same Euclidean shape, in other words being
similar, are triangles with equal angles, all squares, circles, cubes, spheres, etc.

The ratio of all linear elements of two similar objects is the same number k,
the ratio of corresponding areas k2 and of volumes k3.

At the end, let us say it that Euclidean geometry studies both metric and
Euclidean properties, as we all know it from our school lessons in geometry.

4. Projective properties

Appearance of things changes but some of their stable, characteristic properties
stay unchanged. Thanks to them, we can distinguish sorts of things and build our
visual concepts, among which, the geometric ones are fundamental. And as the
vision lays a ground, the mind produces a shaped setting of the seen things.

When looking at a flat object (page of a book, picture on a well etc.), we
always try to adjust our sight keeping
the head in a position when the sur-
face on which the object stands and
the surface of retina are approximate-
ly parallel. Then, the copy of the ob-
ject projected on retina and the object
itself, when they are conceived geomet-
rically, are the examples of two similar
figures, as the following drawing sug-
gests it.

Fig. 15

In such a situation, the objects are seen with full distinction and this way of
seeing corresponds to the recognition of all Euclidean properties.

Many objects stand in a position when we cannot have their view in the above
way, and when the two planes intersect at some angle. Depending on this angle, the
retinal image changes very much. On the other side, viewing a solid body, we see
parts of its surface as being projected on retina at different angles. For instance,
when an object of the shape of cube is seen and when one of the three visible faces
projects as a square, the other two seem as they had oblique angles.

A two-dimensional picture of a three-dimensional real world object can be
faithful enough if it produces an image on retina approximately equal to the retinal
image of the object itself. But how to make such a picture was certainly a problem
encountered whenever such an attempt of presentation was tried. We will sketch
here the Christian tradition of decorating church walls by pictorial presentation
of the scenes from the Bible, which primarily had the function to instruct the
worshippers in the questions of faith.

Developed in antiquity, mosaic is a form of art, in which pictures are made with
small pieces of coloured stone and glass. Byzantine churches had their interiors
richly decorated with colourful designs and mosaics. The most famous of them
all is St. Sophia built in Costantinople, during the reign of Justinian (A.D. 532–
565). The cathedral was planed to be flooded with sunlight from a great dome
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some fifty metres above the floor. The dome rests on four arches, supported by
four piers and this impressive construction of stone is still standing today after
hundreds of earthquakes, being older than any other great building in Christendom.
Thousands of square metres of gold-leaf mosaic on the vaulted ceilings of St. Sophia
opened Heaven above the heads of worshipers. Though not on such a large scale,
following the model of St. Sophia many churches were built all over the world where
Christianity was spread.

Gilt backgrounds of mosaics suggest that the people and objects exist in some
heavenly regions and all figures are symbolic rather than realistic. This kind of
art with an evident respect for supernatural has a fascinating beauty, while two-
dimensionality is its prominent feature.

Beginning with the tenth century, the fresco painting started to replace mo-
saics in decorating of the indoor walls of churches. Painting in fresco was, first of
all, less expensive but, it also was less hieratic, admitting such devices as light and
shade in order to produce a feeling of depth. An especially interesting device in
fresco painting was the representing of cubic objects in counter perspective, when
the edges of such objects that are farther away look bigger than those that are
nearer the front.

The idea of counter perspective is illus-
trated in Fig. 16, and we direct the interested
reader at the book [6], where the 12th centu-
ry frescos from St. Climent Church (Ohrid,
Macedonia) can be seen with the evident pre-
sence of counter perspective.

Fig. 16

In the 13th and 14th century, the interest for the Greek and Roman culture
revived. Instead of exclusiveness of the plebeian Christianity, a coexistence of
faith and science started to be two parallel ways of the search for truth, what the
Angelic Doctor, St. Thomas Aquinus (1225–1274) expresses saying that the truth
of faith is supra non contra rationem. Thus, the portal of the Renaissance was
open, when the art gave evidence of an absorption of secular values, unifying the
divine and earthly aspects of existence. Instead in ecstasy, saints were painted in
an attitude of quite concentration, ascetic figures of worshippers were replaced by
vital, energetic bodies, as well as, convincing presentations of familiar settings of
home and landscape were painted.

Obliged to learn mathematics, physics, architecture, stonecutting, metalwork,
woodwork, statics, etc., the Renaissance artists were universal men, able to create
great paintings, design fortifications, bridges, palaces, churches, etc. This caused
the elevation of art from the lower, craft status to that of liberal and theoretical
arts. The men as Leonardo, Michelangelo and Raphael achieved great recognition
for their profession and the idea of an artist as a man of learning was taking shape.

Linear perspective as a cue for three-dimensional vision was thoroughly studied
by the Renaissance artists and used as a new, mighty technique of painting. The
painter who set forth the mathematical principles of perspective was Piero della
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Francesca (1410–1492), who also was the best geometer of his time, considering
Euclidean shapes as the purest forms of beauty. His famous painting “The Flagel-
lation of Christ” is seen in Fig. 17 and one should compare it with a “flat” fresco
painting to recognize all effects of this new technique of space shaping. (Taken from
http://www.kfki.hu/~arthp/html/p/piero/francesc/flagella.html)

Fig. 17

Leonardo and other Renaissance artists used a perspective grid as the basis
of space establishing of an entire painting. The theory of perspective, though it
lacked a solid mathematical basis, was taught in painting schools together with
other liberal arts.

The German painter, Albrecht Dürer (1471–1528), aiming to pass on to his
compatriots the knowledge acquired in Italy, innovated the methods of two-dimen-
sional representation of objects, introducing orthogonal projections of curves and
human figures on two or three mutually perpendicular planes. This idea was fully
developed by the French mathematician Gaspard Monge (1746–1818), who consid-
ered geometry as the truth about space and the real world. Finally with mathe-
matical works of the French mathematician Jean-Victor Poncelet (1788–1867), the
projective geometry ultimately took shape of a new mathematical discipline.

The reader interested in details related to the history of projective geometry
is referred to the voluminous book on history of mathematics by M. Kline ([5]).

In general, as it has already been said, our vision corresponds to the projecting
from one plane to another. Now, we give to it a precise mathematical shaping.

Given two planes π and π′ and a point P belonging to neither of them (see
Fig. 18), for each point A ∈ π, the straight line AP intersects π′ at the point A′.
Thus, a correspondence between the set of points of π and set of points of π′ is
established and called the projection from the point P of the plane π upon the plane
π′. Then, it is said that the point A projects upon the point A′ or that A′ is a
projection of A. For a subset X of π, the projections of all its points form a subset
X ′ of π′ and X ′ is also called the projection of X or it is said that X projects
upon X ′.

In the sunlight you see the trunks of trees projecting parallel shadows. In the
light of a street lamp, if the shadows of the trunks were prolonged, they would
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Fig. 18

intersect at the base of the post that holds lamp. This scene from our surroundings
show clearly how straight lines are projected.

Now we turn back to geometry and first, we consider the projection of a straight
line. Let p be a straight line belonging to the plane π. All lines passing through a
point of p and the point P belong to the plane β determined by the line p and the
point P . Hence, all points of p are projected upon the points of a line p′ which is
the intersection of the planes β and π′.

Let the points Q and R be the intersections of the planes π′ and π with the
lines through P which are parallel to π and π′, respectively. In Fig. 19, a pointwise
projection of the line p upon the line p′ is seen. Namely, excluding the end points,
the ray RD of the line p is projected upon the ray QD′ of the line p′, the segment
AR upon the ray AC ′ and the ray AB upon the segment AQ. The point A projects
upon itself and there is none point of p which would be projected upon Q neither
there is a point of p′ upon which R would be projected.

Fig. 19

To eliminate this deficiency, for each straight line p, its point at infinity ∞p is
introduced. With such points, ∞p projects upon Q and R upon ∞p′ .
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A straight line together with its point at infinity is called the projective straight
line and the projection of one such line upon another is a one-to-one and onto
mapping of their points. To make a distinction, a line p together with its point at
infinity will be denoted by p∗.

The projections of a pair of parallel lines p and q, (Fig. 20), are two, at the
point Q, intersecting lines p′∗ and q′∗. Then, both points at infinity ∞p and ∞q

are projected upon the same point Q. It is the reason why these to points are
identified and considered to be one and the same point at infinity. Therefore, all
mutually parallel lines have the same point at infinity and to two different systems
of such lines, two different points at infinity are attached. A plane π together with
all points at infinity is called projective plane and we will denote it by π∗.

Fig. 20

The projecting of one projective plane upon another is a one-to-one and onto
mapping of their points and as such, the mapping has its inverse. This important
property of projecting is conditioned by the introduction of points at infinity and
the way they are identified. Thus, a projection from a point of π∗ upon π′∗, taken
as a mapping has for its inverse, the projection from the same point of π′∗ upon π∗

and, whenever X ⊂ π∗ projects upon X ′ ⊂ π′∗, symmetrically considered, X ⊂ π′∗

projects upon X ⊂ π∗.
In order to avoid a possible confusion caused by the use of analogous terms, a

line p and a plane π, taken with their usual meaning, will be called a Euclidean line
and a Euclidean plane, respectively, while with the points at infinity attached, p∗

and π∗ will be called a projective line and a projective plane, respectively. Let us
remark that if p and q are parallel Euclidean lines, their corresponding projective
lines p∗ and q∗ intersect at the point at infinity (as ∞p = ∞q). Hence, each
two projective lines intersect and so, there is no idea of parallelism in projective
geometry.

To complete this exposition, we will also consider the parallel projecting. Let
π and π′ be two planes and p a straight line neither parallel to π nor to π′. Then, p
determines a system of parallel lines in the space each of which intersect π at a point
A and π′ at a point A′. This correspondence of points of the two planes is called
the parallel projection along the line p. Since all lines of the system determined by



Metric Euclidean projective and topological properties 57

p intersect at the same point ∞p, this correspondence is also called the projection
from the point ∞p of the plane π upon the plane π′.

Now we are in a position to say that a property of planar object X, preserved
after an arbitrary number of projecting is called the projective property.

In Fig. 20 we see (shaded areas) how a rectangle projects upon a quadrilateral
having oblique angles and how a pair of parallel lines projects upon a pair of
intersecting lines. The Euclidean properties of a pair of lines to be parallel, of
figures to be a square, a rectangle, a parallelogram etc., generally the measures of
angles are not preserved under projections and therefore they are not projective
properties.

Now we will list a number of projective properties. As the projections of a
straight line are again straight lines, we see that the property to be a straight line
is a projective property. When three or more points belong to the same straight
line, then they are called collinear. The property of three or more points to be
collinear is also a projective property. When three or more straight lines intersect
at the same point they are called concurrent. The property of three or more lines
to be concurrent is again a projective property.

If a line l is curved, its projection l′ will also be curved. Indeed, if l′ were
straight then, projecting it back upon l, the line l would be straight, which is
contrary to the assumption. Thus, the property of a line to be curved is a projective
property. The straight and the curved are fundamental visual concepts. Preschool
children distinguish easily material objects according to these properties as well as
the school children distinguish easier straight lines from the curved ones, than they
make distinctions on the basis of Euclidean or metric properties.

The property of a line to be zigzag, of a figure to be a triangle, a quadrilateral,
etc. are also projective properties.

Geometrically, position of three objects is represented as the configuration
consisting of three points. When the objects are aligned, these three points are
collinear. Then, one of the objects or one of the points is said to be between the
other two. We see therefore that the triple of collinear points and the meaning of
the preposition ”between” are logically related. Since we often see several types of
exercises designed for children to instruct them to use this preposition correctly,
we will pay some extra attention to this spatial relationship.

Let us consider two triples of collinear
points A, B,C and A′, B′, C ′. We will show
how, after two projections, the triple A, B,C
can be mapped upon the triple A′, B′, C ′. Let
p be the straight line containing the points A,
B, C and q the line containing A′, B′, C ′. Draw
the line r through the point A′, parallel to p
(Fig. 21). First, the triple A,B, C is parallelly
projected along the straight line AA′ upon the
triple A′, B1, C1.

Fig. 21
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Let P be the point of intersection of the lines B′B1 and C ′C1. Then, by projection
from P , the triple A′, B1, C1 maps upon the triple A′, B′, C ′.

Since two arbitrary triples of collinear points can be mapped one upon another,
we see that under projections neither the distances of points nor the ratios of lengths
of segments are preserved. Thus, we see that a metric (distances of points) and a
Euclidean (ratios of lengths) property are not projective properties.

But the relationship of points of a collinear triple that one of them is be-
tween the other two stays unchanged under projections and so this relationship is
a projective property of collinear triples.

Finally, let us observe that a property, which is preserved under all projections,
is, of course, preserved under those of them when two planes are parallel. This
implies that each projective property is also Euclidean (and metric), but, as it has
been shown by several examples, the converse is not true.

At the end, as a statement typical for projective geometry, we formulate the
Desargue theorem: Let ABC and A′B′C ′ be two triangles. If the straight lines
AA′, BB′ and CC ′ are concurrent, the intersections of pairs of lines AB, A′B′;
AC, A′C ′ and BC, B′C ′ are collinear points, (see Fig. 22).

Fig. 22

When the vertices of the two triangles belong to the edges of a trihedral, the
intersections of the pairs of lines belong to the line of intersection of the planes
determined by surfaces of the two triangles, as it is easy to see. But when the two
triangles belong to the same plane, the proof is somewhat more subtle.
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5. Topological properties

My contention is that the cogni-
tive operations called thinking are
not privilege of mental processes
above and beyond perception but
the essential ingredients of percep-
tion itself.

R. Arnheim

In a purely descriptive way, topology can be described as geometry of plastic
deformations. When a geometric object is imagined as being made of ideally plastic
substance and when, it is allowed to make it longer, wider—stretching it in all
directions or to make it smaller—contracting it in all directions, then the object is
said to be under a plastic deformation. More generally, a part of the object can be
stretched and, in the same time, the other one contracted. To have this description
complete, let us also say that it is not allowed to pull the object into pieces or to let
its parts overlap each other. It is not allowed to make a hole in the object, either.

When, as a result of plastic deformation, from an object another one is made,
then such two objects are said to be topologically equivalent. In addition, a prop-
erty preserved under plastic deformations is called topological property. Thus, two
topologically equivalent objects share the same set of topological properties.

Now we give a number of examples of topologically equivalent objects.
1. Let [0, 1] = {x : 0 < x < 1 } be the unit interval. Starting with this interval

and deforming it in different ways, the following sequence of lines can be obtained:

Fig. 23

Each two of these lines are topologically equivalent and one can be obtained
from the other by means of a plastic deformation. Each of them represents one
and the same thing—a topological arc. Among them, the interval has the “nicest”
geometric shape, what, by the way, is not a relevant topological property, as we see
how the shape of an object can be badly distorted by a plastic deformation.

2. Let S1 = { (x, y) : x2 +y2 = 1 } be the unit circle. Deforming it, a sequence
of different lines can be obtained:

Fig. 24
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They all are topologically equivalent, representing one and the same thing—a
topological circle. Geometric circle and equilateral triangle are the “nicest” shapes
among them.

3. Let D = { (x, y) : x2 + y2 6 1 } be the unit disk. Deforming it in different
ways, a sequence of surfaces is obtained:

Fig. 25

Each of these surfaces represents topologically one and the same thing—a
topological disk.

4. Let C = { (x, y, z) : x2 + y2 = 1 and 0 6 z 6 1 } be the (hollow) cylinder.
The lateral surface of a truncated cone, a ring, a rectangle having a circular or
square hole, etc. are the objects which can be obtained from the cylinder by the
suitable deformations.

Fig. 26

5. Let S2 = { (x, y, z) : x2 + y2 + z2 = 1 } be the unit sphere. By its different
deformations, the objects as the surfaces of a cube, a pyramid, a cylinder etc. are
obtained.

Fig. 27

Formally, two geometric objects A and B are topologically equivalent if there
exists a mapping f : A → B, which satisfies the conditions

(1) f is 1–1 and onto,
(2) both, f and f−1 (the inverse of f) are continuous.
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Such a mapping f is called homeomorphism and the two objects A and B
are also called homeomerphic, what is denoted writing A ≈ B. It is easy to see
that “≈” is an equivalence relation on the set of geometric objects. (f−1 is also
a homeomorphism as well as it is the composition g◦f of two homeomorphisms f
and g.)

Now we give a number of examples of homeomorphisms.
6. Let (a, b) and (c, d) be any two open intervals. The mapping f : (a, b) →

(c, d) given by

f(x) = c +
d− c

b− a
(x− a)

is a homeomorphism (Fig. 28, a). Thus, any two open intervals are homeomorphic
(topologically equivalent).

Fig. 28

The mapping f : (−π/2, π/2) → R, given by f(x) = tan x is a homeomor-
phism (f−1(x) = arctan x is continuous). Thus, we see that the real line R is
homeomorphic to any open interval.

7. The mapping

f(t) =
{

(1− 2t, 0), t ∈ [0, 1/2]
(0, 2t− 1), t ∈ [1/2, 1]

is a homeomorphism of the unit interval [0, 1] and the “el” line (Fig. 29).

Fig. 29
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8. The mapping f : (0, 1) → S1 \ {(1, 0)}, given by f(t) = (cos 2πt, sin 2πt) is
a homeomorphism. Thus, we see that a circle without a point is homeomorphic to
an open interval.

Fig. 30

9. Taking for domain the half closed interval [0, 1) and for codomain the circle
S1, the formula f(t) = (cos 2πt, sin 2πt) determines a mapping f , which is 1–1 and
onto, continuous, but its inverse f−1 fails to be continuous. Indeed, let (An) be
a sequence of points in S1, converging to the point (1, 0), as it is represented in
Fig. 31. The inverse images A′n = f−1(An), n = 1, 2, . . . , scatter and the sequence
(A′n) does not converge to the point 0.

Fig. 31

We will see later that there is no mapping of the interval [0, 1) onto the circle
S1, which would be a homeomorphism.

Exposing topological properties of geometric objects, we will consistently try to
avoid mathematical formalism, preferring instead a perceptual basis of topological
reasoning. A number of examples that we have just considered serve to convince the
reader that there exists a formal, and therefore more rigorous, way of exposition.

When perceived, many objects of the outer world not only move, but they also
bend, twist, turn, swell, shrink, etc. To extract then, the lasting and to differentiate
it from the changing means the recognition of topological properties of such objects.
Formally, a property is topological if preserved under homeomorphism.

Without cutting and tearing, an object stays as a whole and this is a fundamen-
tal topological property. Topological arc is taken as a prototype of this wholeness,
which is formally expressed saying that arcs are connected objects. As a further
step to generalization, a geometric object is said to be (arcwise) connected if for
any pair of its different points there exists an arc joining them and being contained
in that object. For instance, the objects:
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Fig. 32

are connected, while the following ones:

Fig. 33

are not (two triangles set one beside the other, ring with the points on an axis of
symmetry removed, figure eight with the intersecting point removed).

When deforming, an arc joining two points deforms into arcs joining the same
points. Under homeomorphisms, the image of an arc joining two points is again
an arc joining their images. Hence, the property of an object to be connected is a
topological property.

To prove that two objects are homeomorphic, we have to find a homeomor-
phism. To prove they are topologically different we have to find a topological
property, which one of the objects have and the other one does not. “Good” ob-
jects are always connected and therefore, this property is not very discriminating.
But there is a number from it derived properties, which are more efficient.

A point A of a geometric object X, is said to be cutting if, when removed, the
object X \ {A} is not connected. Then, X \ {A} splits into a number of connect-
ed parts. The numbers of cutting and non-cutting
points are topological properties. When a point A is
cutting and the number of connected parts of X \{A}
is m, then it is said that A cuts X into m parts,
what is again a topological property. For example,
the branching point of the “ef” line (Fig. 34) cuts it
into 3 parts, the three end points are non-cutting and
all other points cut it into 2 parts.

Fig. 34
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9. All points x, 0 < x < 1 of the interval [0, 1) are cutting, while the circle
S1 has no cutting point. Hence, [0, 1) and S1 are not topologically equivalent
and therefore, there is no mapping between these two objects which would be a
homeomorphism.

All members of the following sequence of letter lines:

Fig. 35

are topologically different. Indeed, each of them has a topological property being
not shared by any of the others. Following the order in which the lines stand, such
properties are:

– the “O” line has no cutting point (all its points are non-cutting),
– the lines “I”, “T”, “X” have 2, 3 and 4 non-cutting points, respectively,
– the “X” line has a point cutting it into 4 parts and the “H” line does not.

Having 4 non-cutting points, the “H” line is also different from the first three
lines.

10. The two lines on Fig. 36 have no cut-
ting points. Analogously to the case of cut-
ting point, a finite set of points which cuts an
object into a number of parts can also be em-
ployed for topological discrimination. Thus,
the first line has a 2 point set which cuts it
into 3 parts, while the second one does not
have. This example could inspire the inter-
ested reader to do several similar, topological
comparisons of lines.

Fig. 36

Now we will list a number of the properties of geometric objects, which are
topological in nature and which appear even at the early stage of teaching geometry.

Looking at a line locally, that is considering it only in small neighbourhoods
of its points, the line extends in only one direction. When looking locally, a surface
extends in two directions and a solid body in three. The number of directions
in which a geometric object extends locally is a visual ground upon which the
topological concept of dimension is laid.

In topology, a line is one-, a surface two- and a solid body three-dimensional
object. Deforming a line it stays to be a line, a surface to be a surface and a solid
body to be a solid body. Thus, the properties of a geometric object to be a line, a
surface or a solid body are topological.
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As we have already seen, a topological arc and a topological circle are topo-
logically distinct objects. In early school geometry they are called an open and a
closed curve, respectively and they represent purely topological concepts.

To be an end point of a line (that is a non-cutting point) is again a topological
property.

A closed curve splits the plane into two regions, one being inside and the other
one outside that curve. This important topological property of closed curves, which
the eye comprehends in one sweep, is rather difficult to be proved mathematically.
The relationship of a point and of a closed curve is of three kinds—a point can be
in, on or out of a closed curve. Thus, we see that the meaning of the prepositions
“in”, “on” and “out” is also topological.

When we say that a point is between the other two, we imagine the points to
be collinear and such a concept is projective. But when we have a configuration—
an open line with three points on it, then one of the points is between the other
two, giving to this relationship a larger sense than before. Since such a relationship
does not change under deformations, it is topological in nature.

Notice that the number of intersecting points of two lines and boundaries of
geometric objects are some further topological concepts. And we are sure that an
enquiring reader will find still other topological properties and concepts involved
in the subject matter of school geometry course.

Let us end this exposition with a remark showing the hierarchy of the kinds
of all considered properties. A projection is a homeomorphism of one plane onto
another. Thus, projections preserve all topological properties or, expressing it in
other words, each topological property of an object is also its projective property.
And, as already seen, a projective property is Euclidean and an Euclidean one is
metric.

6. Euler-Poincare characteristic

If you have been intrigued by the contents of the previous section, then you
will certainly enjoy to read this one, as well. Here we expose a fascinating topo-
logical property, which is expressed in numbers and which aids us in distinguishing
topologically one object from another when such objects are more complex than
the lines are. The idea has its roots in a property of polyhedral surfaces that you
probably know from your school geometry courses. Namely, when we take the
surfaces of polyhedra, as a pyramid or a prism is:

Fig. 37
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and when we form the alternating sum:

v − e + f,

where v denotes the number of vertices, e the number of edges and f the number
of faces, then in each of these cases the number 2 results. Indeed,

a) 4 − 6 + 4 = 2, b) 5 − 8 + 5 = 2, c) 8 − 12 + 6 = 2, d) 6 − 9 + 5 = 2.

In the general case of a polyhedral surface which is a topological sphere, the equality
v − e + f = 2 holds. This fact was probably known in antiquity, but in the
contemporary geometry it is referred to as the Euler theorem (after the great classic
mathematician, Leonhard Euler (1707–1783)).

A powerful generalization of the Euler theorem is obtained when such alternat-
ing sums are formed for higher dimensional polyhedra and especially, proving that
so resulting numbers are topological properties of geometric objects themselves,
independently existing of the ways how they are represented as polyhedra. Such
numbers are called the Euler-Poincare characteristics and the mentioned general-
ization was carried out by, the great mathematician Henri Poincare (1854–1912),
who is also considered to be the founder of topology as an independent branch of
mathematics.

For example, the topological circle S1 can be differently represented as a polyg-
onal line:

Fig. 38

and all sums of the form v − e:

3− 3 = 0, 4− 4 = 0, 6− 6 = 0, . . .

give the number 0, as a topological property of S1. When the topological disk is
represented as a triangle, a quadrilateral, a hexagon, . . . , the corresponding sum
v − e + f will be:

3− 3 + 1 = 1, 4− 4 + 1 = 1, 6− 6 + 1 = 1, . . .

and the number 1 is a topological property of the disk. On the basis of this property,
the circle and the disk are topologically different objects.

Proceeding further, we will expose a method of calculation of Euler-Poincare
characteristic simpler than that which has already been used for polyhedral surfaces.
We will not try to prove that this characteristics are topological properties, since
such a proof depends on very sophisticated techniques.
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Now we start describing the method, step by step. Denoting a geometric object
with X, its Euler-Poincare characteristic will be denoted with χ(X).

When X is one point, χ(X) = 1 (just one vertex). When X consists of n
points, then χ(X) = n and more generally, when the objects Xi, i = 1, . . . , n do
not intersect, then

χ
(⋃

Xi

)
= χ(X1) + · · ·+ χ(Xn).

To calculate χ(X), when X is a line, such an object has to be seen in fibres,
which are finite sets of points. In Fig. 39, we see a topological arc and topological
circle in fibres.

Fig. 39

In the case a), the fibres are: f0—one point, f1—running two points, f2—two
points, f3—running one point, f4—two points, f5—running two points and f6—
one point. Then, χ(X) is calculated this way

χ(X) = χ(f0)− χ(f1) + χ(f2)− χ(f3) + χ(f4)− χ(f5) + χ(f6)
= 1− 2 + 2− 1 + 2− 2 + 1 = 1.

In the case b), the fibres are (looking upwards): f0—one point, f1—running two
points, f2—three points, f3—running four points, f4—three points, f5—running
two points and f6—one point. Then, as before

χ(X) = 1− 2 + 3− 4 + 3− 2 + 1 = 0.

First we have the initial fibre f0, then the running fibres f1, which are all topo-
logically equivalent each to other, then the fibre f2, which is topologically different
from f1 (the case b)) or the running fibres f3 following it are topologically different
from f2 (the case a)) and so on and so forth.

Using the Gestalt language, the two objects in Fig. 39 are “poor” forms. Their
“good” forms are seen in the following figure, when the calculation is also easier.
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Fig. 40

Case a): χ(X) = 1−1+1 = 1, case b): χ(X) = 1−2+1 = 0. The two “poor” forms
were intentionally used for explanation of the way how an object is decomposed
into fibres, as well as, to demonstrate the independence of a topological property
of the shape of objects.

It is known that children easily identify a badly distorted disk with, say, two
holes with the “good” one (Fig. 41), grasping the number of holes as a common
property. Now we will show that the number of holes is, indeed, a discriminating
topological property, but instead of “poor” we will use “good” forms.

Fig. 41

1. Let us consider a disk, a disk with one and a disc with two holes.

Fig. 42

a) χ(X) = 1− 1 + 1 = 1, b) χ(X) = 1− 1 + 1− 2 + 1− 1 + 1 = 0,
c) χ(X) = 1− 1 + 1− 3 + 1− 1 + 1 = −1.

We suggest to the reader to prove that, when X is a disk with n holes, then
χ(X) = −n + 1.
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2. The results obtained in this example will be used in the one, which follows
it. We consider here two, three, . . . touching circles as it is illustrated in Fig. 43.

Fig. 43

a) χ(X) = 0, b) χ(X) = 2− 4 + 3− 4 + 2 = −1, c) χ(X) = 3− 6 + 4− 6 + 3 = −2

Again, we suggest to the reader to prove that, when X is the line consisting
of n circles touching in the way illustrated in Fig. 43, then χ(X) = 1− n.

3. The surfaces that we consider now are a sphere, a sphere with one hole (also
called a torus), a sphere with two holes, . . . Representations in fibres are obtained
by intersection with a family of parallel planes (Fig. 44).

Fig. 44

a) χ(X) = 1 − 0 + 1 = 2, b) χ(X) = 1 − 0 + (−1) − 0 + (−1) − 0 + 1 = 0
c) χ(X) = 1− 0 + (−2)− 0− (−2)− 0 + 1 = −2, . . .

We suggest to the reader to prove that, when X is a sphere with n holes, then
χ(X) = 2− 2n.

In the case of these surfaces we see again that the number of holes is a signifi-
cant topological property.

We end this exposition with a number of remarks. Some surfaces have lines
as their boundaries: a half-sphere a circle, a cylinder two circles, etc. Sphere
and spheres with a number of holes have no boundary. An intersecting fact for
your information will be to know that there is no other orientable surface without
boundary, which would be topologically distinct from a sphere or spheres with
holes. And a surface is orientable if it is two-sided—when without boundary it has
an inner and an outer side and when with boundary, a path from one side to the
other must go across the boundary. But there exist surfaces, which are one-sided.
A very popular example is the Möbius band (Fig. 45, a)), whose paper model is
easily made when a rectangular paper band is twisted first and then two opposite
edges glued together. Another example is seen in Fig. 45, b)—a rectangular paper
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Fig. 45

with two holes is bent first and then two ends of a pipe are glued to the rims of the
holes.

If you are interested to know more about projective geometry or topology, we
direct you to the excellent book of Courant, Robins [3].
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