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CHAPTER V� REAL NUMBERS AND POLYNOMIALS

�� Axioms of real numbers

In the present chapter we shall try to make our idea of real numbers more
precise� Our tendency will not be towards very rigorous reasoning� but we shall
only try to give enough accuracy to our notions and reasoning in this �eld� so that
we are able to prove statements about real numbers�

If we choose an origin and a unit on a line� we can represent real numbers as
points on the line� Thus� if we make our idea of real numbers more precise� we give
at the same time a more precise description of a line and points lying on it� In the
sequel we shall often� as an illustration� use this bijective correspondence between
real numbers and points on a line�

Let us try to take geometry as an example and bring the precision of de�nitions
and arguing to the level which already exists in the school geometry courses� There�
some axioms appear as the basis of all the construction� and starting from these
axioms all other statements are proved� Axioms themselves are not proved� we
take them on the basis of experiment or intuition�

In order to be more concrete� let us look at the construction of plane geom�
etry based on axioms� We can distinguish three types of logical notions� First of
all� there are basic geometrical notions�points and lines� Then� there are basic
relations� a point lies on a line� a point lies on a line between other two points�
Neither of these are de�ned� We think as if a �list� of all points and all lines exists
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somewhere� and we know which points lie on which lines or which triples of points
A� B� C on the line l are such that B lies between A and C� And only in third
place there are axioms� i�e�� statements about basic notions and relations among
them� For instance� each two distinct points belong to exactly one line� Or� among
three distinct points on a line� there is exactly one lying between other two�

There is a complete analogy with real numbers� The basic notions here are
real numbers themselves� This means that� for the moment� we do not assume
anything more about real numbers� but only that they constitute a certain set�
Basic relations between real numbers are of two di
erent types� operations and
inequalities� Let us describe them in more detail�

�� Operations with real numbers

For every two real numbers a and b we de�ne a third number c� called the sum
of a and b� We write this as� a� b � c�

For every two real numbers a and b we de�ne a third number d� called the
product of a and b� We write this as� ab � d�

�� Inequalities between real numbers

For some pairs of real numbers a and b we have that a is less than b� We write
this as� a � b� The same relation is also written as b � a� If we want to say that
a � b or a � b� we write a � b or b � a��

Before we pass to the formulation of axioms connecting basic notions with
basic relations among them� let us emphasize once more the analogy with geometry�
Write analogous notions in the table�

Algebra Geometry
Basic notions

Real numbers Point� line� � � �
Basic relations

sum� a� b � c A point lies on a line�
product� ab � d Point C lies between
inequality� a � b points A and B�

� � �
Axioms

� � � � � �

There is no need to list geometrical axioms here� and axioms on real numbers shall
be listed now� They will be formulated in terms of basic notions and relations
between them� listed in the table� We group the axioms according to the basic
relations they deal with�

I �axioms of addition�

I�� Commutative law� a� b � b� a for arbitrary real numbers a and b�

I�� Associative law� a�b� c� � a� b�� c for arbitrary real numbers a� b and c�

I�� There exists a number called zero� denoted by �� such that a� � � a is valid
for each real number a�
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Remark� There exists exactly one such number� If �� were another number
with the same property� we would have �� � � � ��� by the de�nition of �� �� � � �
� � �� by the commutative law and � � �� � �� by the de�nition of ��� Finally� we
obtain �� � �� � � � � � �� � �� i�e�� �� � ���

I�� For each real number a there exists a number called opposite� denoted by �a�
such that a� �a� � ��

Remark� For the given number a there exists exactly one such number�
If a� were another number with the same property� a � a� � �� we would have
a� �a�� � a� � � � a� � a�� Also� a� �a�� � a� � �a� � a� � a�� and by the
associative law� �a� � a� � a� � �a� � a� a��� By the property of number a��
a � a� � � and �a� � � � �a� Taking these equalities together� we obtain that
a� � �a��

II �axioms of multiplication�

II�� Commutative law� ab � ba for arbitrary real numbers a and b�

II�� Associative law� abc� � ab�c for arbitrary real numbers a� b and c�

II�� There exists a number called unit� denoted by �� such that a � � � a for an
arbitrary real number a�

Remark� There exists only one such number� It can be proved in the
same way as the remark following axiom I��we only have to replace addition by
multiplication� and � by ���

II�� For each real number a� di
erent from �� there exists a number called inverse�
denoted by a��� such that a � a�� � ��

Remark� For each real number a di
erent from �� there exists only one such
number� The proof is exactly the same as in the remark following axiom I���

III �axiom of addition and multiplication�

III�� Distributive law� a� b�c � ac� bc for arbitrary real numbers a� b and c�

IV �axioms of order�

IV�� For any two real numbers a and b exactly one of the following three relations
holds� a � b or a � b or b � a�

IV�� If for some three real numbers a� b and c we have a � b and b � c� then a � c�

IV�� If a � b� then a� c � b� c for arbitrary three real numbers a� b and c�

IV�� If a � b and c � �� then ac � bc for arbitrary three real numbers a� b and c�

V �real and rational numbers�

Rational numbers are contained among real numbers� and operations and
inequalities� de�ned for real numbers� when applied to rational ones� give
usual operations and inequalities�

VI �axiom of Archimedes�

For each real number a there exists a natural number n such that a � n�
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VII �axiom of embedded segments�

Let a�� a�� a�� � � � and b�� b�� b�� � � � be two sequences of real numbers�
satisfying a� � a� � a� � � � � � b� � b� � b� � � � � and bn � an for each n�
Then there exists a real number c� such that bm � c and c � an for all m
and n�

If we use representation of real numbers on a line� then numbers x satisfying
the condition a � x and x � b a � x � b for short� are represented by the set which
is called a segment and denoted by �a� b�� So� the premises of the last axiom state
that the segments In � �an� bn� are embedded one into another� I� � I� � I� � � � � �
The axiom states that there exists a point i�e�� a number� which is common for all
these embedded segments hence the name of the axiom��

All the usual properties of real numbers easily follow from the listed axioms� It
would be too boring to devote several pages to these completely obvious arguments�
Hence� we shall only formulate some assertions which we shall need later�and give
just some remarks in connection with their proofs see also problems 	� �� ���

It follows from the axioms of group II that for each number a di
erent from
� and each number b� the number c � a��b is the unique solution of the equation
ax � b� It is called the quotient of b and a and denoted by b

a
� All the usual rules

about dealing with parentheses and fractions follow from the axioms�

Since for a natural number n the equality n � � � � � � � � n summands� is
valid� it follows from the axioms of group III that for each number a� the number
na product of n and a� is equal to the sum a� � � �� a n summands��

Axiom IV� implies that if a � b and c � d� then a � c � a � d � b � d� If
a � �� then �a � � because from �a � � it would follow � � ��� As a result we
conclude that each real number is either positive a � ��� has the form �b� where
b � �� when we say that it is negative� or it is equal to �� Multiplication obeys the
usual �rule of signs�� As usual� we write jxj � x if x � � and jxj � �x when x � ��

Axiom of embedded segments axiom VII� is particularly useful when the
length of segment In i�e�� the di
erence bn � an� becomes arbitrary small when
n increases� In other words� if for an arbitrary real number � � � there exists an
index N such that bn�an � � for all n � N � In such a case one can conclude more
than just what is said in the axiom�

LEMMA �� If di�erences bn � an become arbitrary small with increasing of
the index n� then number c� whose existence is guaranteed by axiom VII� is unique�

Proof� Suppose that there exist two such numbers� c and c� and� for example�
c � c�� Then an � c � c� � bn and c��c � bn�an�c�an��bn�c�� � bn�an� We
obtain for n su�ciently large� that c�� c � � for an arbitrary given number � � ��

For instance� such a relation has to be valid for � � c
�
�c

�
� whence �

�
c�� c� � �� but

this contradicts the fact that c� � c � �� �

�
� ��

We meet exactly this situation when we intend to measure the given real
number approximately� with de�ciency or excess� using rational numbers� In that
case an and bn are rational numbers� An example is the construction of

p
	 we spoke
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about in Section � of Chapter I� Thus� axiom VII formulates what we intuitively
have in mind when we speak about �better and better measuring�� Together with
the preceding Lemma it gives us the possibility of constructing real numbers with
the prescribed properties� We shall often use this observation later�

Concerning axioms V and VI we just remark that we assume here natural and�
more generally� rational numbers to be known� We shall not analyse these notions
in detail�

Let us remark at the end that the given axioms are not independent� This
means that some of them could be proven as theorems� relying on other axioms see�
e�g�� problem ��� We have just gathered those properties of real numbers which we
are used to and which are intuitively convincing� Taking greater number of axioms
we obtained the right to skip not very interesting proofs of some intuitively obvious
facts�

Problems

�� Which of the axioms I�VII are also valid in the set of rational numbers�
and which are speci�c for real numbers�

�� Prove� using axioms I�III� that for each real number a� �a � ��

�� Prove that for arbitrary real numbers a and b the equation a� x � b has a
solution and that it is unique�

�� Prove that for arbitrary real numbers a �� � and b the equation ax � b has
a solution and that it is unique�

�� Consider the set of rational numbers as a subset of the set of real numbers�
on the basis of axiom V� Prove that rational number � coincides with the real
number � whose existence is based on axiom I�� Do the same for rational number
� and the real number � whose existence is based on axiom II��

	� Not using axiom V� prove that numbers �� �� � � �� � � � � � � � � � � � � �
n summands� are di
erent for all natural n� Here � denotes the number whose exis�
tence is guaranteed by axiom II�� Hence� prove that natural numbers are contained
amongst the reals� and that operations and inequalities� de�ned for real numbers�
when applied to natural ones� give usual operations and inequalities� Prove after
that the assertion of axiom V� In that way� this axiom is in fact super�uous in our
list� since it could be proven on the basis of other axioms�


� Instead of the operation of multiplication� given by de�nition for real num�
bers� de�ne a new operation � given by the formula a � b � a � b � ab� Does it
obey the axioms of group II�

�� Limits and in�nite sums

In order to illustrate the role of axiom of embedded segments as a method of
construction of new real numbers� we shall introduce several notions which will also
be useful later�
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We met in Chapter IV sequences which were bounded as well as sequences
which increased unboundedly� Consider now sequences which are decreasing� For
the sake of simplicity� consider �rst sequences of positive numbers and call such a
sequence unboundedly decreasing if its terms unboundedly approach zero� The exact
de�nition can be made analogously to the de�nition of unboundedly increasing
sequences� given in Section 	� Chapter IV�

A sequence an of nonnegative real numbers is said to approach zero unboundedly
if for each arbitrary small positive number � there exists a natural number N such
that an � � for all n � N � In such a case we also say that the sequence an tends
to � and denote it by� an � � when n�� �when n tends to in�nity���

A typical example of such a sequence is the sequence an � �

n
�

Consider now a less obvious example�

LEMMA �� If a is an arbitrary positive number smaller than �� then the
sequence an � an unboundedly approaches �� i�e�� an � � when n���

Really� put a � ��A� Then A � � and it can be written in the form A � �� x
with x � �� Using binomial formula� An � � � x�n � � � nx � y� where y is a
sum of positive numbers� so y � �� Thus� An � � � nx and so for each � � � there
exists such N that An � ��� for all n � N this N can be found explicitly�� Hence�
an � � which means that an � � when n���

We can generalize the previous de�nition to sequences a�� a�� � � � � an� � � � �
whose terms can also be negative� Then the numbers ja�j� ja�j� � � � � janj� � � �
are nonnegative and we can apply the previous de�nition to them� We shall say
that the sequence an approaches zero unboundedly� if the sequence of numbers janj
unboundedly approaches �� In that case one also writes an � � when n���

Now we have come to our main de�nition� If for a sequence a �
a�� a�� � � � � an� � � � � there exists a number �� such that an � � � � when n � ��
then � is called the limit of the sequence a� One also says that the sequence an
tends to � and one writes an � � when n���

Not every sequence has a limit� For example� if a sequence has a limit� then it
is bounded� Really� let �n � � when n � �� Then there exists an N � such that
j�n � �j � � for n � N � Since �n � � � �n � ��� it follows that j�nj � j�j � �
for n � N and therefore j�nj � C for all n� where C is the maximum of numbers
j��j� � � � � j�N j� j�j��� But even if a sequence is bounded� it can have no limit� An
example is the sequence �� �� �� �� � � � � where � and � alternate� If it had a limit ��
we could take in the de�nition of the limit � � �

�
and we would have jan � �j � �

�

for all n � N � But among an�s with n � N there are both � and �� Therefore we
would have j�j � �

�
and j�� �j � �

�
� Clearly� such a number � does not exist�

But if a sequence has a limit� this limit is unique� Namely� suppose that a
sequence a�� a�� � � � � an� � � � � has two limits� � and �� � �� �� Then for each � there
exist numbers N and N �� such that for n � N it is jan � �j � � and for n � N �

it is jan � �j � �� Let n � N and n � N �� then jan � �j � � and jan � �j � ��
wherefrom j� � �j � 	�� But � in our reasoning is an arbitrary positive number�
and we can choose it so that � � �

�
j�� �j� hence a contradiction�
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As not every bounded sequence has a limit� considering just such sequences
would not lead us to the construction of new real numbers� Our main result will
be that there is a simple special type of sequences which always have limits and
therefore they will give us a method of constructing new real numbers�

A sequence a�� a�� � � � � an� � � � � is called increasing� if an � an�� for all n� i�e��
a� � a� � a� � a� � � � � �

THEOREM �� Each bounded and increasing sequence of positive numbers has
a limit�

The proof will follow the logic of an anecdote which was popular when I was
a student i�e�� before the war�� The story was about di
erent ways to catch a
lion in a desert� There was a French method� method of NKVD�investigators�
mathematician�s method� � � � Mathematician�s method went like this� He divides
the desert into two parts� The lion is situated in one of these parts� He divides this
part again in two parts�and he continues like this till the lion appears in a part of
the desert whose dimensions are less than the dimensions of the cage� It remains to
put the cage around it� This was a parody to a way of proving existence theorems�
one of which we are going to demonstrate now�

Let a � a�� a�� � � � � an� � � � � be an increasing sequence of positive numbers� By
the assumption it is bounded� so there exists a constant C such that all an � C�
Divide the segment I� � ��� C� into two equal parts by the number C�	� Then one
of the following is valid� Either there exists an m� such that am � C�	� and then
all an with n � m are contained in the segment �C�	� C� since the sequence is
increasing�� or an � C�	 for all n� and then all terms of the sequence belong to
the segment ��� C�	�� Denote by I� one the segments� ��� C�	� or �C�	� C�� namely
the one which contains all the terms of sequence a� starting from some place�
After that� divide the new segment into two parts� Obviously� we can continue
the process unboundedly and we will obtain a sequence of embedded segments
I� � I� � I� � � � � � Im � � � � � where segment Ik has the length C�	k� and which
possesses the property that each segment Ik contains all the terms of sequence a�
starting from some place� By the axiom of embedded segments axiom VII� there
exists a real number �� belonging to all the segments Ik� It is indeed the limit
of sequence a� Really� as we have seen� all the terms of sequence a� starting from
some place� belong to segment Ik� This means that for each natural number k there
exists an N such that an � Ik for all n � N � But also a � Ik� Since the length of
segment Ik is equal to C�	k� it follows that jan ��j � C�	k for n � N � This gives
us the property which appears in the de�nition of the limit� if we choose k so that
C�	k � �� In particular� note that such a choice is always possible the sequence�
�� C

�
� C
�
� C
�
� � � �

�
tends to ���

Theorem � is particularly useful when the sequence a � a�� a�� � � � � an� � � � � is
the sequence of sums of a sequence of nonnegative numbers c � c�� c�� � � � � cn� � � � �
cn � ��� i�e�� when a� � c�� a� � c� � c�� � � � � an � c� � c� � � � � � cn� In such a
case� obviously� the sequence a is increasing� But it has to be checked and it could
by no means be easy� whether it is bounded� For example� if in the sequence c all
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cn � �� then an � n and the sequence a is unbounded� We considered a less trivial
example in Section 	 of Chapter IV� in the sequence c all cn � ��n� We saw that in
that case the sequence a is also unbounded� But if we can check that the sequence
a of sums is bounded� then according to Theorem � it has a unique limit �� This
limit is called the sum of the sequence c�� c�� � � � � cn� � � � �� which is denoted by

c� � c� � � � �� cn � � � � � ��

Sometimes the in�nite sum c is called a series and its sum�the sum of the series�

If the sequence of sums an is bounded� then� as we have seen� the sum of the
series c� � c� � � � �� cn � � � � exists� If it is unbounded� then we say that the sum
of the series does not exist� Hence� Lemma �� Section 	� Chapter IV� states that

the sum of the series � �
�

	
�

�

�
� � � � does not exist�

Consider an example� Let a nonnegative number a� less than �� be given� and
let c � �� a� a�� � � � � an� � � � �� Then an � � � a� a� � � � �� an�� in the n�th place
in the sequence c there appears an���� The sum � � a � a� � � � � � an�� can be
evaluated using the formula for the sum of a geometric progression�formula �	�
of Chapter I�

�� an � � � a� a� � � � �� an�� �
�� an

�� a
�

�

�� a
� an

�� a
�

We have seen that an � � when n � �� wherefrom it follows immediately that
an

�� a
� � when n ��� Thus� formula �� gives that an � �

�� a
� We can write

this as�

	� � � a� a� � � � �� an � � � � � �

�� a
for a � ��

The series on the left�hand side of relation 	� is called an in�nite geometric pro�
gression� and formula 	� itself�the formula for the sum of an in�nite geometric
progression�

But there are examples of series where existence of sums is not hard to prove�
but the explicit evaluation of the sums is much harder� For example� in Section

	 of Chapter IV we proved that the sums
�

��
�

�

	�
� � � � � �

n�
are bounded� This

means that the sum of the series
�

��
�

�

	�
� � � �� �

n�
� � � � exists� But what is its

value� This problem attracted mathematicians in the middle of XVIII century� It
was Euler who solved it� when he found an interesting equality

�� � �
�

	�
�

�

��
� � � �� �

n�
� � � � � 	�

�
�

This was one of the most sensational Euler�s discoveries� Euler went even further�

evaluating the sum of the series � �
�

	k
�

�

�k
� � � �� �

nk
� � � � for arbitrary even k�

It appeared that these sums were connected with the numbers of Bernoulli� which
we described in the Appendix of Chapter II� Namely� the following formula is valid
for each even k�

�� � �
�

	k
�

�

�k
� � � �� �

nk
� � � � � 	k���k���Bk

	
k��
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We know nearly nothing about analogous sums with odd k� It was proved only

recently in � ��� that the sum ��
�

	�
�

�

��
� � � �� �

n�
� � � � is an irrational number�

This remains probably the only known fact about these sums for odd values of k�

Let us remark that just knowing the fact that a series c� � c� � � � �� cn � � � �
has a sum� one can deduce useful corollaries even if the value of the sum is not
known�

LEMMA �� If the sum of the series c� � c� � � � � � cn � � � � exists� then the
sequence of numbers dn � cn � cn�� � � � � unboundedly approaches ��

We shall use an easy property of the limit� Suppose that a sequence a�� a��
� � � � an� � � � has a limit �� i�e�� an � � when n��� Then for each number � the
sequence ��a�� ��a�� � � � � ��an� � � � has the limit ���� Really� the di
erence
������an� � an��� and the di
erence an��� �� hence ������an�� �
when n � �� Denote the sum of the series c� � c� � � � � � cn � � � � by � and the
number c�� c�� � � �� cm by am� By the de�nition of the sum of an in�nite series�
the sum � of the series c� � c� � � � �� cn� � � � is equal to the limit of the sequence
a�� a�� � � � � am� � � � � In the same way the sum dn of the sequence cn���cn��� � � �
is equal to the limit of the sequence an�� � an� an�� � an� � � � an�k � an� � � � � By
the remark from the beginning of the proof� the last limit is equal to ���an� where
�� is the limit of the sequence an��� an��� � � � � an�k� � � � for �xed n�� But the
limit of the sequence an��� an��� � � � is the same as the limit of the sequence a��
a�� � � � � i�e�� �

� � �� We obtain that dn � � � an� But� by the de�nition of limit�
�� an � �� i�e�� dn � � when n���

As an example� put dn �
�

n�
�

�

n� ���
� � � �� We see that dn � � when

n���

Considering limits of in�nite sums leads us away from algebra� which is mainly
concerned with �nite expressions� These questions are closely related with another
branch of mathematics� called analysis� That is why we are not going to consider
them in more detail� Let us remark only that the most interesting results�such as
formulas �� and ���appear on borders of these areas�

Problems

�� Prove that if the sum of the series c��c�� � � ��cn� � � � exists� then cn � �
when n���

�� Prove that if an � C for each n and an � � when n � �� then � � C�
Give an example when equality is obtained�

�� Let an � � when n � �� Put bn � a�n� Does the sequence b�� b�� � � �
have a limit and what is its value� Is it possible� from the existence of the limit
of this sequence� to conclude that the sequence a�� a�� � � � itself has a limit� If it
does have a limit� what is its value�
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�� Does there exist a limit of the sequence a�� a�� � � � where

an �
�

	
� �

�
� � � �� ���n

n
�

Hint� Group consecutive terms in pairs�

�� Let fx� be a polynomial of degree d� Prove that an � � when n � ��
where an � fn��nd���

	� Find the sum of the series b� ba� ba� � ban � � � � � where jaj � � and b is
arbitrary� Usually� the sequence b� ba� ba�� � � � � is also called an in�nite geometric
progression�


� In a square with side b� centres of the sides are joined by segments� In the
new square which is obtained in that way the same procedure is done� etc� Find
the sum of areas of all squares that can be obtained in this way�

�� Find the sum of the series
�

� � 	 �
�

	 � � � � � �� �

n � n� ��
� � � � �

� Construct a sequence of positive rational numbers smaller than �� such that
an has the denominator n and which does not have a limit�

��� Prove that if the sequence a�� a�� � � � has a limit �� and the sequence
b�� b�� � � � has a limit �� then the sequence of sums a� � b�� a� � b�� � � � has the
limit �� ��

�� Decimal representation of real numbers

In Section � we described real numbers using a system of axioms� Now we are
going to show how real numbers can be given concretely� Here we shall not say
anything new�we shall speak about justi�cation of the well known representation
of real numbers by in�nite decimal fractions� But now we shall show how the
existence of such a representation can be deduced from axioms listed in Section ��

We shall use the usual representation in which integer part can be either pos�
itive or negative� while fractional part sometimes called the mantissa� is always
nonnegative�

Let A be an arbitrary integer of either sign� and a�� a�� � � � � an� � � � an in�nite
sequence of numbers� each of which can take one of �� values� �� �� 	� �� �� �� ��
�� ��  � All this together will be denoted by A� a�a�a� � � � and called an in�nite
decimal fraction� For the time being it is just an in�nite sequence� written in a
di
erent way� Now we are going to show how a real number can be corresponded
to it� We de�ne� for each index n� a number

�� �n � A�
a�
��

� � � �� an
��n

�

Obviously� the sequence ��� ��� � � � � �n� � � � is increasing� Let us prove that it is
bounded� Really� since all ai �  � we have

a�
��

�
a�
���

� � � �� an
��n

�
 

��

�
� �

�

��
� � � �� �

��n��

�
�
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We apply the formula about the sum of geometric progression�

� �
�

��
� � � �� �

��n��
�

�� �

��n

�� �

��

�
��

 

and as a result we obtain that

��
a�
��

�
a�
���

� � � �� an
��n

� �

so that �n � A� ��

By Theorem �� the sequence ��� ��� � � � � �n� � � � has a limit �� Real number
� will be called the number corresponded to the in�nite decimal fraction� and this
will be denoted by

�� � � A� a�a� � � �an � � �

Sometimes it is said that � is equal to the decimal fraction A� a�a� � � � an � � � � This

simply means that � is equal to the sum of the in�nite series A�
a�
��

�� � �� an
��n

�� � � �
Our next goal is to explore this correspondence between decimal fractions and

real numbers� Is it bijective� In other words� can a real number correspond to two
di
erent decimal fractions� And is each real number corresponded to some decimal
fraction�

Consider the �rst question� First of all� remark that the answer is sometimes
positive� Take� e�g�� the in�nite decimal fraction ��     � � � � where each decimal
after the comma is equal to  � Which real number does it represent� According

to general de�nition we have to consider the sequence �n �
 

��
�

 

���
� � � ��  

��n
�

This sum is easy to evaluate� according to the formula about the sum of geometric
progression formula �	� in Chapter I� it is equal to

 

��

�
� �

�

��
� � � �� �

��n��

�
�

 

��

�� �

��n

�� �

��

�
 

��

�� �

��n

�

��

� �� �

��n
�

Obviously� the limit of the sequence ��� ��� � � � � �n� � � � is equal to �� so that
� � ��     � � � � But� on the other hand� surely � � �� �� � � � � where in front of the
comma there is just �� and after it all zeros� In such a way� the same real number
� is corresponded to two distinct in�nite decimal fractions�

It is clear that one can construct a lot of examples of the same kind� In general�
such an example has the following form� Let an in�nite decimal fraction has the
form A� a� � � � ak  � � � � i�e�� suppose that starting form some place in our case from
the k � ���st one� all the decimals are equal to  � We can assume that ak ��  �
i�e�� k�th is the �rst place after which all the  �s follow� Then� literally repeating
previous reasoning� one can conclude that this fraction is equal to the same number
as the fraction A� a� � � � ak��ak������ � � � � in which all the decimals after the k�th
one are equal to �� A fraction having all the decimals  � starting from some place�
is said to have  as a period� We have seen that for such fractions one�to�one
correspondence between fractions and real numbers is violated�

It is a bit of a surprise that such violation appears only in those cases�
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THEOREM �� Two distinct in�nite decimal fractions� neither of which has �
as a period� are corresponded to distinct real numbers�

The proof can be obtained easily if we connect our construction of a real
number� de�ned by a decimal fraction� with the usual measuring of numbers with
accuracy of ����m� with de�ciency and excess� One has to divide the line into
segments of the length ����m� whose endpoints are rational numbers with denom�
inator ��m� Then each point from the line� that is� each real number� falls in one
of the segments� The endpoints of the segment give a measure of the number� with
de�ciency and excess and accuracy of ����m� However� violating of one�to�one cor�
respondence appears because of the endpoints of segments themselves� To which of
the segments� left or right� is each of these points corresponded� This is the same
problem which appears in connection with number  in the period� We are going
to show that our choice without  in periods� corresponds to the case when the
endpoints of segments are always attached to segments on the right�hand side� In
other words� the constructed numbers �m and the number � which they de�ne are
connected by the relation

�� �m � � � �m �
�

��m
�

The fact that numbers �m are rational with the denominators of the form ��m

follows from their form ����

Remember that number � was de�ned as the limit of the sequence ��� ��� � � � �
�n� � � � � All numbers �n with n � m� obviously satisfy the condition �n � �m�
Hence� such an inequality is valid for their limit �� Really� from the assumption
� � �m we could deduce that �n�� � �n��m���m��� � �m�� for all n � m�
But� by the de�nition of limit� the absolute value of the number �n � � is smaller
than an arbitrary given positive number for n large enough� This contradicts the
fact that it is not smaller than the �xed positive number �m�� see Problem 	 in
Section 	��

In this way the left�hand inequality in �� is proved� The right�hand one can
be proved similarly� if the sign � is replaced by �� Namely� for each n � m we
have

 � �n � �m �
am��

��m��
� � � �� an

��n
� �m �

�

��m

�am��

��
� � � �� an

��n�m

�
and applying inequality �� we conclude that �n � �m � �

��m
� Repeating the

previous reasoning we obtain that � � �m � �

��m
�

But� if we want to obtain the right�hand inequality in �� with the sign �� we
have to use the fact that the fraction A� a�a� � � � does not have  as a period� The
proof is only a bit more complicated� Let us prove the right�hand inequality in ��
for �xed index m� We shall use the fact that the decimal fraction does not have  
as a period� That means that somewhere after am there has to appear a digit ak
di
erent from  � For an arbitrary n � k we can write

�n � �m � am�����
m�� � � � �� ak���

k� � ak�����
k�� � � � �� an���

n��
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As before� we see that

ak�����
k�� � � � �� an���

n
� ����k

and so
�n � �m � am�����

m�� � � � �� ak � �����k��

Since ak ��  � the digit ak � � is one of the digits �� 	� � � � �  � Put

c � am����� � � � �� ak � �����k�m�

We can repeat our reasoning once more and obtain that c � �� Number c depends
only on the choice of m and k� and not on n� Hence� replacing �n by its limit ��
we obtain� as before� � � �m � c���m � �m � ����m�

That proves inequality ���

It follows right away from the inequality �� that to each two distinct decimal
fractions� not having  as a period� there correspond two distinct real numbers�
Let� to the contrary� the same number � corresponds to fractions A� a�a� � � � and
A�� a��a

�

� � � � � Then together with inequalities �� we have relations

��m � � � ��m �
�

��m
�

where ��m � A��
a��
��

�� � �� a�m
��m

� Let ��m �� �m and ��m � �m� From these relations

it follows that ��m � �m � �

��m
� i�e�� ��m � �m � �

��m
� But this contradicts the

fact that �m and ��m are distinct rational numbers having the same denominator
��m� Hence� ��m � �m for all m� But numbers am are uniquely determined by the
numbers �m� since �m � �m�� � am���

m� Thus� they coincide in both fractions�
too�

We pass now to the second question� does every real number correspond to
some in�nite decimal fraction� As well as the answer� the method of proof is already
known to us� We just want to convince ourselves that the reasoning can be based
on the axioms we formulated�

First of all� let us remark that each real number � is situated between two
consecutive integers� i�e�� there exists an integer A� such that A � � � A� �� Let�
for start� � be positive� Applying Archimedes� axiom� we conclude that there is an
integer n such that � � n� Obviously� n � �� and since there exist only a �nite
number of natural numbers not exceeding n� there also exists the last the smallest�
one with that property� Denote this number by m� Then � � m� but m � � does
not possess this property� that means m � � � � � m and A � m � � has the
desired properties� If � is negative� we put �� � ��� Then �� � � and we can apply
our procedure� there exists n such that n � �� � n � �� Axiom IV� implies that
�n� �� � � � �n� If �� �� n� we can put A � �n � �� and A � � � A � �� If
�� � �n� then we have to put A � �n� And so� for each real number � there exists
an integer A such that A � � � A � �� hence � can be represented as � � A � ��
where � � � � ��

Now observe that if some three numbers a�� a�� a� satisfy a� � a� and a� � a��
then for each � satisfying conditions a� � � � a�� one of the following conditions
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must be satis�ed� either a� � � � a� or a� � � � a�� The fact is demonstrated
in Fig� � where the interval �a�� a�� is simply the union of the intervals �a�� a�� and
�a�� a��� Formally� it is a consequence of the fact that for each � exactly one of the
relations � � a�� a� � � and a� � � holds�

Fig� �

Consider a more general case� Let the following conditions be satis�ed for n
numbers ��� � � � � �n� �� � ��� �� � ��� � � � � �n�� � �n� Then for each number
�� satisfying �� � � � �n� one of the conditions �i�� � � � �i i � 	� �� � � � � n� is
valid� In order to prove it one just has to apply the previous assertion to the case
of three numbers ��� ��� �n� Then either �� � � � �� and our statement is valid
for i � 	�� or �� � � � �n� In the latter case consider numbers ��� ��� �n� etc�
For some i we come to the desired condition �i�� � � � �i�

We can return now to our original question� We have already proved that
each real number � can be represented in the form A � �� where A is an integer

and � � � � �� Consider now numbers
k

��
� k � �� �� � � � � ��� According to the

previous result� we can conclude that
k

��
� � �

k � �

��
for some k� � � k � ���

Denoting this number by a�� we can write � �
a�
��

� ��� where � � �� �
�

��
�

Hence� � � A �
a�
��

� ��� Continuing the process� we obtain numbers a�� � � � �

an� � � � � where always � � ai �  � and the sequence ��� ��� � � � � �n� � � � � where

�n � A �
a�
��

� � � � � an
��n

� has the limit �� i�e�� the number � is corresponded to

the in�nite decimal fraction A� a�a� � � � an � � � �

Summing up� one can say that forming in�nite decimal fractions for real num�
bers does not establish a one�to�one correspondence between in�nite decimal frac�
tions and real numbers� but such a correspondence becomes one�to�one if we exclude
those decimal fractions which have � as a period�

Problems

�� Prove that a real number � corresponds to an in�nite decimal fraction
having � as a period if and only if � is a rational number a�b where a and b are
integers such that just 	 and � can be prime factors of b�

�� When �nding the in�nite decimal fraction which corresponds to a rational
number a�b� it is enough to �nd the mantissa� so we can assume that � � a � b�

Let �n �
a�
��

�
a�
���

� � � �� an
��n

� where �� a�a� � � � is the in�nite decimal fraction
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corresponding to the number a�b� Prove that
a

b
� �n �

rn
��nb

� where � � rn � b

and the numbers rn are connected by the relation ��rn�� � ban � rn� i�e�� an is
the quotient and rn the remainder when ��rn�� is divided by b� Convince yourself
that this method of successive evaluation of digits an of a decimal fraction agrees
with the usual division algorithm�

�� Prove that the in�nite decimal fraction corresponding to a rational number
is periodic� i�e�� it has the form 		 � � � �P�P� � � � � where 		 � � � � denotes a certain
�nite group of symbols� after which the group of symbols P�� called the period�
repeats� Hint� Use Problem 	 i�e�� the division algorithm� and note that the
possible number of remainders when ��rn�� is divided by b is �nite not greater
than b��

�� Prove that if the denominator b of the fraction a�b is relatively prime with
��� then the period begins immediately after the comma�

�� Under the assumptions of Problem �� prove that the number of digits in
the period is equal to the smallest number k for which ��k � � is divisible by b�

	� Under the assumptions of Problems � and �� prove that the number of digits
in the period is not greater than the number of natural numbers not exceeding b
and relatively prime with b� This number is given by formula 	�� of Chapter III�


� Prove that each periodic in�nite decimal fraction corresponds to a rational
number A� Namely� if A� a�a� � � � an stays in front of the period p�� p�� � � � � pm����

and A�
a�
��

� � � �� an
��n

� Q� p���
m�� � p���

m�� � � � � � pm�� � P � then the

rational number corresponding to the given fraction is Q�
P

��n��m � ��
�

�� Prove that the in�nite decimal fraction �� ���������� � � � � where the number
of zeros between two consecutive ��s increases by � each time� corresponds to an
irrational number�

�� Real roots of polynomials

Having made a �rmer basis for the theory of real numbers� we can now obtain
some new results about real roots of polynomials with real coe�cients� In order
to do this� we have to investigate �rst the behaviour of a polynomial fx� in the
neighbourhood of a value x � a�

THEOREM �� For each polynomial fx� and each number a there exists a
constant M � such that the inequality

��� jfx�� fa�j �M jx� aj
is valid for all x such that jx� aj � ��

Remember that jAj read as �absolute value of number A��� by the de�nition�
is equal to A if A � � and to �A if A � �� It follows that jAj is always a nonnegative
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number� From school courses it is known that

jA�Bj � jAj� jBj���

jA�Bj � jAj � jBj�	�

jABj � jAj � jBj����

Theorem � gives a quantitative estimate of how much fx� di
ers from fa�
if x slightly di
ers from a� In order to prove the theorem� put y � x � a� i�e��
x � a � y and substitute this value into the polynomial fx�� Each term akx

k of
the polynomial fx�� after the substitution� gives the expression aka� y�k� which
can be written as a sum of powers of y and then similar terms in fa� y� can be
reduced� As a result we obtain that fa� y� is a polynomial in y� which we denote
by gy� � c� � c�y � � � �� cny

n� Then fx� � fa� y� � gy�� fa� � fa� �� �
g�� � c�� x� a � y and inequality ��� which we intend to prove becomes

��� jgy�� g��j �M jyj
for all y satisfying jyj � ��

In the transformed form� the expression gy� � g�� acquires a simple form
c�y� � � ��cny

n since g�� � c��� Inequality ��� can be applied also to a sum with
an arbitrary number of summands which can be proved directly by induction� and�
in particular� to our sum c�y � � � �� cny

n� We obtain that

jgy�� g��j � jc�y � � � �� cny
nj � jc�yj� � � �� jcnynj�

Using equality ��� also applied to an arbitrary number of factors�� jckykj � jckj �
jyjk� so that

jgy�� g��j � jc�jjyj� � � �� jcnjjyjn�
Since� by the assumption� jyj � �� we have jyjk � jyj and

jgy�� g��j � jc�j� � � �� jcnj�jyj
for jyj � ��

It is enough to put M � jc�j� � � �� jcnj to obtain inequality ���� which also
means inequality ����

Now we are able to prove an important property of polynomials�

THEOREM �� Bolzano�s theorem� If a polynomial for x � a and x � b takes
values with opposite signs� then it takes the value � somewhere between a and b�

In other words� if for a polynomial fx� values fa� and fb� are numbers of
opposite signs and a � b� then there exists c� such that a � c � b and fc� � ��

Theorem � appears rather obvious if one looks at the graph of the polynomial
fx� Fig� 	�� It states that the graph cannot �jump� across the x�axis without
intersecting it� On the other hand� it is completely possible to draw such a graph
Fig� ��� So� we have to prove that such a graph cannot be the graph of a polyno�
mial� For more general functions it is connected with a rather involved property
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Fig� � Fig� �

which is called continuity� In the case of polynomials it is enough to use the easy
inequality ���� proved in Theorem ��

The proof is based on the same principle of �catching a lion in a desert�� we
have already used for proving Theorem ��

Suppose� for example� that fa� � �� fb� � �� Consider the segment �a� b�
i�e�� the set of real numbers x satisfying a � x and x � b�� Denote this segment by
I� and divide it into two segments of equal length by the point r � a�b

�
� If fr� � ��

then the theorem is proved c � r�� If fr� �� � and� for example� fr� � �� then
the polynomial fx� takes values of opposite signs for x � r and x � b� Denote
then by I� the segment �r� b�� If that fr� � �� then the segment �a� r� will be
denoted by I�� In any case we obtain a segment I� contained in I�� having two
times smaller length� and having again the property that the polynomial fx� has
values of opposite signs at its endpoints�namely� positive at the left�hand end and
negative at the right�hand one�

This process can be continued� Either we shall at some moment reach a root of
the polynomial fx� and the theorem will be proved�� or the process shall continue
unboundedly� It remains to consider the latter case� We obtain an in�nite sequence
of embedded segments I� � I� � � � � � In � � � � � In � �an� bn�� such that each of
them is of half�a�length of the previous one� and the polynomial fx� takes values
of opposite signs at the endpoints an and bn of each segment In� more precisely�
fan� � �� fbn� � �� Now we are going to use the more precise de�nition of real
numbers we gave in Section �� Segments In satisfy the prepositions of Axiom VII
axiom of embedded segments� and Lemma � of Section �� Really� segments In are
embedded one into another� by their construction� and since In is half�of�length of

segment In��� its length is equal to
b� a

	n��
� and so this length becomes unboundedly

small when n increases� Hence� according to Axiom VII and Lemma �� there exists
a unique number c� belonging to all segments In� i�e�� such that

��� an � c � bn�

In this way we have constructed the number c which we searched for� Namely� we
now prove that fc� � ��

Consider the values fan� of the polynomial fx� at the left�hand endpoints
of segments In� By the assumption� all fan� � �� Inequality ��� implies that the
sequence a�� a�� � � � approaches the number c unboundedly� really� an � c � b and
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� � c � an � bn � an� where� by the assumption� bn � an �
b� a

	n��
� Therefore the

inequality jan � cj � � will be satis�ed if
b� a

	n��
� �� and this will be valid for each

� � � if n is chosen large enough� Let us prove that it follows from this that the
values fan� approach the value fc� unboundedly� Really� in order to prove that
jfam�� fc�j � � for m large enough� we can use inequality ��� from Theorem ��
Since am approaches c unboundedly� we have jam � cj � � for m large enough�
and we can apply inequality ���� We see that jfam�� fc�j � M jam � cj and so
jfam��fc�j � � if M jam� cj � �� i�e�� if jam� cj � ��M � But we have convinced
ourselves that this inequality is valid for m large enough since ��M can again be
denoted by ����

What can be said about the number fc�� which is known to be the limit of
the sequence of positive numbers fan�� Clearly� fc� � �� Really� if fc� were
negative� than for positive fan� we would have fan� � fc� � �fc�� and hence
jfan�� fc�j � �fc�� but this would contradict the fact that jfan� � fc�j � �
if � � �fc��

We have thus proved that fc� � �� Following exactly the same arguments�
considering numbers bn satisfying fbn� � �� we can prove that fc� � �� Therefore�
for the number fc� only one possibility remains�fc� � �� The theorem is proved�

One should pay attention to a completely new way of reasoning in proving this
theorem� We have proved in fact under certain conditions� the existence of a root
of the polynomial fx�� But we have not done it using any kind of formula as�
for example� when solving a quadratic equation� but using the axiom of embedded
segments� But� at the same time� it is by no means a pure �theorem of existence��
where we know only that a certain quantity exists�and nothing more than that�
For example� we can in fact �nd the root c with de�ciency and excess and with
an arbitrary prescribed accuracy� constructing numbers an and bn such that c lies
between them inequality ���� and which get closer and closer to each other�

Bolzano�s theorem gives us the possibility to know a lot about concrete poly�
nomials� Consider� for example� the polynomial fx� � x� � �x � � and make a
table of its values for integer values of x� with small absolute values Table ��� One
can see from the table that the polynomial fx� takes values of opposite signs at
the ends of the segments �	� ��� ��� �� and �����	�� By Bolzano�s theorem it has a
root in each of these segments� Hence� the polynomial fx� has at least three roots�
But its degree is equal to � and by Theorem � of Chapter II it cannot have more
than � roots� We have proved that the polynomial fx� has exactly � roots and
they lie in segments �	� ��� ��� �� and �����	��

x �� �	 �� � � 	 �

fx� �� �� �� � �� �� ��

Table ��

There are some other polynomials for which Bolzano�s theorem gives the precise
answer� too� An important case is the polynomial xn � a whose roots are called
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�roots of a of degree n� denoted as n
p
a�� Consider �rst the case when a � �� Then

the polynomial fx� � xn�a takes for x � � negative value �a� On the other hand�
it is easy to �nd a value x � c such that fc� � � Really� by Archimedes� axiom
Axiom VI� there exists a natural number m such that m � a� Then mn � m and
mn� a � m� a � �� Using Bolzano�s theorem� we can state that there is a root of
the polynomial in the segment ���m�� If� on the other hand� a � � and n is even�
then such polynomials obviously do not have roots� xn � � as an even power of
a real number� and xn � a � �� If n is odd� then putting x � �y we obtain that
xn� a � �yn� a � �yn� a�� The polynomial yn� a for a � ��� as we have just
proved� has a root� and so the same is true for the polynomial xn � a� In school
courses these arguments are usually omitted because of the lack of a precise theory
of real numbers�� but it is proved very easily� that for n odd the polynomial xn�a
does not have more than one root as we have seen�it has exactly one� and that
for n even and a � ��not more than two roots which di
er only in the sign which
means it has exactly two roots��

But in the case of other polynomials� it can happen that Bolzano�s theorem
does not give anything� Take as an example the polynomial x� � x� 	� Using the
formula for solutions of quadratic equation we can conclude that this polynomial
has no real roots� But if we tried to give values �� 
�� 
	� � � � to the argument x�
we would obtain only positive values� and Bolzano�s theorem wouldn�t give us
anything� Therefore� we will try now to explore polynomials more thoroughly�

Theorem � estimates values of a polynomial for values of x being close to
a certain value a� We shall prove now a similar assertion about values of the
polynomial for large by absolute value� values of x�

THEOREM �� For the polynomial fx� � a� � a�x� � � �� anx
n there exists a

constant N � � such that

��� ja� � a�x� � � �� an��x
n��j � janxnj

for all values of x such that jxj � N �

The theorem states that for su�ciently large values of x� the absolute value
of the leading term exceeds the absolute value of the sum of all other terms� In
order to prove this� we use inequality ��� for an arbitrary number of summands�
and equality ���� It follows from them that ja� � a�x� � � �� an��x

n��j � ja�j�
ja�jjxj� � � �� jan��jjxjn��� and janxnj � janjjxjn� In order to prove inequality ���
it is enough to convince oneself that ja�j � ja�jjxj � � � � � jan��jjxjn�� � janjjxjn�
and this will be proved if we show that

��� jakjjxjk � �

n
janjjxjn

for each k � �� �� � � � � n� � and jxj � N for N large enough� Then� summing up all
the inequalities ��� for k � �� �� � � � � n� � we obtain the inequality we needed�

Inequality ��� can be solved in the usual way� It is equivalent to
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jxjn�k � njakj
janj � i�e��

��� jxj � n�k

s
n
jakj
janj �

Therefore� it is enough to choose for N an arbitrary number larger than all the

numbers
n�k

s
n
jakj
janj � k � �� �� � � � � n � �� and it will satisfy the assertion of Theo�

rem ��

Theorem � has a lot of useful corollaries� Note �rst that under the assump�
tions of the theorem i�e�� for jxj � N� we always have jfx�j � �� which follows
immediately from inequality �	�

jfx�j � ja� � a�x� � � �� anx
nj � janxnj � ja� � a�x� � � �� an��x

n��j�
But this means that the polynomial fx� does not have roots x with jxj � N �
In other words� roots of a polynomial if they exist� have to be contained in the
segment jxj � N � where� as we have shown inequality ���� N can be chosen as

the greatest of the numbers
n�k

s
n
jakj
janj � One calls such a number N the bound of

roots of the polynomial� So� for the polynomial x� � �x� � one can take for N an
arbitrary number greater than �

p
� � � and

p
� � �� For example� N � ��� satis�es

the conditions� This means that all roots of the polynomial are distributed between
���� and ���� We have convinced ourselves earlier that they are in fact contained
between �� and �� Table ���

Theorem � implies more that just the assertion that fx� �� � if jxj � N � for
the found value of N � To evaluate the value of a� � a�x � � � �� an��x

n�� � anx
n

means to sum up two real numbers a� � a�x � � � � � an��x
n�� and anx

n� �rst of
which is smaller by absolute value� than the other for jxj � N�� But then the
sign is determined by the sign of the second summand� We come to the following
conclusion�

COROLLARY �� For jxj � N � where N is the bound of roots de�ned in Theo�
rem 	� values of the polynomial fx� have the same sign as the leading term anx

n�

Suppose that the degree n of the polynomial is odd� Then the sign of the
leading term anx

n for x � � agrees with the sign of the coe�cient an� and for
x � � it is opposite� Corollary � shows that for x � N and x � �N the polyno�
mial itself acquires values of opposite signs namely� the signs of an and of �an��
Bolzano�s theorem implies that between these values there is at least one root of
the polynomial� We obtained the following proposition�

COROLLARY �� Each polynomial of odd degree has at least one root�

This is really an unexpected result� In fact� you know that a polynomial of
the second degree may have no roots e�g�� the polynomial x� ���� One may think
that the same could happen to polynomials of greater degrees� �� etc� But here�
according to the corollary� a polynomial of the third degree always has a root� The
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situation appears more complicated� it depends not on how large the degree of the
polynomial is� but on its parity�

Finally� consider one more property of polynomials� which can make inves�
tigations in some cases much easier� Theorem � gave us information about the
absolute value of the di
erence fx�� fa� when the di
erence x� a is small� We
shall investigate now the sign of the di
erence fx� � fa�� Here we shall exclude
the cases when the value x � a appears to be a root of the derivative f �x� of the
polynomial fx�� These special values of a could be investigated easily in the same
manner� but we will not need this at the moment�

THEOREM 	� Let a polynomial fx� be given and take a value x � a which
is not a root of its derivative f �x� 
i�e�� f �a� �� ��� If f �a� � �� then the values
fx� for x close� but to the left of a� are smaller than fa�� and for x close� but
right of a� are greater than fa�� If f �a� � �� then the situation is opposite�

f �a� � � f �a� � �

Fig� � Fig� �

This means that there exists su�ciently small � � � depending on fx� and
on a�� such that when f �a� � �� for a � � � x � a we have fx� � fa�� and for
a � x � a� �� we have fx� � fa�� If� however� f �a� � �� then for a� � � x � a
we have fx� � fa�� and for a � x � a � �� we have fx� � fa� see graphs of
fx� on Figs� � and ���

The proof is quite easy� We know by Bezout�s theorem that the polynomial
fx�� fa� is divisible by x� a� Therefore

� � fx� � fa� � x� a�gx� a��

where the coe�cients of the polynomial gx� a� depend on a� For x � a the poly�
nomial gx� a� takes the value f �a� this was just our de�nition of the derivative
of a polynomial� see formula ��� of Chapter II�� By the assumption� f �a� �� ��
and so ga� a� � f �a� �� �� Denote by � an arbitrary number� smaller than the
distance from a to the nearest root of the polynomial gx� a� here� a is �xed and
x is the unknown�� so that the polynomial gx� a� does not vanish on the segment
�a� �� a� ��� Then it preserves the same sign on this segment as it has for x � a� if
it acquired two values of opposite signs� then by Bolzano�s theorem it would vanish



		 I� R� Shafarevich

somewhere inside the segment� which would contradict the choice of the number ��
This contains in fact the assertion of Theorem �� Let� for example� f �a� � ��
Then ga� a� � f �a� � �� too� and according to what was said� gx� a� � � for
a�� � x � a��� The other factor x�a in formula � � also behaves in the known
way� x � a � � for a � � � x � a and x � a � � for a � x � a � �� Multiplying�
we obtain from formula � � that fx� � fa� � � for a � � � x � a � � and
fx�� fa� � � for a � x � a� �� This is really the assertion of the theorem� The
case f �a� � � is treated completely analogously�

The theorem we have just proved has an interesting corollary�

THEOREM 
� Rolle�s theorem� Between two adjacent roots of a polynomial�
not having multiple roots� there is always a root of its derivative�

We assume that our polynomial does not have multiple roots only to make
argument shorter� Anyway� this will be the only case that we shall need later�

f ��� � �� f ��� � � � impossible f �a� � �� f ��� � � � possible

Fig� � Fig� �

Let � and �� � � �� be two adjacent roots of the polynomial fx�� so it has
no roots lying between them� Since we have assumed that the polynomial has no
multiple roots� � and � are not multiple roots and by Theorem � of Chapter II�
f ��� �� �� f ��� �� �� Let� for example� f ��� � �� Let us prove that then f ��� � ��
Really� if f ��� � �� then by the preceding theorem we would have fx� � f�� � �
for � � � � x � � and fy� � f�� � � for � � � � y � �� Then� for arbitrary
x satisfying � � � � x � � and for arbitrary y� satisfying � � � � y � �� we
would have fx� � � and fy� � �� Then Bolzano�s theorem would imply that the
polynomial f had a root lying between x and y� i�e�� in the segment ��� ��� But this
would contradict the fact that � and �� as we assumed� were adjacent roots of the
polynomial fx�� We see that there remains the only possibility that f ��� � ��
but then by Bolzano�s theorem the polynomial f �x� has a root between � and ��
On Figs� � and � an impossible and a possible case of signs for f ��� if f ��� � ��
are demonstrated� The case when f ��� � � can be considered literally in the same
way�

At the end of this Section we shall show that the theorems we have proved
are already su�cient to solve completely the question about the number of roots
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for a polynomial of the third degree� In Section � of Chapter II we saw that each
equation of the third degree can be replaced by an equivalent equation of the form
x� � ax� b � �� We shall investigate such a form in the sequel�

First of all let us solve the question about multiple roots� We proved in section
	 of Chapter II that multiple roots of a polynomial are in fact joint roots of the
polynomial and its derivative� According to formula ��� of Section II� for the
polynomial fx� � x� � ax� b the derivative is equal to f �x� � �x� � a� If a � ��
then the derivative has no roots and this means that the polynomial fx� has no
multiple roots� If a � �� then denote by 
 the positive root of the polynomial
�x� � a i�e�� 
 �

p
�a���� Then the polynomial fx� can have as a multiple root

only one of the numbers 
 or �
� Since the polynomial fx� can be written in the
form fx� � x� � a�x� b and for x � 

� x� � �a�� and x� � a � 	a��� then the
condition that fx� has a multiple root takes the form 

 �a

�
� �b� i�e�� 
� �a

�
� b��

and since 
� � �a��� the condition becomes � �a
�

�	
� b�� i�e�� �a� � 	�b� � �� If

this condition is satis�ed� then the polynomial has a multiple root � and may be
represented in the form fx� � x � ���gx�� Here the polynomial gx� has to be
of the �rst degree which means that it has a single root �� Thus� the polynomial
fx� has two roots equal to �� and one root equal to ��

Consider now the remaining case when the polynomial fx� does not have
multiple roots� i�e�� �a� � 	�b� �� �� According to Corollary 	 of Theorem �� the
polynomial fx� has at least one root �� If it has another root �� then it must be
divisible by x � ��x � ��� i�e�� it has the form fx� � x� ��x � ��gx�� where
gx� is a polynomial of the �rst degree and therefore it has a root �� In such a way�
the polynomial fx� has three roots� �� � and �� It cannot have more than three
roots� We conclude that only two things can happen� either the polynomial fx�
has � root or the polynomial fx� has � roots� Our problem is to �nd out which of
the cases takes place for given coe�cients a and b��

Fig� �

Suppose that the polynomial fx� has three roots� �� � and �� where � � � �
�� This means that the polynomial does not have roots smaller than � and larger
than �� But according to Corollary � of Theorem � there exists a number N such
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that for x large enough more precisely� for x � N�� the values of the polynomial
have the same sign as the values of the leading term x��i�e�� they are positive� and
for x � �N they are negative� for the same reason� Hence� for x � � it is always
fx� � �� and for x � � it is always fx� � � Fig� ���

Since we have fx� � � for � � � � x � � and arbitrary � � �� according to
Theorem �� f ��� � � and so fx� � � for � � x � �� �� Since fx� has no roots
between � and �� by Bolzano�s theorem its values are of the �xed sign� so fx� � �
for � � x � �� Analogously� we obtain that fx� � � for � � x � �� According to
Theorem �� between the roots � and �� and also between the roots � and �� there
is a root of the derivative f �x� of the polynomial fx�� Since f �x� � �x� � a�
for a � � the derivative has no roots and such a case existence of three roots
of the polynomial fx�� is impossible� For a � �� fx� � x� � b� As we have
seen earlier� such a polynomial has only one root� Finally� if a � �� the derivative
f �x� � �x� � a has two roots� 
 � � and �
 � � here� 
 �

p
�a���� Obviously�

� � �
 � � � 
 � ��

Since the polynomial takes positive values on the interval �� ��� and negative
values on the interval �� ��� we have

	�� f�
� � �� f
� � �

under the preposition that the polynomial fx� has three roots��

Conversely� if conditions 	�� are satis�ed� then by Bolzano�s theorem the
polynomial fx� has a root lying between �
 and 
� Denote this root by �� Besides�
according to Corollary � of Theorem �� for x su�ciently large� the polynomial
takes positive values� and for x su�ciently small it takes negative values� Bolzano�s
theorem implies then that the polynomial has a root smaller than �
� and also a
root greater than 
� Denote these roots by � and �� respectively� Thus� conditions
	�� imply that the polynomial has � roots� �� � and �� In other words� conditions
	�� are necessary and su�cient for the polynomial fx� to have � roots� In all
other cases it has � root�

The assertions we have just proved solve our problem� We will only transform
conditions 	�� into a simpler form� Since fx� � x� � a�x � b and �
� � a � ��

� � �a��� we have f

� � 
� � a�

� � b � 

 �a

�
� b and so conditions 	��

acquire the form

�	a

�

 � b � ��

	a

�

 � b � ��

i�e��
	a

�

 � b � �	a

�

� These inequalities are equivalent to just one� b� �

�a�

��

��

Since
�a�

��

� � � �a�

	�b�
� conditions 	�� are equivalent to the inequality �a��	�b� �

�� This is in fact the �nal answer� if �a��	�b� � �� then the polynomial x��ax�b
has � roots� if �a� � 	�b� � �� it has two equal roots and one other root� and if
�a� � 	�b� � �� then it has only � root�

Clearly� all that has been said applies only to a polynomial of the third degree�
For polynomials of arbitrary degrees analogous investigations can be done� but
arguments are a bit more complicated� so we shall leave them for the Appendix�
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Problems

�� We proved at the end of Chapter I that the polynomial x� � �x� ���x� �
has no rational roots� so its roots�if they exist�are irrational numbers� Determine
the number of roots of this polynomial� their signs and also� for each of the roots�
two consecutive integers such that this root is lying between them�

�� Prove that the polynomial x� � ax � b either has no roots� or it has two
roots and �nd conditions on coe�cients a and b� such that the �rst or the latter
case takes place�

�� Prove that the number of roots of a polynomial of even degree is even and
of odd degree is odd�

�� Prove that the polynomial xn� ax� b� for n even� has � or 	 roots� and for
n odd�� or �� Determine conditions on coe�cients a and b� such that the �rst or
the latter case takes place�

�� Determine the number of roots of the polynomial xn�axn���b depending
on n� a and b��

	� Prove that each polynomial fx� takes arbitrarily large values by absolute
value�� for su�ciently large values of x by absolute value��


� Prove that as a bound of roots N the number
M

janj � � can be taken�

where M is the largest of the numbers ja�j� � � � � jan��j� Hint� Use the inequality
ja� � � � �� an��z

n��j �M� � jzj� � � �� jzjn��
�� Prove that the polynomial fx� � a� � a�x � � � � � an��x

n�� � anx
n�

where an � �� ai � � for i � �� � � � � n � �� a� � �� has exactly one positive root�

Hint� Write fx� in the form anx
n

�
� �

an��
anx

� � � �� a�
anxn

�
and �nd whether the

expressions
an�k
anxn

increase or decrease when x increases� remaining positive�

� Let a polynomial fx� have all the coe�cients at even powers of x equal
to �� and all the coe�cients at odd powers positive� Prove that it has a unique
root�

APPENDIX

Sturm�s Theorem

We shall present now a method allowing to determine for each polynomial fx�
the number of its roots lying in a given segment �a� b��

The idea of the method is based on the fact that� although for a single polyno�
mial fx� there is no simple method which could connect its properties with some
properties of polynomials with smaller degree� for a pair of polynomials fx�� gx�
such a method is well known� it consists of divison with remainder of the polynomi�
al fx� by gx�� fx� � gx�qx� � rx�� and passing from the pair of polynomials
f� g� to the pair of polynomials g� r�� Repeating this process leads us to the al�
gorithm of Euclid for �nding the greatest common divisor of polynomials f and g�
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For example� the question of the existence of common roots of polynomials f and
g can be reduced to the question of the existence of common roots of the polyno�
mials of smaller degree g and r and� as a result� to the question of the existence of
roots of the polynomial of smaller degree g� c� d�f� g�� The method can be applied
to the case of the pair of a polynomial and its derivative and then we obtain the
answer to the question of the existence of multiple roots of the polynomial� That is
how we proceeded in Chapter II� and we shall also proceed like that now� we shall
�rst consider a certain property of roots of the pair of polynomials f� g�� which
can be treated using division with remainder� Applying then this property to the
pair consisting of a polynomial and its derivative� we shall �nd the answer to our
question�

Let us start with a simple observation� related to a single polynomial F x��
Let x � � be its root and let this root have the multiplicity k� Then we can write
down by the de�nition of the multiplicity of roots� given in Section 	 of Chapter II�

�� F x� � x� ��kGx��

where G�� �� �� Thus� if a number � is smaller than the distance from � to the
nearest root of the polynomial Gx�� then Gx� takes the values of the same sign
in the segment �� � �� �� ��� Really� if for any two numbers x and y lying in this
segment the polynomial G had values Gx� and Gy� of opposite signs� then� by
Bolzano�s theorem� there would exist a root of the polynomial between x and y�
But this would contradict the way how � had been chosen�that there had been no
root of the polynomial G lying in the segment ��� �� �� ��� In particular� all the
values of the polynomial Gx� for x in the segment ����� ���� have the same sign
as G��� Formula �� implies now that if multiplicity k is even� then the values of
the polynomial F x� for x lying in the segment ��� �� �� �� have the same sign as
G��� The graph could be situated as in Fig� ��

G�� � � G�� � �
Fig� �

If� on the other hand� the multiplicity k is odd� then for G�� � � we have
F x� � � for ��� � x � � and F x� � � for � � x � ���� and for G�� � ��the
opposite� F x� � � for � � � � x � � and F x� � � for � � x � � � �� In the
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former case i�e�� for G�� � �� � is a root with increasing� and in the latter for
G�� � ���root with decreasing� Possible graphs of the polynomial F x� in both
cases are displayed in Fig� 	�

G�� � � G�� � �
Fig� �

DEFINITION� Let F x� be a polynomial having as roots neither a nor b� Char�
acteristics of the polynomial F x� on the segment �a� b� is the di
erence between
the number of its roots with increasing and the roots with decreasing� lying in that
segment� Here� roots having even multiplicity are not counted� The characteristics
is denoted by �F x��ba� For example� the polynomial represented in Fig� � has �
roots with increasing and 	 roots with decreasing� so we have �F �b

a
� ��

Fig� �

Since after each root with increasing there must follow a root with decreasing
roots with even multiplicity do not count�� the characteristics is determined by
the signs of numbers F a� and F b�� namely�

�F x��ba � � if F a� and F b� are of the same sign

�F x��ba � � if F a� � �� F b� � �

�F x��ba � �� if F a� � �� F b� � �

Table �
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Thus� the characteristics of the polynomial F x� on the given segment is de�
termined by its signs at the endpoints of the segment and so it can be evaluated
easily� although by the de�nition it is connected with its roots which are ususally
hard to �nd�

Our situation can be visually demonstrated as if a passenger is travelling�
crossing several times the border between two states� say France and Germany�
What is the di
erence between the number of crossings the border from France to
Germany and from Germany to France� Obviously� it is equal to � if the passenger
started and �nished his travel in the same state� it is equal to � if he started in
France and �nished in Germany and to �� if he started in Germany and �nished in
France� His itinerary can be demonstrated as a line similar to the graph in Fig� ��
where France is the area below the x�axis and Germany is above�

Consider now two polynomials� f and g� and assume that� �rst of all� they
have no common roots� and� secondly� that the former i�e�� f� does not vanish at
x � a� nor at x � b� The characteristics of the polynomial f with respect to the
polynomial g on the segment �a� b� is the di
erence between the number of roots of
the polynomial f contained in the segment �a� b� and being roots with increasing of
the polynomial fg and the number of its roots being roots with decreasing for fg�
The characteristics is denoted by f� g�b

a
�

The main example� which was the reason to introduce this notion is given by
the following proposition�

THEOREM �� If a polynomial fx� has no multiple roots and neither it nor
its derivative vanishes at the endpoints a and b of the segment �a� b�� then the
characteristics f� f ��ba is equal to the number of roots of the polynomial f contained
in the segment �a� b��

The theorem is an easy consequence of Corollary of Theorem �� Section �� We
simply state that all the roots of the polynomial fx� are roots with increasing of the
polynomial ff �� Really� according to Theorem � of Chapter II� the polynomials f
and f � have no common roots� If � is a root of the polynomial fx� with f ��� � ��
then according to Theorem � of Section � � is a root with increasing for fx�� and
so also for fx�f �x�� since f �x� � � in a neighbourhood of �� If� on the other
hand� f ��� � �� then � is a root with decreasing for fx�� and so again a root with
increasing for fx�f �x�� since f �x� � � in a neighbourhood of ��

The characteristics f� g�ba is in fact an expression which can be evaluated using
division with remainder� Note �rst the following simple properties�

a� f��g� � �f� g��
This is obvious since when multiplying the polynomial g by ��� the roots with

increasing and the roots with decreasing of the polynomial fg interchange�

b� If ga� �� � and gb� �� �� then f� g�ba � g� f�ba � �fg�ba�

This is also obvious since� by the assumption� the polynomials f and g have
no common roots� Hence� the roots of the polynomial fg split into the roots of the
polynomial f and those of the polynomial g� The number of roots with increasing
and similarly for roots with decreasing� of the polynomial fg is equal to the sum
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of the numbers of such roots of the polynomial f and of the polynomial g� which
gives us the equality b��

c� If polynomials g and h take the same values at the roots of a polynomial f
i�e�� if g�� � h�� whenever f�� � ��� then

f� g�ba � f� h�ba�

Really� if g�� � h��� then a root � of the polynomial fx� is at the same
time a root with increasing decreasing� for the polynomials fg and fh�

d� If a polynomial f is divisible by a polynomial g� then

f� g�b
a
� �fg�b

a
�

Really� the polynomial g has no roots� since its roots would be common roots
for the polynomials f and g� Therefore� g� f�b

a
� � and from the property b� it

follows that f� g�ba � �fg�ba�

We shall describe now the process of evaluating the characteristics f� g�b
a
�

Divide f by g with remainder�

	� f � gq � r�

According to property b�� we have f� g�ba � �g� f�ba��fg�ba� On the other hand� it
follows from relation 	� that f�� � r�� whenever g�� � �� Hence� by property
c� we obtain that f� g�ba � g� r�ba� The obtained equalities together show that

�� f� g�ba � �g� r�ba � �fg�ba�

As a matter of fact� relation �� solves our problem� since it reduces the evaluation
of the characteristics f� g�b

a
to the evaluation of the characteristics g� r�b

a
for the

polynomials g and r of smaller degree� because the expression �fg�ba is determined
by the values of the polynomials f and g at the endpoints a and b of the segment
�a� b� see Table ���

Our process of passing from the pair f� g� to a pair of polynomials with smaller
degree is the same as in the process of determining the greatest common divisor
of the polynomials f and g� In such a case the characteristics is determined by
property d��

We intend to improve our result in two directions� Firstly� we shall present
in a uni�ed form the �nal answer which can be obtained after passing from the
pair f� g� to g� r� and then executing all the divisions in the consecutive steps
of the Euclid�s algorithm� Secondly� our inductive reasoning needs that conditions
imposed on the polynomials f and g fa� �� �� fb� �� �� are then imposed to
the polynomials g� r etc� We shall show how one can get rid of these additional
restrictions�

First of all� we shall transform a bit the answer we have obtained formula ����
We start with changing the notation� The polynomial f will be denoted by f�� g by
f� and �r by f�� Taking into account condition a� of the characteristics� formula
�� obtains the form

�� f�� f��
b

a � f�� f��
b

a � �f�f��
b

a�
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and the formula of division with remainder formula 	�� the form

f� � f�q� � f�

we have denoted here q by q��� Now it is clear how to apply formula ��� reducing
degrees of polynomials considered� Starting from f� and f� de�ne polynomials fi
by induction�

�� fi�� � fiqi�� � fi���

where the degree of fi�� is smaller than the degree of fi assuming that fi�� and
fi are already de�ned�� Clearly� fi�� are just those plynomials which appear as re�
mainders in the Euclid�s algorithm� only with the changed signs� After several steps
we come to a polynomial fk� di
ering eventually only by sign with the gcdf�� f���

Applying formula �� to f� and f� instead to f� and f�� we obtain that
f�� f��

b
a � f�� f��

b
a � �f�f��

b
a� Substituting this value for f�� f��

b
a into formula

��� we get

f�� f��
b

a � f�� f��
b

a � �f�f��
b

a � �f�f��
b

a�

Repeating this process k times and noting that �fkfk���
b
a � � as a result we obtain�

�� f�� f��
b

a
� �f�f��

b

a
� �f�f��

b

a
� � � �� �fk��fk�

b

a
�

However� in order that we have the right to apply formula ��� we have to assume
that fia� �� �� fib� �� � for all i � �� 	� � � � � k�

Consider carefully the expression �fg�ba which can be evaluated using Table �
for F � fg� In our case it can be rewritten as

�fg�ba �

��	
�


�� if fa�ga� � � and fb�gb� � �� or fa�ga� � � and fb�gb� � ��

�� if fa�ga� � � and fb�gb� � ��

��� if fa�ga� � � and fb�gb� � ��

Table �

If two numbers A and B� distinct from �� are given� then one says that in the
pair A�B� there exists one change of sign if A and B are of opposite signs� and
that there is no change of sign if they are of the same sign� Using this terminology�
one can reformulate information of Table 	� denoting by n the number of changes
of sign in the pair fa�� fb�� and by m the number of changes of sign in the pair
fb�� gb��� Table 	 obtains the form�

�fg�ba m n

� � �

� � �

� � �

�� � �

We see that in all the cases we have �fg�ba � m� n�
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We shall apply now the last remark to formula ��� Denote by mi the number
of changes of sign in the pair fia�� fi��a��� and by ni the number of changes
of sign in the pair fib�� fi��b��� As a consequence of the remark� formula ��
obtains the form

�� f�� f��
b

a
� m� � n� �m� � n� � � � ��mk � nk�

What is the meaning of the number m� �m� � � � � �mk� One has just to write
down the numbers f�a�� f�a�� � � � � fka� and �nd out how many changes of sign
are there in this sequence�the number of these changes will be m��m�� � � ��mk�
In general� if a sequnce of numbers A�� � � � � Ak� distinct from �� is given� then by
the number of changes of sign in this sequence� we shall mean the number of places
where numbers of opposite signs stay� For example� in the sequence �� ��� 	� �� ��
�	 there are � changes of sign� We can say that m��m�� � � ��mk is the number of
changes of sign in the sequence f�a�� f�a�� � � � � fka�� and that n��n�� � � ��nk
is the number of changes of sign in the sequence f�b�� f�b�� � � � � fkb�� Formula
�� can be interpreted now in the following way�

THEOREM �� If none of the terms f�� � � � � fk of Sturms sequence of poly�
nomials f�� f� vanishes� either in a� or in b� and the polynomials f�� f� have no
common roots� then the characteristics f� g�ba is equal to the di�erence between the
numbers of changes of sign in the sequences of values of polynomials in Sturms
sequence at the points a and b�

We have now to get rid of the restrictions fia� �� �� fib� �� � for i � �� � � � � k�
which can be uncomfortable in applications� we shall assume just that f�a� �� �
and f�b� �� �� In order to do that we have to generalize a bit the notion of the
number of changes of sign� If some of the terms in the sequence A�� � � � � Ak are
equal to �� then the number of changes of sign in it is de�ned as the number of
changes of sign in the sequence which is obtained by deleting all the zeros in the
given sequence� For example� deleting zeros in the sequence �� �� 	� ��� �� �� �� the
sequence �� 	� ��� �� � is obtained� and the latter has two changes of sign� Hence�
the given sequence has two changes of sign� by de�nition�

Denote now by � the distance from a to the nearest root distinct from a� of
any of the polynomials fix�� Thus� fix� �� � for a � x � a� �� Choose any such
value a�� a � a� � a� �� A value b� is chosen analogously� Let us state a lemma�

LEMMA� The number of changes of sign in the sequence f�a�� � � � � fka� is
equal to the number of changes of sign in the sequence f�a

��� � � � � fka
��� The

same is true when a and a� are replaced by b and b��

First of all� let us show that the Lemma can really help us to extend Theorem 	
to arbitrary polynomials f�� f� with the only conditions that f�a� �� �� f�b� �� �
and that f� and f� have no common roots�

Really� by the assumption� the polynomial f� has no roots in the segments
�a� a�� and �b�� b�� Hence� all of its roots contained in the segment �a� b�� are already

contained in the segment �a�� b��� Therefore� f�� f��
b
a � f�� f��

b
�

a�
� Theorem 	 can

now be applied to the characteristics f�� f��
b
�

a�
� The number of changes of sign in
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the sequence f�a
��� � � � � fka

��� as well as in the sequence f�b
��� � � � � fkb

��� is
determined by the Lemma� Thus� we obtain the wanted result�

THEOREM �� If polynomials f� and f� have no common roots� f�a� �� � and
f�b� �� �� then the characteristics f�� f��

b
a
is equal to the di�erence between the

numbers of changes of sign in the sequence f�a�� � � � � fka� and in the sequence
f�b�� � � � � fkb�� where f�x�� � � � � fkx� is Sturms sequence corresponding to the
pair of polynomials f�� f��

We shall show now that the Lemma is valid� Consider� for example� the value
x � a� Suppose that fia� � � for some i � �� � � � � k� By the assumption� i �� �
since f�a� �� �� Also� i �� k since the polynomial fkx� can di
er from gcdf�� f��
only by sign and so it is a number distinct from �� Note that then fi��a� �� �
and fi��a� �� �� Really� if we had� for example� fia� � �� fi��a� � �� then it
would follow from formula �� that fi��a� � �� In exactly the same way� this
would imply that fi��a� � � etc�� and �nally f�a� � �� which would contradict
the original assumption� But we can say even more�not only that the numbers
fi��a� and fi��a� are distinct from �� but they have opposite signs�it follows
immediately by substituting x � a into equality �� and taking into account the
assumption that fia� � ��

Compare now the sequences f�a�� � � � � fka� and f�a
��� � � � � fka

��� Let
fia� � �� Then� as we have seen� fi��a� �� � and fi��a� �� �� and fi��a�
and fi��a� have opposite signs� But then fi��a

�� �� � and fi��a
�� �� �� and

fi��a
�� has the same sign as fi��a�� while fi��a

�� has the same sign as fi��a��
This follows from the fact that the polynomials fi�� and fi�� have no roots in the
segment �a� a��� and so by Bolzano�s theorem� they can have no values of opposite
signs� Write down the respective parts of our sequences� Suppose that fi��a� � ��
Then we obtain the following table�

fi��x� fix� fi��x�

x � a � � �
x � a� � � �

The characteristics f�� f��
b
�

a�
depends on the number of changes of sign in the lowest

row� But we see that it coincides with the number of changes of sign in the row
above it�whatever the unkown sign� denoted by �� is� there will be exactly one
change of sign in each of the rows� The case when fi��a� � � can be treated
exactly in the same way� The Lemma is proved�

Combining Theorem � with Theorem � we obtain the basic result�

THEOREM �� Sturm�s Theorem� If a polynomial fx� has no multiple roots
and does not vanish for x � a and x � b� then the number of its roots in the segment
�a� b� is equal to the di�erence between the number of changes of sign of the values
of polynomials in the Sturms sequence� formed for the polynomials fx� and f �x�
at x � a and x � b�
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One has only to note that the lack of multiple roots of the polynomial fx� is
equivalent to the lack of common roots of the polynomials fx� and f �x��this is
just the assertion of Theorem � of Chapter II� Therefore we can apply Theorem �
to the polynomial fx� and then Theorem � to the pair of polynomials fx� and
f �x��

Sturm�s theorem gives a possibility to answer the basic questions about dis�
tribution of roots of a polynomial� First of all� using the theorem� the number of
roots can be determined� In order to do that� it is enough to remember Theorem �
of Section �� which indicates a number N such that all the roots of the polynomial
lie between �N and N � After that it is su�cient to apply Sturm�s theorem to the
segment ��N�N �� However� it is remarkable that in order to determine the number
of roots it is neither necessary to evaluate the number N using Theorem ��� nor
to evaluate the values of polynomials in Sturm�s sequence for x � �N and x � N �
Really� for applying Sturm�s theorem it is not necessary to know the values fi
N�
themselves� but only their signs� That is why it is su�cient to choose a number N
large enough� such that the segment ��N�N � contains not only all the roots of the
polynomial f�x�� but also all the roots of all the polynomials fix� of the Sturm�s
sequence i�e�� we can choose a respective number Ni for each polynomial fix� and
take for N the largest of them�� According to Corollary � of Theorem �� Section ��
the sign of the value fiN�� resp� fi�N�� coincides with the sign of the leading
term of the polynomial fix� for x � N � resp� x � �N � They are determined by
the sign of the leading coe�cient of the polynomial fix� and by the parity of its
degree� Therefore� there is no need to evaluate N and the values fiN� and fi�N��

When the number of roots is determined� it is possible to indicate segments�
each of which contains exactly one root� In order to do that it is already necessary
to evaluate the number N � indicated in Theorem � of Section �� After that the
segment ��N�N � is divided into two equal parts and using Sturm�s theorem the
number of roots in each part is found� Then the same is done with the segments
��N� �� and ��� N � and the process is continued till each of the segments contains
only one root�

If it is known that a segment �a� b� contains exactly one root of the polynomial
fx� and the polynomial has no multiple roots� then the values fa� and fb� must
be of opposite signs� Really� if the root is equal to �� then� according to Theorem
� of Section �� for � small enough� the values f�� �� and f�� �� have the same
sign� But f���� and fa� have to be of the same sign�otherwise the polynomial
would have one more root in the segment ����� ��� The same is true for the values
f� � �� and fb�� Thus� fa� has the same sign as f� � ��� fb� the same as
f����� and f���� and f���� have opposite signs� Hence� fa� and fb� have
opposite signs� Knowing that� it is possible to evaluate the root � with arbitrary
level of accuracy� It is su�cient to divide the segment �a� b� into two parts by a
point c and evaluate fc�� Either fa� and fc�� or fc� and fb� have opposite
signs� In the former case � is contained in the segment �a� c�� and in the latter�in
the segment �c� b�� After that we continue the process with the segment containing �
until we include � in a segment of arbitrary small length� This means that we have
evaluated it with arbitrary level of accuracy�
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Consider� for example� the polynomial fx� � x� � �x � �� Applying the
criterion from Section �� we have to evaluate the expression �a��	�b� � � �	��	��
Since it is positive� the polynomial has one root� Applying Theorem � of Section ��
we �nd the value N � �� Therefore� the root is contained between �� and ��
where f��� � �� f�� � �� Since f�� � �� the root is contained between �
and �� Since f�� � � and f	� � ��� the root is contained between � and �� In
order to �nd its �rst decimal� we have to determine in which of the �� segments
between � and �!��� �!�� and 	!��� � � � �  !�� and �� it lies� Put �rst x � ��	�
then fx� � ���� Since f�� and f��	� are of opposite signs� the root is contained
between � and �!	� Put now x � ����� Since f �

��
� � �	

����
� �

��
�� � �	

����
� �

��
� ��

the root is contained between �!�� and �!��� Finally� f �

��
� � 
�

����
� ��

��
� � � ��

Hence� the root lies between �!�� and �!�� and it has the form � � ��� � � � �

Since Sturm�s theorem has an elegant formulation and a lot of applications�
it became widely known immediately after it had been proved� Jacques Sturm� a
French mathematician who had proved it� when teaching about the theorem in his
lectures� used to say� �Now I will prove a theorem� the name of which I have the
honor to bare��

Problems

�� Construct Sturm�s sequence for the polynomials fx� and f �x� if fx� �
x�� ax� b or fx� � x�� ax� b� Using Sturm�s theorem deduce again the results
about the numbers of roots of these polynomials� obtained already at the end of
Section �� Hint� In the case of fx� � x� � ax � b consider separately di
erent
cases of possible signs for a and D � �a� � 	�b��

�� Determine� using Sturm�s theorem� the number of roots of the polynomial
xn � ax� b� depending on n more precisely� on its parity�� a and b�

�� Find the number of roots of the polynomial x� � �ax� � �a�x � 	b� Hint�
The answer depends on the sign of the expression a� � b��

�� Let a be a root of the derivative f �x� of a polynomial fx�� Put f�x� �
fx�� f�x� � f �x��x�a�� Let fx� has no multiple roots� and f�x�� � � � � fkx� is
Sturm�s sequence for the polynomials f�x� and f�x�� Express the number of roots
of the polynomial fx� in terms of the number of changes of sign in the sequences
fiN�� fia� and fi�N�� i � �� � � � � k where N is a su�ciently large number�

�� Let two polynomials f� and f� be given� with degrees n and n� �� respec�
tively� and suppose that in their Sturm�s sequence the degree of the polynomial
fix� is n� i� � and its leading coe�cient is positive� Prove that the polynomial
f�x� has n roots� Moreover� each of the polynomials fix� has n� i�� roots� and
between each two adjacent roots of the polynomial fix� there lies a root of the
polynomial fi��x��

	� Let a polynomial fx� of degree n has n roots� Prove that in the Sturm�s
sequence for the polynomials f and f �� each polynomial has the degree which
is smaller exactly by � than the degree of the previous one� and all the leading
coe�cients are positive� Prove that these conditions are su�cient in order that a
polynomial of degree n has n roots�
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