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Abstract. This article presents balanced incomplete block designs as an effec-
tive pedagogical tool for teaching combinatorics. Through their construction, analy-
sis, and practical application, the article proposes an interdisciplinary approach that
enables abstract content to be addressed in a contextualized and meaningful way.
Specifically, it explores algebraic and matrix structures that model situations with
structural regularity, fostering the development of logical and abstract thinking in
the classroom. Additionally, key statistical concepts, such as experimental design
and analysis, are introduced to provide an applied perspective on decision-making
and data interpretation. These tools are presented through real-world examples that
help students develop reasoning, modeling, and critical analysis skills, while also rein-
forcing the understanding of mathematics as a powerful tool for solving relevant and
structured combinatorial problems.
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1. Introduction

Combinatorics is a branch of mathematics traditionally presented as a collec-
tion of techniques for counting, ordering, or selecting elements. However, its real
power lies in its ability to model complex real-world problems using simple and el-
egant structures. Among these structures are Balanced Incomplete Block Designs
(BIBDs)—tools that, beyond their theoretical value, find applications in diverse
fields such as statistics, information theory, cybersecurity, and event organization.

A BIBD is a combinatorial structure defined on a finite set X of v elements,
arranged into b blocks, and satisfying the following conditions:

(1) Each block contains exactly k elements.

(2) Each element of X appears in exactly r blocks.

(3) Every pair of elements from X appears together in exactly λ blocks.

Such a design is called incomplete because no block contains all the elements
of X (that is, k < v), and balanced due to the symmetry conditions imposed by
the parameters r and λ [1].
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A first didactic approach to BIBDs can be made through recreational mathe-
matics. Classical problems such as magic squares, Sudoku puzzles, chess challenges,
or the well-known Kirkman’s schoolgirl problem are examples of configurations that
can be reinterpreted as resolvable designs, thereby sparking students’ interest in
their structural beauty. However, the application of such designs goes far beyond
recreational purposes. In applied game theory, for instance, they are used to mod-
el decision-making situations, conflict simulations, and planning tasks in artificial
intelligence, where combinatorial heuristics and strategies are employed to assess
the complexity of certain game scenarios.

Another relevant field of application is information theory, particularly in
the construction of error-detecting and error-correcting codes [2]. These codes
ensure the reliable transmission of data even in highly noisy environments, such
as space communications. Mathematically, such coding relies on Linear Algebra
over Galois Fields. This area also includes secret sharing schemes [3], in which
certain information can only be reconstructed if at least k out of the v participants
collaborate, thus ensuring the security of sensitive data.

In the field of security and cryptography, combinatorial designs are used to
generate message authentication codes, providing guarantees of authenticity and
integrity [4]. Resolvable or partially balanced designs are applied here to define
valid key or tag combinations that verify messages. However, perhaps the most
structured and well-known application of combinatorial designs is found in statis-
tics, through the theory of experimental design [5]. In this context, BIBDs enable
the planning of experiments aimed at minimizing the number of necessary trials
while maximizing the information obtained, all while controlling multiple variables.

The aim of this article is to show how BIBDs can be used as a pedagogical
resource for teaching combinatorics, through real, engaging, and contextualized
examples that may serve to motivate students and deepen their understanding of
the subject.

2. Background

Definition 2.1. Let v, k and λ be positive integers such that v > k ≥ 2. A
balanced incomplete block design (BIBD) or 2-design is a pair (X,B) where X =
{xi}v

i=1 is a set of v elements and B = {Bj}b
j=1 is a collection of b blocks. Each

block Bj contains exactly k elements from X, and every pair of distinct elements
from X appears together in exactly λ blocks. This design is denoted as a 2-(v, k, λ)
design, or (v, k, λ)-BIBD.

This combinatorial structure can be conveniently represented using an inci-
dence matrix, which records the presence or absence of each element within each
block. This algebraic representation is essential for analyzing and manipulating
designs computationally [6].

Definition 2.2. Let (X,B) be a 2-design where |X| = v and |B| = b. The
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boolean matrix A = (aij) of dimension v × b such that

aij =
{

1 if xi ∈ Bj

0 if xi /∈ Bj

is called the incidence matrix of (X,B).

One of the key numerical properties of a 2-design is the number of blocks
required to meet the balancing condition. This quantity is determined by the
parameters of the design, as given by the following theorem:

Theorem 2.3. The number of blocks in a (v, k, λ)-BIBD is

b =
λv(v − 1)
k(k − 1)

.

Proof. Let (X,B) be a 2-(v, k, λ) design. Consider a 2-subset T ⊆ X and a
block B ∈ B that contains T . We will count the number of such pairs (T, B) in two
different ways:

(1) First, observe that each block contains exactly
(
k
2

)
distinct 2-subsets, since

we are choosing 2 elements from the k elements in each block. As there are b
blocks, the total number of such pairs (T, B) is b

(
k
2

)
.

(2) On the other hand, the total number of 2-subsets in X is
(
v
2

)
. By definition

of a 2-(v, k, λ) design, each 2-subset T ⊆ X is contained in exactly λ blocks.
Therefore, the total number of such pairs is also λ

(
v
2

)
.

Equating both expressions for the number of pairs (T,B) and expanding the
binomial coefficients, we can easily derive the formula for b.

Another key quantity in the study of designs is the number of times each ele-
ment appears in the blocks, known as the replication number. This is also precisely
determined in terms of the design’s parameters:

Theorem 2.4. Let the pair (X,B) be a (v, k, λ)-BIBD, with |X| = v > k ≥ 2
and λ ≥ 1 . Then, every element of X is contained in exactly

r =
λ(v − 1)
k − 1

blocks.

Proof. Let (X,B) be a 2-(v, k, λ) design. Fix an element x ∈ X, and let r
denote the number of blocks in which x appears. Now, define the set

V = {(x,Bj) : y ∈ X, : y 6= x, : Bj ∈ B, : {x, y} ⊆ Bj} .

We will count the number of such pairs (x,Bj) ∈ V in two different ways:

(1) On the one hand, since there ar v − 1 possible elements y ∈ X such that
y 6= x, and each pair {x, y} appears in exactly λ blocks by the definition of a
2-design, the total number of such pairs is |V | = λ(v − 1).
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(2) On the other hand, the element x lies in exactly r blocks, and within each such
block, there are k− 1 elements other than x to form a pair {x, y}. Therefore,
we also have |V | = r(k − 1).
Since both expressions count the same quantity, it follows that r(k − 1) =

λ(v − 1). The identity holds for any choice of x ∈ X, completing the proof. [16]
A direct consequence of the previous equations is the identity

bk = rv,

which must hold for any valid 2-(v, k, λ) design. This identity indicates that not
all combinations of parameters will yield a valid design, since both the replication
number r and the total number of blocks b must be positive integers. Additionally,
if such a design exists, then it must satisfy Fisher’s inequality, which states that
b ≥ v (see the proof in [7]).

Example 2.5. [16] The pair (X,B) defined by the set of varieties
X = {1, 2, 3, 4, 5, 6} and the collection of blocks B = {Bj ⊂ X | j = 1, 2, . . . , 15}:

B1 = {1, 2, 3, 4} B6 = {3, 4, 5, 6} B11 = {1, 3, 5, 6}
B2 = {1, 4, 5, 6} B7 = {1, 2, 3, 6} B12 = {2, 3, 5, 6}
B3 = {2, 3, 4, 6} B8 = {1, 3, 4, 5} B13 = {1, 2, 5, 6}
B4 = {1, 2, 3, 5} B9 = {2, 4, 5, 6} B14 = {1, 3, 4, 6}
B5 = {1, 2, 4, 6} B10 = {1, 2, 4, 5} B15 = {2, 3, 4, 5}

is a 2-(6, 4, 6) design. Indeed, we observe that |X| = v = 6, each block contains
k = 4 elements of the set X, and every pair of distinct elements of X appears in
exactly λ = 6 blocks. We can verify, by Theorems 2.3 and 2.4, that the number
of blocks is indeed |B| = b = 15, and that each element of X appears in exactly
r = 10 blocks. Moreover, by applying Definition 2.2, we obtain that the incidence
matrix of the design is given by:

A =




1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
1 0 1 1 1 0 1 0 1 1 0 1 1 0 1
1 0 1 1 0 1 1 1 0 0 1 1 0 1 1
1 1 1 0 1 1 0 1 1 1 0 0 0 1 1
0 1 0 1 0 1 0 1 1 1 1 1 1 0 1
0 1 1 0 1 1 1 0 1 0 1 1 1 1 0




. 4

Among the different types of designs, there are particular cases that have
noteworthy applications. One such case is the Steiner Triple System (STS), which
can be viewed as a 2-design with blocks of size 3 and λ = 1.

Definition 2.6. A Steiner Triple System of order v, denoted by STS(v), is a
pair (X,B) where X is a set with v elements and B is a collection of triples (subsets
of three elements) of X, such that every pair of distinct elements of X is contained
in exactly one triple. That is, an STS(v) is simply a 2-(v, 3, 1) design.

This type of design exists only for certain values of v, as indicated by the
following result (see the proof in [1]).
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Theorem 2.7. If an STS(v) exists with v ≥ 7, then v ≡ 1 or 3 (mod 6).

Example 2.8. A classical example of a Steiner triple system is the one derived
from the Fano plane, which is the smallest finite projective plane. It can also be
represented geometrically, as shown in Figure 1. Let X = {1, 2, 3, 4, 5, 6, 7} be the
point set, and let B be the collection of blocks given by:

B = {{1, 2, 5}, {1, 3, 6}, {1, 4, 7}, {5, 6, 7}, {2, 3, 7}, {3, 4, 5}, {2, 4, 6}} .

Then, the pair (X,B) forms a 2-(7, 3, 1) design or STS(7). In this configuration,
each block contains exactly 3 elements, and every pair of distinct elements from X
occurs in exactly one block. 4

Figure 1. Steiner triple system of order 7 constructed from the fano plane –

projective plane of order 2.

In practical applications, such as experimental designs or scheduling, there
may be a need for an additional layer of structure: resolvability. A 2-design is said
to be resolvable if its blocks can be partitioned into parallel classes, each of which
forms a partition of the point set [7]. These designs are known as resolvable BIBDs,
and their construction often poses significant combinatorial challenges due to the
extra resolution constraints [8].

Definition 2.9. Let (X,B) be a 2-(v, k, λ) design:
(1) A parallel class in (X,B) is a subset of pairwise disjoint blocks from B, whose

union is the entire set X. In other words, it is a collection of blocks from B
that partition the set X.

(2) A 2-(v, k, λ) resolvable design is a 2-(v, k, λ) design whose block family B ad-
mits at least one partition into parallel classes.
Each parallel class consists of c = v

k blocks. Therefore, the condition v ≡ 0
(mod k) is necessary, but not sufficient, for the existence of a parallel class in a
2-(v, k, λ) design. We denote the parallel classes by Ci, where i = 1, 2, . . . , r = b

c .

Example 2.10. Let (X,B) be a 2-(9, 3, 1) design, where X = {1, 2, . . . , 9}
and B is the set consisting of the following blocks:

B1 = {1, 2, 3} B5 = {4, 5, 6} B9 = {7, 8, 9}
B2 = {1, 4, 7} B6 = {2, 5, 8} B10 = {3, 6, 9}
B3 = {1, 5, 9} B7 = {2, 6, 7} B11 = {3, 4, 8}
B4 = {1, 6, 8} B8 = {2, 4, 9} B12 = {3, 5, 7}
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The parallel classes of this design are given by:

C1 = {B1, B5, B9}, C2 = {B2, B6, B10}, C3 = {B3, B7, B11}, C4 = {B4, B8, B12}.
Observe that the union of the blocks in each parallel class is the entire set X. Fur-
thermore, any two blocks within a parallel class are pairwise disjoint. For instance,
in C1, we have B1 ∪ B5 ∪ B9 = X, along with B1 ∩ B5 = ∅, B1 ∩ B9 = ∅, and
B5 ∩ B9 = ∅. The same properties hold for the remaining parallel classes of the
design. Therefore, we conclude that the given structure is a 2-(9, 3, 1) resolvable
design. 4

In the study of resolvable designs, it is essential to understand the combinato-
rial constraints that their parameters must satisfy. One such constraint is given by
Bose’s inequality, which provides a lower bound on the number of blocks in terms
of the other parameters of the design (see the proof in [7]).

Theorem 2.11. [Bose’s Inequality] If a 2-(v, k, λ) resolvable design exists,
then it must satisfy b ≥ v + r − 1.

From this, it follows that the condition b ≥ v + r − 1 holds if and only if
r ≥ k + λ.

It is also worth noting that the existence of an STS(v) is closely related to the
presence of other combinatorial structures. For instance, it is tied to the concept
of resolvability. This structure, where each parallel class forms a partition of the
point set, introduces an additional layer of combinatorial complexity to the STS,
thereby giving rise to the Kirkman Triple Systems (KTS).

Definition 2.12. A Kirkman Triple System of order v is a 2-(v, 3, 1) resolv-
able design with its blocks arranged into parallel classes. It is denoted by KTS(v).

Just as with STS, a KTS does not exist for every value of v. A necessary and
sufficient condition for its existence is given in the following theorem (see the proof
in [7]).

Theorem 2.13. A Kirkman Triple System of order v ≥ 9 exists if and only
if v ≡ 3 (mod 6), with v odd.

Remark 2.14. Example 2.10 is one of the possible Kirkman triple systems
of order 9 that can be constructed. Another combination of blocks for this design
can be constructed with the successive diagonals Algorithm 3.19 that we will see
later in Section 3.3.

Another interesting class of designs is that of symmetric designs, where the
number of blocks equals the number of elements, i.e., b = v. This automatically
implies that r = k.

Definition 2.15. A 2-(v, k, λ) design in which b = v (or equivalently, r = k)
is called a 2-(v, k, λ) symmetric design. Such a design may also be denoted as a
(v, k, λ)-SD.
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Finally, symmetric designs also have a remarkable property: every pair of
distinct blocks intersects in exactly λ elements. This feature makes them highly
uniform structures, useful in code theory, finite geometry, and other fields [9]. One
important property of such designs is that any two distinct blocks intersect in a
fixed number of elements, as stated in the following theorem (see the proof in [7]).

Theorem 2.16. Let (X,B) be a 2-(v, k, λ) symmetric design. Then, for any
1 ≤ i < j ≤ v, we have |Bi ∩ Bj | = λ. That is, every pair of distinct blocks in
B = {Bj}v

j=1 intersects exactly in λ elements.

Example 2.17. Consider the 2-(4, 3, 2) symmetric design given by the pair
(X,B), where X = {1, 2, 3, 4} and

B =
{
B1 = {1, 2, 3}, B2 = {1, 2, 4}, B3 = {1, 3, 4}, B4 = {2, 3, 4}}.

It can be verified that

|B1∩B2| = |B1∩B3| = |B1∩B4| = |B2∩B3| = |B2∩B4| = |B3∩B4| = λ = 2. 4
Remark 2.18. In Section 3.4, we will see how to construct symmetric designs

using Hadamard matrices.

3. Construction of balanced incomplete block designs

3.1. Kramer-Mesner Theorem
One of the most effective algebraic approaches to construct BIBDs involves ex-

ploiting the symmetries of the design via group actions. In particular, the Kramer-
Mesner method allows us to translate the existence problem of certain combinatorial
designs into a system of linear equations, governed by the action of a permutation
group on subsets of the point set [10]. This subsection introduces the fundamen-
tal concepts underlying this method, including automorphisms, group actions on
set systems, orbit structures, and culminates with the statement and proof of the
Kramer-Mesner Theorem (The definitions corresponding to this subsection are tak-
en from [7] and [16]). This theorem not only establishes a theoretical framework
but also serves as a practical tool for the algorithmic construction of BIBDs with
prescribed symmetry groups.

Definition 3.1. Let (X,B) and (X ′,B′) be two designs such that |X| = |X ′|.
We say that (X,B) and (X ′,B′) are isomorphic if there exists a bijection α : X →
X ′ such that { {α(x) : x ∈ B} : B ∈ B }

= B′.
The bijection α is called an isomorphism. In other words, (X,B) and (X ′,B′) are
isomorphic if one can be obtained from the other by relabeling points or blocks.

Definition 3.2. Let (X,B) be a design. A bijection α : X → X such that
{ {α(x) : x ∈ B} : B ∈ B }

= B
is called an automorphism of (X,B). That is, α is an isomorphism from (X,B) to
itself, and therefore a permutation of X.
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Since an automorphism is a permutation of the set X, from now on we will
work with the permutations of the symmetric group on the set X of v elements,
which we denote by Sv.

Definition 3.3. The set of all automorphisms of a design (X,B) with |X| = v
forms a group under the composition of permutations. This group is called the
automorphism group of (X,B) and is denoted by Aut(X,B). It is a subgroup of the
symmetric group Sv, which has order |Sv| = v! and consists of all v! permutations
of the set X. A subgroup of Sv is called a permutation group.

We will often use the cycle decomposition to describe elements of Sv. An
`-cycle (a1, a2, . . . , a`) is the element of Sv defined by:

ai 7→ ai+1, for 1 ≤ i ≤ `− 1,

a` 7→ a1.

Definition 3.4. Two cycles (a1, a2, . . . , a`) and (b1, b2, . . . , bm) are said to
be disjoint if ai 6= bj for all i and j.

Note that every element of Sv can be expressed as a product of disjoint cycles,
and this decomposition is unique up to the order of the cycles. From now on, we
will express permutations of the elements of a design using their disjoint cycle
decompositions.

Definition 3.5. Let X = {1, 2, . . . , v} be the point set of a 2-(v, k, λ) design,
and let Sv be the symmetric group consisting of the v! permutations of X. A
subgroup G ≤ Sv acts by evaluation on the set of all j-element subsets of X,
denoted by

(
X
j

)
. The orbits induced by this group action are defined as:

Oj(J) = {α(J) : α ∈ G}, for J ∈
(

X

j

)
.

To emphasize that the group action is applied to subsets of size j, we will refer
to these orbits as j-orbits. Thus, each j-orbit is a subset of

(
X
j

)
.

Definition 3.6. [Kramer-Mesner matrix] Let O1,O2, . . . ,On be the k-orbits,
and let P1,P2, . . . ,Pm be the 2-orbits of the design. The Kramer-Mesner matrix
Ak,2 = (ai,j)

j=1,... ,m
i=1,... ,n is defined as:

ai,j = |{A ∈ Oi : Yj ⊂ A}| , where Yj ∈ Pj .

The (i, j)-entry of the matrix counts the number of occurrences of Pj among
the 2-subsets of elements in Oi. This value is well-defined, that is, independent of
the choice of the representative Yj ∈ Pj . Indeed, for any Y, Y ′ ∈ Pj , there exists an
automorphism β ∈ G such that β(Y ) = Y ′. Therefore, if Y ⊂ A, then Y ′ ⊂ β(A).
Since β is a permutation, we have β(A) = β(B) if and only if A = B, implying that
for each A ∈ Oi with Y ⊂ A, there exists a unique A′ = β(A) such that Y ′ ⊂ A′.
Applying the same argument to β−1, we obtain:

|{A ∈ Oi : Y ⊂ A}| = |{A ∈ Oi : Y ′ ⊂ A}| .



50 D. Mart́ın-Cudero

This matrix encodes all the necessary information for the group G to act
as a group of automorphisms of the design. This is formalized in the following
theorem, which gives a necessary and sufficient condition for the existence of a
design admitting G as a group of automorphisms.

Theorem 3.7. [Kramer-Mesner Theorem] A 2-(v, k, λ) design (X,B) exists
with G as a group of automorphisms if and only if there exists a solution z ∈ {0, 1}n

to the matrix equation
zAk,2 = λut,

where u is the all-ones vector.

Proof. If the vector z = (z1, . . . , zn) ∈ {0, 1}n is a solution to the above system
of equations, then the 2-(v, k, λ) design whose blocks consist of the family

B =
⋃

{i:zi=1}
Oi,

has G as its automorphism group. Indeed, on the one hand, since each set Oi

is a k-orbit of the action of the group G, it follows that G is a subgroup of the
automorphism group of the design. On the other hand, given two vertices xi, xj ∈
X, the set {xi, xj} belongs to some 2-orbit Pt. One of the equations in the system
tells us that

z1a1,t + z2a2,t + · · ·+ znan,t = λ,

where ai,t = {A ∈ Oi : {xi, xj} ⊂ A}. Therefore, we conclude that {xi, xj} is
contained in exactly λ blocks of the design.

For the implication in the other direction, observe that if G is a subgroup of
the automorphism group of (X,B), then the family B must consist of the union
of some k-orbits Oi. Define zi = 1 if the elements of the orbit Oi are part of the
blocks of the design and zi = 0 otherwise. In this sense, the fact that each pair of
vertices {xi, xj} is contained in exactly λ blocks ensures that we have a solution to
the system of equations (Proof taken from [16]).

Finding a solution to the system zAk,2 = λut not only guarantees the existence
of a 2-design, but also allows us to explicitly construct such a design from the k-
orbits Oi used to form the Kramer-Mesner matrix. Of course, there may exist other
designs that also admit G as a group of automorphisms, but the Kramer-Mesner
theorem ensures that at least one such design can be constructed.

Algorithm 3.8. [Construction of 2-Designs Using the Kramer-Mesner The-
orem] To construct a 2-(v, k, λ) design from permutations composed of cycles using
the Kramer-Mesner Theorem, follow these steps [16]:
(1) Determine the permutations in the group G = 〈α〉.
(2) Compute the 2-orbits and k-orbits of X under the action induced by the group

G. These will be used to construct the Kramer-Mesner matrix Ak,2.
(3) Let m and n denote the number of 2-orbits and k-orbits, respectively. The

Kramer-Mesner matrix Ak,2 is of dimension n × m. Select a representative
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subset from each orbit and study the matrix A3,2 formed with these represen-
tatives. Note that the sum of the entries in each column of this matrix must
be constant.

(4) Solve the matrix equation zAk,2 = λut with the constraint that z ∈ {0, 1}n.
From these solutions, determine all possible values of λ and thus identify the
number of distinct 2-designs that can be constructed for a fixed value of k.

(5) For each solution vector z, associate the component zi with the k-orbit Oi,
for all i = 1, . . . , n. The resulting 2-(v, k, λ) designs are formed by the blocks
belonging to those k-orbits Oi such that zi = 1.

Remark 3.9. In Section 4.1.1., we will demonstrate the application of this
algorithm through a concrete example. Specifically, we construct a 2-(9, 3, 3) design
to address a problem related to error-detecting codes.

3.2. Cyclic Steiner triple system

While the Kramer-Mesner method provides a general and flexible framework
for constructing 2-designs with specified automorphism groups, certain families
of designs can also be constructed explicitly using algebraic structures with high
symmetry. Among these, Steiner triple systems that are invariant under cyclic
group actions, known as cyclic Steiner triple systems, are of particular interest due
to their elegant algebraic properties and constructive simplicity.

This subsection introduces the notion of difference families in finite groups,
a classical tool for generating cyclic designs, and shows how these families can be
used to construct cyclic Steiner triple systems of specific orders. We conclude with
an explicit construction based on primitive roots in finite fields, yielding infinite
families of such systems (the definitions and theorems of this subsection are taken
from [7]).

Definition 3.10. Let (G, +) be a finite group of order v with identity element
0. Let k and λ be positive integers such that 2 ≤ k ≤ v. A (v, k, λ) difference family
in (G,+) is a collection of subsets of G, denoted by F = {Fi : i = 1, 2, . . . , L},
satisfying the following properties:

(1) Each subset has size k, i.e., |Fi| = k for all 1 ≤ i ≤ L.

(2) The multiset M =
L⋃

i=1

{x− y, y − x : x, y ∈ Fi, x 6= y} contains every nonzero

element of G exactly λ times.

We denote the set of differences of each subset Fi by 4Fi, for i = 1, 2, . . . , L.

Difference families in abelian groups play a central role in the construction of
various combinatorial designs. The parameters of such families must satisfy certain
arithmetic conditions, one of which is given below (see the proof in [1]).

Lemma 3.11. Let (G, +) be an abelian group of order v with identity ele-
ment 0. Let F be a (v, k, λ) difference family in (G, +) consisting of L subsets. A
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necessary (but not sufficient) condition for the existence of such a family is
λ(v − 1) = Lk(k − 1).

Definition 3.12. Let F = {Fi : i = 1, 2, . . . , L} be a (v, k, λ) difference
family in an abelian group (G, +):
(1) The set Ti = {g + Fi : g ∈ G} is called the translate of Fi.
(2) The collection of all translates of each Fi is called the development of F .

The following theorem shows that the development of a difference family yields
a 2-design with the same parameters (see the proof in [7]).

Theorem 3.13. Let F be a (v, k, λ) difference family in an abelian group
(G, +). Then, if B is the development of F , the pair (G,B) forms a 2-(v, k, λ)
design.

Definition 3.14. Let (X,B) be a Steiner triple system of order v. We say
that it is cyclic if the cyclic group (Fv, +) is a subgroup of the automorphism group
of the pair (Fv,B). We denote such a system by CSTS(v).

The existence of a Circular Steiner Triple System (CSTS) depends on congru-
ence conditions modulo 6, as established in the following characterization (see the
proof in [11]).

Theorem 3.15. A CSTS(v) exists if and only if v ≡ 1, 3 (mod 6), with the
exception of v = 9.

We now present a construction of cyclic Steiner triple systems of order a prime
power v = pn based on a (v, 3, 1) difference family where v ≡ 1 (mod 6) (see the
proof in [12]).

Theorem 3.16. Let v = 6m + 1 be a prime power with m ≥ 1, and let α be
a primitive root of the finite field Fv. Then the blocks

{α0, α2m, α4m}, . . . , {αi, α2m+i, α4m+i}, . . . , {αm−1, α3m−1, α5m−1}
for 0 ≤ i ≤ m − 1 form a (v, 3, 1) difference family. Therefore, these blocks and
their development define a CSTS(6m + 1), that is, a 2-(6m + 1, 3, 1) design.

Recall that an element α is a primitive root modulo a natural number v if α
generates the multiplicative group F∗v. That is, for every x ∈ F∗v, there exists k ∈ N
such that αk ≡ x (mod v). The group F∗v consists of all invertible elements modulo
v, and its order is

φ(v) = v
∏

p|v

(
1− 1

p

)
.

If v is a prime power, then clearly φ(v) = |F∗v| = v− 1. Hence, F∗v is cyclic and has
order v − 1 = pn − 1 = 6m, where p is a prime with p ≡ 1 (mod 6). Let α be a
generator of this group. Then, if we define x = α2m, we observe that

x3 − 1 = (x− 1)(x2 + x + 1) ≡ 0 (mod pn),
which implies α0 + α2m + α4m ≡ 0 (mod pn) since α2m − 1 is not a zero divisor.
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The following construction provides a method to generate a CSTS of order
6m + 1 using the multiplicative structure of finite fields. The approach relies on
carefully chosen initial blocks and their development under the action of the cyclic
group F∗v.

Algorithm 3.17. Let (X,B) be a design where X = F∗v and α2m − 1 = αt.
We define the block

B0 = {α0, α2m, α4m} = {1, α2m, α4m}.
To compute the pairwise differences within B0, recall that since the order of F∗v is
6m, then α6m = 1 and α3m = −1. Thus,

α2m − 1 = αt

α4m − 1 = α4m(1− α2m) = α4m(−αt) = α3mαt+4m = αt+m

α4m − α2m = α2m(α2m − 1) = α2mαt = αt+2m

1− α2m = −αt = α3mαt = αt+3m

1− α4m = α4m(α2m − 1) = αt+4m

α2m − α4m = α2m(1− α2m) = αt+5m

These six differences from B0 form the set

4B0 = {αt, αt+m, αt+2m, αt+3m, αt+4m, αt+5m}.
Now consider the blocks Bi = αiB0, for 0 ≤ i ≤ t− 1:

Bi = αiB0 = {αi, α2m+i, α4m+i}
For a fixed i, the differences within Bi are:

α2m+i − αi = αi(α2m − 1) = αt+i

α4m+i − αi = αi(α4m − 1) = αt+m+i

α4m+i − α2m+i = α2m+i(α2m − 1) = αt+2m+i

αi − α2m+i = −αt+i = αt+3m+i

αi − α4m+i = −αt+m+i = αt+4m+i

α2m+i − α4m+i = −αt+2m+i = αt+5m+i

Thus, the differences from Bi are

4Bi = {αt+i, αt+m+i, αt+2m+i, αt+3m+i, αt+4m+i, αt+5m+i}.
Since F∗v is cyclic and generated by α, we have

t−1⋃

i=0

4Bi = {α0, α1, . . . , α6m−1} = F∗v.

Therefore, the set {Bi}t−1
i=0 forms a (v, 3, 1) difference family. Consequently, the

translates of each block Bi are given by

Ti = {g + Bi : g ∈ Fv, i = 0, 1, . . . , t− 1}.
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Let B denote the development of this (v, 3, 1) difference family, i.e., the union of
all translated blocks. Then, the pair (Fv,B) is a 2-(v, 3, 1) design with v = 6m + 1,
that is, a CSTS of order 6m + 1.

Remark 3.18. In Section 4.2.1., we construct a 2-(13, 3, 1) design using this
algorithm to address a problem arising in the context of secret sharing schemes.

3.3. Resolvable BIBDs
Constructing 2-resolvable designs, especially when dealing with a large num-

ber of blocks, can be challenging. This is due not only to the conditions required
by a 2-design, but also to the need to partition the blocks into parallel classes,
as described in Definition 2.9. To address this, we apply the method of succes-
sive diagonals [13] to construct resolvable designs with parameters 2-(q2, q, 1) and
2-(q3, q, 1), where q is a prime power. This elegant matrix-based approach pro-
vides both structural insight and algorithmic efficiency in constructing RBIBDs
with large numbers of blocks.

In the case v = q2, the parameters (v, k, λ) = (q2, q, 1) yield the following:
• Number of blocks:

b =
v(v − 1)
k(k − 1)

=
q2(q2 − 1)
q(q − 1)

= q2 + q.

• Replication number:

r =
v − 1
k − 1

=
q(q2 + q)

q2
= q + 1.

Hence, the design consists of r = q+1 parallel classes, each containing v/k = q
mutually disjoint blocks of size k = q.

Algorithm 3.19. [Method of successive diagonals] The steps to construct
the resolvable 2-(q2, q, 1) design are as follows [14]:
(1) List the elements of the set X = {1, 2, . . . , q2} in increasing order, arranged

row by row into a square matrix of size q × q. Each row is taken as a block.
This yields the first q blocks of size q, which form the first parallel class:

C1 = {B1, B2, . . . , Bq}.
(2) Compute the transpose of the matrix A1, denoted by A2 = AT

1 . The rows of
A2 yield a second set of q mutually disjoint blocks forming the parallel class

C2 = {Bq+1, Bq+2, . . . , B2q}.
(3) Construct a new square matrix A3 by taking the main diagonal of A2 as the

first row. Then, for each column of A2, cyclically shift its entries to fill the
corresponding column of A3. Again, take the rows of A3 as blocks to obtain
a new parallel class

C3 = {B2q+1, B2q+2, . . . , B3q}.



Balanced incomplete block designs for teaching combinatorics 55

(4) Repeat the previous step iteratively: generate A4 from A3, and so on, until
obtaining Aq+1. At this point, the cycle repeats, since Aq+2 = A2.

In the case v = q3, the parameters (v, k, λ) = (q3, q, 1) yield the following:

• Number of blocks:

b =
v(v − 1)
k(k − 1)

=
q3(q3 − 1)
q(q − 1)

= q2(q2 + q + 1).

• Replication number:

r =
v − 1
k − 1

=
q3 − 1
q − 1

= q2 + q + 1.

Thus, this is a 2-resolvable design with r = q2 + q + 1 parallel classes, each
consisting of v/k = q2 mutually disjoint blocks of size k = q.

Algorithm 3.20. [An adaptation of of the method of successive diagonals]
The steps to construct the 2-(q3, q, 1) resolvable design are as follows [14]:

(1) List the elements of the set X = {1, 2, . . . , q3} in increasing order and arrange
them row by row into a matrix A1 of size q2 × q. Taking the rows as blocks,
we obtain the first parallel class C1 consisting of q2 blocks of size q.

(2) The matrix A1 consists of q square submatrices A1,1, A1,2, . . . , A1,q, each of
size q × q. Apply the method of successive diagonals to each submatrix to
generate q new parallel classes C2, C3, . . . , Cq+1, each with q2 blocks. Let
A2, A3, . . . , Aq+1 denote the corresponding block matrices. In total, this step
yields q3 blocks. Each matrix Ai for i = 2, . . . , q + 1 is again composed of q
submatrices Ai,1, Ai,2, . . . , Ai,q.

(3) Construct a new matrix Aq+2 from A1 = (aij), where i = 1, . . . , q and j =
1, . . . , q2, by selecting columns with a step size of q and stacking them as
follows:

Aq+2 =




a1,1 aq+1,1 · · · aq2−q+1,1

a1,2 aq+1,2 · · · aq2−q+1,2

...
...

. . .
...

aq,q a2q,q · · · aq2,q


 .

This new matrix consists of q submatrices of size q×q. We apply the method of
successive diagonals to each submatrix excluding the transposition step (step 2
of the method), since otherwise we would reproduce blocks already generated
in A2. This yields q new matrices Aq+2, Aq+3, . . . , A2q+1, corresponding to
parallel classes Cq+2, Cq+3, . . . , C2q+1, each containing q2 blocks. Again, this
step produces a total of q3 blocks.

(4) Repeat step 3 for the matrices A2, A3, . . . , Aq+1 generated in step 2. However,
note that each of these matrices yields row permutations of Aq+2, and therefore
produce the same parallel classes as those already obtained. As a result, the
q redundant matrices must be discarded.
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Remark 3.21. In Section 4.3.1., we demonstrate how these algorithms can be
applied to solve a problem related to event organization, specifically in the context
of sports scheduling. In particular, we construct a 2-(8, 2, 1) resolvable design and
a 2-(4, 2, 1) resolvable design corresponding to the case q = 2.

3.4. Hadamard matrices
Hadamard matrices occupy a central role in combinatorial design theory due

to their deep connections with orthogonality, error-correcting codes, and symmetric
block designs. These matrices, composed solely of +1 and −1 entries, are defined
by the property that their rows (and columns) are mutually orthogonal. Geomet-
rically, each pair of rows represents two orthogonal vectors, while combinatorially,
each pair has exactly half of their entries in common and the other half differing.
This structure not only makes them fundamental in signal processing and quan-
tum computing, but also instrumental in constructing symmetric 2-designs with
particular incidence properties [15].

In this subsection, we review the key properties of Hadamard matrices and
present methods for their recursive construction, particularly through the Kroneck-
er product. We then demonstrate how these matrices can be employed to generate
symmetric Hadamard designs, including families of 2-(v, k, λ) designs, by lever-
aging their incidence matrices. Finally, we present two classical constructions of
Hadamard 2-designs, highlighting their theoretical and practical significance within
the broader landscape of combinatorial designs [7].

Definition 3.22. A matrix H = (hij) of order n × n with hij ∈ {−1, 1} is
an Hadamard matrix of order n if it satisfies HHT = nIn, where HT denotes the
transpose of H, and In is the identity matrix of order n. The matrix H is said to
be normalized if h1j = hi1 = 1 for all i, j = 1, 2, . . . , n.

Some important properties of an Hadamard matrix of order n are:
(1) The inner product of any two distinct rows (or columns) is zero.
(2) The inner product of a row (or column) with itself is n.
(3) Permuting rows and/or columns yields another Hadamard matrix.
(4) Multiplying any row and/or column by −1 results in another Hadamard ma-

trix.
(5) The transpose of an Hadamard matrix is also an Hadamard matrix.

One of the most famous open problems in combinatorial design theory is the
Hadamard conjecture, which states that an Hadamard matrix exists for every order
n divisible by 4. While this conjecture remains unproven, a well-known necessary
condition can be established (see the proof in [7]).

Theorem 3.23. If there exists an Hadamard matrix of order n > 2, then n
must be divisible by 4.

There are several known methods for constructing Hadamard matrices of order
n > 2. We will focus on the Kronecker product.
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Definition 3.24. Let A = (aij) and H = (hkl) be Hadamard matrices of
orders n and m, respectively. The Kronecker product A⊗H is an Hadamard matrix
of order t = n ·m, formed by replacing each entry aij in A with the block aijH.

Let H1 be the Hadamard matrix of order t obtained from the Kronecker
product A⊗H. Define the recurrence:

{
H0 = H,

Hk = A⊗Hk−1, for k ≥ 1.

Then, the Hadamard matrix generated at the k-th iteration has order t · 2k−1.

Definition 3.25. Let H be the normalized Hadamard matrix of order 2:

H =
(

1 1
1 −1

)
.

The Kronecker product H ⊗H yields an Hadamard matrix of order 4. Repeating
this construction k times defines the Sylvester matrix of order 2k, denoted S(k).
Formally, {

S(1) = H,

S(k) = H ⊗ S(k − 1), for k > 1.

Definition 3.26. An Hadamard 2-design is any 2-(v, k, λ) symmetric design
that has been derived from a normalized Hadamard matrix of order n.

Hadamard matrices play a crucial role in the construction of symmetric designs
with specific parameters. The following theorems establishes that the existence
of an Hadamard matrix of order 4m guarantees the existence of a corresponding
symmetric Hadamard design (the proofs of both results can be found in [7]).

Theorem 3.27. If an Hadamard matrix of order 4m, with m > 1, exists,
then a 2-(4m− 1, 2m− 1,m− 1) symmetric Hadamard design also exists.

Theorem 3.28. If an Hadamard matrix of order 4m, with m > 1, exists,
then a 2-(4m− 1, 2m,m) symmetric Hadamard design also exists.

In this regard, the following algorithms outlines a construction method that
utilizes an Hadamard matrix to generate a symmetric block design. By manip-
ulating the Hadamard matrix and using a matrix of all ones, we can derive the
incidence matrix for a symmetric design with specific parameters [15].

Algorithm 3.29. Let H be an Hadamard matrix of order 4m. We take its
normalized matrix and remove the first row and the first column of 1’s, obtaining
matrix A. Let J be a matrix of dimension (4m− 1)× (4m− 1), consisting entirely
of 1’s. We construct matrix B = 1

2 (A + J), whose entries are 0’s and 1’s, and
whose rows and columns sum to 2m − 1. Matrix B is the incidence matrix of a
2-(4m− 1, 2m− 1,m− 1) symmetric design.

Algorithm 3.30. We take the normalized matrix H and remove its first
row and column of 1’s, obtaining matrix A. We construct matrix C = 1

2 (J − A),
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which is also composed of 0’s and 1’s, and whose rows and columns now sum to 2m.
Matrix C turns out to be the incidence matrix of a 2-(4m − 1, 2m,m) symmetric
design.

Remark 3.31. In Section 4.4., we present an example of how one of these
algorithms can be used to address a problem involving fair assignments in evaluation
systems.

3.5. Design of Experiments
One of the most impactful applications of 2-designs arises in the planning and

analysis of experiments. In this context, a 2-(v, k, λ) design provides a rigorous
statistical framework to assign v treatments across b blocks in such a way that
ensures balanced comparisons and controlled variability [5]. We will denote by
N = vr = bk the total number of observations made in the experiment. This
balance is particularly valuable when the number of treatments and experimental
units is large, or when uniform precision in estimating treatment effects is desired.

The combinatorial structure of 2-designs improves the reliability and inter-
pretability of the experimental results. Once the experimental runs are conducted,
the collected data can be analyzed using analysis of variance (ANOVA), a powerful
statistical tool for testing the significance of treatment and block effects.

This subsection presents the statistical model used in analyzing 2-designs,
introduces the relevant ANOVA tables, and details the procedures for hypothesis
testing [5]. In particular, we compute the contrast statistics to assess whether treat-
ment or block effects are significantly different from one another, using Snedecor’s
F -distribution as the reference.

Given the following statistical elements:
• ys: The sum of all experimental data,
• yij : A random variable representing the i-th observation of the j-th block,
• Ti: The adjusted total for the blocks of the i-th treatment (it satisfies the

condition
∑v

i=1 Ti = 0),
• Bj : The adjusted total for the treatments of the j-th block (it satisfies the

condition
∑b

j=1 Bj = 0),
• yi: The total for the i-th treatment,
• yj : The total for the j-th block,
• nij : Takes the value of 1 if treatment i appears in block j, and 0 otherwise,

Tables 1 and 2 show the ANOVA corresponding to the effects of treatments
and blocks in a 2-(v, k, λ) design, respectively, while Tables 3 and 4 present the
statistical variables used to assess the effects of these treatments and blocks in the
experimental design.

Algorithm 3.32. [Hypothesis testing] The appropriate statistic for estimat-
ing the effects of treatments and/or blocks in the design, with a significance level α,
follows a F -distribution (Snedecor’s F distribution) with degrees of freedom v − 1
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and N − v − b + 1, that is, Fα;v−1,N−v−b+1. The hypothesis tests are carried out
as follows:

(1) The contrast statistic for the treatments is

Fexp =
MSTr

MSE
,

where:

• MSTr = SSTr

v−1 is the mean square for treatments.

• MSE = SSE
N−v−b+1 is the mean square for experimental error.

(2) The contrast statistic for the blocks is

F ∗exp =
MSB∗

MSE∗ ,

where:

• MSB∗ = SSB∗
b−1 is the mean square for blocks.

• MSE∗ = SSE∗
N−v−b+1 is the mean square for experimental error.

We compare the statistics Fexp and F ∗exp with the critical value from the
theoretical F -distribution with v − 1 and N − v − b + 1 degrees of freedom:

(1) If Fexp < Fv−1,N−v−b+1 (equality of treatment means) or F ∗exp < Fv−1,N−v−b+1

(equality of block means), we accept the null hypothesis H0. In this case, we
conclude that there are no significant differences between the effects of the
treatments and/or blocks.

(2) If the opposite holds, we reject the null hypothesis H0. This implies that at
least two treatments and/or blocks have significantly different effects.

Table 1. ANOVA for a 2-(v, k, λ) design for the effect of treatments [5]

Table 2. ANOVA for a 2-(v, k, λ) design for the effect of blocks [5]
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Table 3. Statistical variables for the effect of treatments [5]

Table 4. Statistical variables for the effect of blocks [5]

Remark 3.33. In Section 4.5.1., we present a real-world application from
agricultural experimentation, where a cotton industry aims to evaluate the impact
of different fertilizers on seed yield. Due to practical constraints, the experiment
cannot be conducted under fully randomized conditions. Instead, a 2-(7, 4, 2) sym-
metric design is used to control for block effects and ensure fair comparisons. This
case illustrates how combinatorial designs can be applied to construct statistically
sound experimental plans under resource limitations.

4. Applications for teaching

4.1. Error detection codes
Error detection codes are schemes used to identify alterations in data during

transmission or storage. These codes enable the detection of errors without neces-
sarily correcting them, thereby ensuring the integrity of the information before it
is used [3].

In the classroom, this context provides an excellent opportunity to introduce
advanced concepts in combinatorics, group theory, design theory, and information
theory through a concrete and motivating application. In addition, error detec-
tion codes offer an outstanding platform for developing mathematical modeling
skills, allowing students to connect real-world problems with formal mathematical
solutions.

Therefore, their study not only strengthens competencies in discrete mathe-
matics and information theory but also provides students with a deep understand-
ing of the importance of reliability and accuracy in digital systems—skills that are
essential in the modern world, where secure data transmission is a central concern.
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4.1.1. Practical example
In space missions, probes that transmit information back to Earth often face

challenges due to transmission interference or the extreme conditions of space.
These factors can lead to data loss or the incorrect reception of information. To
prevent the loss or corruption of data, probes incorporate error correction codes
during transmission.

Suppose we want to design an information encoding system for data transmis-
sion from a space probe. Specifically, the goal is to transmit 9 different messages,
each represented by a sequence of bits. The objective is to organize these messages
into blocks in such a way that every pair of messages appears in exactly 3 blocks.

This ensures that any loss or alteration of bits can be either corrected or detect-
ed upon reception of the data on Earth. In this way, the correct message can always
be recovered by analyzing the repetitions of the messages in the remaining blocks.
This can be organized by constructing a 2-(9, 3, 3) design using the Kramer-Mesner
Theorem, based on a permutation group derived from the symmetric group S9.

This design was already constructed in [16] by considering the permutation
α = (012345)(678). In this context, let Z9 = {0, 1, 2, . . . , 8}, we study the group
generated by α, denoted by

G = 〈α〉 = {αl : 0 ≤ l ≤ 5},
which gives:

α0 = (0)(1)(2)(3)(4)(5)(6)(7)(8)

α1 = (012345)(678)

α2 = (024)(135)(678),

α3 = (03)(14)(25)(6)(7)(8)

α4 = (042)(153)(678)

α5 = (054321)(678)

The 2-orbits of Z9 under α are

P1 = {01, 12, 23, 34, 45, 50} P2 = {02, 13, 24, 35, 40, 51}
P3 = {03, 14, 25}, P4 = {67, 78, 86}
P5 = {06, 17, 28, 36, 47, 58} P6 = {07, 18, 26, 37, 48, 56}
P7 = {08, 16, 27, 38, 46, 57}

and the 3-orbits:

O1 = {012, 123, 234, 345, 450, 501} O2 = {013, 124, 235, 340, 451, 502}
O3 = {014, 125, 230, 341, 452, 503} O4 = {024, 135}
O5 = {678} O6 = {016, 127, 238, 346, 457, 508}
O7 = {017, 128, 236, 347, 458, 506} O8 = {018, 126, 237, 348, 456, 507}
O9 = {026, 137, 248, 356, 407, 518} O10 = {027, 138, 246, 357, 408, 516}
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O11 = {028, 136, 247, 358, 406, 517} O12 = {036, 147, 258}
O13 = {037, 148, 256}, O14 = {038, 146, 257}
O15 = {067, 178, 286, 367, 478, 586} O16 = {078, 186, 267, 378, 486, 567}
O17 = {086, 167, 278, 386, 467, 578}

Consequently, the Kramer-Mesner matrix A3,2 has dimension 17 × 7. To
compute the entry (i, j) of this matrix, we fix a representative of the j-th 2-orbit
and count how many elements of the i-th 3-orbit contain it. For instance, to
compute entry (1, 1), we fix the pair 01 and observe that it appears in the blocks
{012, 501} of O1. Therefore, A3,2(1, 1) = 2. All other entries can be computed
similarly, resulting in the matrix shown in Table 5.

Table 5. Kramer-Mesner matrix

Each solution to the matrix equation zA3,2 = λut implies the existence of
a 2-design on the set Z9. Below, we present the possible solutions to this matrix
equation, generated using the following Python code (obtained from [16]):

import numpy as np

# Define the matrix from the system
matrix = np.matrix([

[2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 2, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2],
[0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1],
[0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1],
[0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1]

], dtype=’int16’)
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# Vector to enforce conditions z4 = z5 = 1
vecCond = np.zeros((7,1), dtype="int16")
vecCond[1,0] = 1
vecCond[3,0] = 1

counter = 0
max = (2**15)-1
while counter <= max:

# Loop through all possible binary vectors of length 15
vecSol = np.array([list(np.binary repr(counter, 15))], dtype="int16").T

# Multiply and define lambda vector
vecRes = matrix * vecSol + vecCond
lam = np.full((7,1), vecRes[0])

# Check if solution is valid
if np.all(np.array(lam == vecRes)) == True:

print("Solution: \n")
print("Vector:")
print(np.transpose(vecSol))
print("Lambda value: " + str(lam[0]))
print("\n###############################################\n")
counter += 1

For λ = 3, a solution to the matrix equation zA3,2 = 3ut is given by the
vector

z = (0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0).
Note that the conditions z4 = 1 and z5 = 1 must be imposed on the resulting
system of equations, since it is clear that the blocks from the 3-orbits O4 and
O5 will be part of the design. This is due to the fact that there are no other 3-
orbits of length 1 or 2 apart from the ones indicated. This solution gives rise to
a 2-(9, 3, 3) design whose blocks correspond to the triples in the 3-orbits Oi, for
i = 3, 4, 5, 7, 8, 11, 14, 15.

4.2. Secret Sharing Schemes
In environments where security and shared responsibility are paramount, it is

essential to implement mechanisms that prevent reliance on a single individual. In
this context, secret sharing schemes provide an effective solution for distributing
authority among multiple participants, ensuring both confidentiality and resilience
against faults or malicious behavior.

Such schemes extend beyond financial applications and are well-suited for
distributed trust systems, critical infrastructure access, and collaborative control
protocols, where it is desirable, or necessary, that a specific subset of users jointly
authorize sensitive or irreversible actions. Furthermore, their combinatorial foun-
dation allows the design of systems that are not only secure but also auditable and
mathematically verifiable.

Beyond its theoretical interest, this property provides a valuable opportuni-
ty to introduce key concepts from combinatorics, design theory, and information
security through a practical and relatable real-world scenario. In an educational
context, employing such a scheme allows students to connect abstract mathematical
ideas with real-life applications, such as secure authorization in banking systems.
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The structure of the STS supports the exploration of concepts like pairwise
coverage, fairness in participation, and distributed access control. Moreover, it
promotes critical thinking and mathematical modeling, making it an effective ped-
agogical tool for teaching advanced curriculum topics from an applied and inter-
disciplinary perspective.

4.2.1. Practical example
Large financial transactions carried out within a given banking institution

must be confirmed simultaneously by several individuals due to the high level of
responsibility involved. The execution of the operation does not depend on a single
person; rather, multiple professionals must agree to carry out the transaction [4].

Suppose a bank employs 13 individuals responsible for authorizing transac-
tions above a certain threshold (e.g., several million euros). To complete any such
transaction, it is required that 3 of these 13 individuals confirm it simultaneously.
Each person holds a segment of a code; therefore, the code segments of 3 individuals
are needed to complete the transaction.

Since there are
(
13
3

)
= 286 possible combinations, it is reasonable to restrict

the number of confirmations assigned to each individual. Once all combinations
have been used, new code segments are distributed for future transactions.

This problem can be addressed using a 2-(13, 3, 1) design. We organize the
v = 13 individuals into b = 26 blocks of size k = 3. In this way, each person is
involved in r = 6 confirmation groups. It is sufficient for any 2 individuals to agree
and persuade a third to authorize the operation, since there will be exactly λ = 1
block containing those two individuals.

We construct a cyclic Steiner triple system of order 13 from a (13, 3, 1) differ-
ence family. Since v = 6m + 1 = 13, it follows that m = 2.

We begin by identifying the primitive roots modulo 13. We factor the order
of the multiplicative group F∗13, which is |F∗13| = 12 = 22 · 3. To determine whether
an element α ∈ F13 is a primitive root modulo 13, it suffices to check that α does
not satisfy any of the following congruences:

α2 ≡ 1 (mod 13), α3 ≡ 1 (mod 13), α4 ≡ 1 (mod 13), α6 ≡ 1 (mod 13).

Let us test α = 2:

22 ≡ 4 (mod 13), 24 ≡ 3 (mod 13), 26 ≡ 12 (mod 13).

Since none of these are congruent to 1, we conclude that α = 2 is a primitive root
modulo 13. The same holds for α = 6, α = 7, and α = 11, as they also satisfy none
of the above congruences, and are therefore primitive roots.

Let m = 2 and choose α = 2. The set F = {Bi}t−1
i=0 = {B0, B1}, where:

B0 = {1, α2m, α4m} = {1, 24, 28} = {1, 3, 9}
B1 = {α, α2m+1, α4m+1} = {2, 25, 29} = {2, 6, 5}

is a (13, 3, 1) difference family.
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The translates of B0 and B1 form the following sets:

T1 = {1, 3, 9} T14 = {2, 6, 5}
T2 = {2, 4, 10} T15 = {3, 7, 6}
T3 = {3, 5, 11} T16 = {4, 8, 7}
T4 = {4, 6, 12} T17 = {5, 9, 8}
T5 = {5, 7, 0} T18 = {6, 10, 9}
T6 = {6, 8, 1} T19 = {7, 11, 10}
T7 = {7, 9, 2} T20 = {8, 12, 11}
T8 = {8, 10, 3} T21 = {9, 0, 12}
T9 = {9, 11, 4} T22 = {10, 1, 0}

T10 = {10, 12, 5} T23 = {11, 2, 1}
T11 = {11, 0, 6} T24 = {12, 3, 2}
T12 = {12, 1, 7} T25 = {0, 4, 3}
T13 = {0, 2, 8} T26 = {1, 5, 4}

The first column lists the translates of B0, while the second contains the
translates of B1. The development of F , denoted by B, is the union of all these
blocks. Hence, the pair (F13,B) forms a 2-(13, 3, 1) design, or equivalently, an
STS(13).

Moreover, observe that adding 1 modulo 13 to each element in any block
results in another block of the design. Thus, the design is invariant under cyclic
shifts, and we conclude that it is a CSTS(13). Naturally, if we choose a different
primitive root of 13, such as α = 6, α = 7, or α = 11, we will obtain other, distinct
designs.

By labeling each individual with a number from 0 to 12, we observe, for
instance, that individuals 8 and 10 occur together in exactly one triple (the T8

one). Consequently, they only need to coordinate with individual 3 to complete the
code, thus enabling them to execute the transaction.

This approach ensures a uniform and controlled coverage of collaborative pos-
sibilities, resulting in a robust and equitable system for joint decision-making.

4.3. Combinatorial approaches to activity scheduling

Efficient scheduling of activities in contexts involving multiple participants and
logistical constraints is a common problem across many domains, from tournament
organization to shift or task allocation. In such scenarios, one of the main chal-
lenges lies in equitably distributing interactions among individuals, while adhering
to conditions such as the maximum number of encounters per day, full coverage of
possible pairings, or the total duration of the event [17].

Combinatorial design theory, and in particular resolvable designs, provides a
powerful mathematical framework for addressing these challenges. These designs
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allow for the structuring of sets of elements into blocks that satisfy specific coverage
and partition properties, which is especially useful when a system needs to be
decomposed into phases or days with mutually exclusive tasks.

From a pedagogical perspective, such applications enable students to con-
nect abstract concepts with practical problems of organization and management.
Moreover, they foster the development of skills such as logical reasoning, algo-
rithmic thinking, and decision-making based on mathematical structures, thereby
contributing to a deeper and more contextualized understanding of mathematics.

4.3.1. Practical example
Every year a chess championship is organized at regional level, in which only

8 players participate (one representative from each province). The championship is
divided into 3 rounds: the elimination round, the semifinals, and the final. The 4
players who win the most games in the first elimination round will advance to the
semifinals.

In case of a tie, the player who has made the fewest checks will advance, and
if there is still a tie, the player who has taken the least amount of time to defeat
their opponent will proceed. The same criteria will be applied to determine the 2
players who will compete in the final. Let us assume that each participant can play
at most 2 times in a single day.

In order to organize a possible timetable for this championship, it must be
taken into account that each of the 8 players must play against each of their oppo-
nents once in the first elimination round, we need to construct a 2-(8, 2, 1) resolvable
design. To solve it, we will use the Algorithm 3.20 taking q = 2.

We first find the matrices A1 (step 1), A2, and A3 (step 2):

A1 =




1 2
3 4
5 6
7 8


 , A2 =




1 3
2 4
5 7
6 8


 , A3 =




1 4
2 3
5 8
6 7


 .

Next, we perform step 3 with the matrix A1. We obtain the matrices A4 and A5:

A4 =




1 5
2 6
3 7
4 8


 , A5 =




1 6
2 5
3 8
4 7


 .

We then repeat step 3, but now with the matrices A2 and A3 from step 2 (step 4).
In this way, we obtain the matrices A6, A7, A8, and A9:

A6 =




1 5
3 7
2 6
4 8


 , A7 =




1 7
3 5
2 8
4 6


 , A8 =




1 5
4 8
2 6
3 7


 , A9 =




1 8
4 5
2 7
3 6


 .

Note that the matrices A6 and A8 are obtained by permuting the rows of matrix A4.
Therefore, we discard them, as otherwise we would get repeated parallel classes.
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We are left with the matrices A1, A2, A3, A4, A5, A7, and A9. Considering the
rows of each of these matrices as blocks, we obtain r = q2 + q + 1 = 7 parallel
classes, each consisting of q2 = 4 mutually disjoint blocks, each containing q = 2
elements.

C1 =
{{1, 2}, {3, 4}, {5, 6}, {7, 8}}

C2 =
{{1, 3}, {2, 4}, {5, 7}, {6, 8}}

C3 =
{{1, 4}, {2, 3}, {5, 8}, {6, 7}}

C4 =
{{1, 5}, {2, 6}, {3, 7}, {4, 8}}

C5 =
{{1, 6}, {2, 5}, {3, 8}, {4, 7}}

C6 =
{{1, 7}, {3, 5}, {2, 8}, {4, 6}}

C7 =
{{1, 8}, {4, 5}, {2, 7}, {3, 6}}

Thus, the pair (X,B) consisting of X = {1, 2, . . . , 8} and B = {C1, C2, . . . , C7} is
a 2-(8, 2, 1) resolvable design, where |X| = q3 = 8 and |B| = q2(q2 + q + 1) = 28.
Note also that the union of the blocks from each parallel class is the set X.

Since each participant can play at most 2 times in a single day, the first
elimination round will last 4 days; the first three days will feature 2 games each,
and on the fourth day only 1 game will be played (in total, each player will play 7
games). The 4 best players from the first round will advance to the semifinals.

Let us assume that the players advancing to the semifinals are 3, 5, 6, and 8.
We now need to construct a 2-(4, 2, 1) resolvable design to organize the semifinals.
This will be done using the method of successive diagonals (3.19):

A1 =
(

3 5
6 8

)
, A2 =

(
3 6
5 8

)
, A3 =

(
3 8
5 6

)
.

This results in the following blocks distributed across 3 parallel classes:

C1 =
{{3, 5}, {6, 8}}, C2 =

{{3, 6}, {5, 8}}, C3 =
{{3, 8}, {5, 6}}.

As before, since each player can only play a maximum of 2 games per day, the
semifinal will last 2 days; on the first day, 2 games will be played, and on the
second day, only 1 game will be played (in total, each player will play 3 games).
Finally, the 2 best players from the semifinals will advance to the final. Let us
assume that these players are 3 and 8. We conclude that the championship will
last 7 days: 4 (elimination round) + 2 (semifinal) + 1 (final). A possible schedule
for the championship is as follows:

• Elimination Round Day 1: {1, 2}, {3, 4}, {5, 6}, {7, 8}, {1, 3}, {2, 4}, {5, 7}, {6, 8}.
• Elimination Round Day 2: {1, 4}, {2, 3}, {5, 8}, {6, 7}, {1, 5}, {2, 6}, {3, 7}, {4, 8}.
• Elimination Round Day 3: {1, 6}, {2, 5}, {3, 8}, {4, 7}, {1, 7}, {3, 5}, {2, 8}, {4, 6}.
• Elimination Round Day 4: {1, 8}, {4, 5}, {2, 7}, {3, 6}.
• Semifinal Day 5: {3, 5}, {6, 8}, {3, 6}, {5, 8}.
• Semifinal Day 6: {3, 8}, {5, 6}.
• Final Day 7: {3, 8}.
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4.4. Fair allocations in evaluation systems

Mathematics, beyond its theoretical development, finds powerful applications
in the efficient and equitable organization of complex human activities. In contexts
such as competitions, or evaluations, combinatorial designs can be used to ensure
that all parties involved are treated fairly and that practical constraints are re-
spected. Through the study of these methods, students can appreciate the utility
of mathematics as a language that allows for modeling real-life situations in a log-
ical, fair, and efficient manner, particularly those involving resource distribution,
task allocation, and fair decision-making [18].

4.4.1. Practical example

At a national wine fair, the country’s 7 best wineries present their wines for
competition. A panel of 7 professional sommeliers has been selected to judge which
winery will be awarded the prize for the best wine in the country and thus qualify for
the international wine fair. As a general rule in wine competitions, a professional
taster may not sample more than 4 different wines, and must wait a reasonable
period between tasting.

Therefore, the panel must be organized so that each sommelier evaluates ex-
actly 4 different wines, with the additional condition that exactly 2 of the wines
are to be evaluated by 2 different sommeliers each. To ensure fairness, the tasting
will be conducted blindly, that is, each sommelier will not know the identity of the
winery associated with any wine they taste.

One possible solution to this problem is a 2-(7, 4, 2) symmetric design. We
label each wine with a number from 1 to 7, obtaining the set X = {1, 2, . . . , 7}
consisting of the v = 7 wines to be evaluated. Similarly, the b = 7 sommeliers will
be identified with labels from the letters A to G. Each of them is assigned a block
containing the k = r = 4 different wines they are to evaluate. With this setup,
it follows from Theorem 2.4 that λ = 2, meaning that any pair of wines will be
jointly evaluated by exactly 2 sommeliers. To construct such a design, we can use
an Hadamard matrix of order 8 as a supporting structure.

Let H be the normalized Hadamard matrix of order 2, or equivalently, the
Sylvester matrix S(1),

H = S(1) =
(

1 1
1 −1

)
.

By Definition 3.25, we obtain:

S(2) = H ⊗ S(1) =
(

S(1) S(1)
S(1) −S(1)

)
=




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1
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S(3) = H ⊗S(2) =
(

S(2) S(2)
S(2) −S(2)

)
=




1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1




The Sylvester matrix of order 3, S(3), is the normalized Hadamard matrix of
order 8 that we were looking for. According to Algorithm 3.30, let J be the 7× 7
matrix whose entries are all 1, and let A be the matrix obtained by deleting the
first row and the first column of S(3).

We then compute the matrix C = 1
2 (J − A). This is equivalent to replacing

all −1’s in A by 1, and all 1’s by 0, or equivalently, flipping all 0’s and 1’s in the
complementary matrix B. The resulting incidence matrix is:

C =




1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1




.

The matrix C is the incidence matrix of a (X,B) design, where X = F8\{0}
and the set of blocks is

B = {{1, 3, 5, 7}, {2, 3, 6, 7}, {1, 2, 5, 6}, {4, 5, 6, 7}, {1, 3, 4, 6}, {2, 3, 4, 5}, {1, 2, 4, 7}} .

For instance, the sommelier labeled with the letter A will taste wines 1, 3, 5,
and 7 (k = 4); wine 2 will be evaluated by sommeliers B, C, F , and G (r = 4);
and wines 2 and 7 will be assessed by sommeliers B and G (λ = 2).

4.5. Designs for controlled experiments

In the field of scientific experimentation, one of the main challenges is iso-
lating the effect of different variables on the observed outcomes. To achieve this,
mathematics provides fundamental tools that allow for the rigorous and controlled
planning of experiments.

Experimental designs, particularly those based on combinatorial principles,
make it possible to distribute treatments in a balanced manner across different
conditions (such as plots or blocks), thereby minimizing bias and improving the
statistical validity of the conclusions. These methods not only optimize the use of
limited resources but also enable the application of robust statistical analyses to
determine whether the observed effects are significant [5].
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4.5.1. Practical example

A cotton industry, interested in maximizing the yield of cottonseed, aims to
determine whether this yield depends on the type of fertilizer used to treat the
plant. For this purpose, 7 types of fertilizers are available. Since the type of soil
may also affect the seed yield, the field is divided into 7 blocks, and each block is
further divided into 4 plots. Within each block, each of the four plots is treated
with a different fertilizer.

However, due to the size of the blocks and limited resources, it is not possible
to apply all seven fertilizers in each block. Instead, only 4 out of the 7 fertilizers can
be applied in each block. At harvest time, the yield is measured as a percentage,
and the observed values are shown in Table 6, where Fi indicates the fertilizer used
and Bj the field block.

Table 6. Yields (as percentages)

The objective is to develop an experimental design based on a 2-design that
allows us to control the effects of both the type of fertilizer and the field blocks. For
this purpose, we will evaluate, at a significance level of α = 0.05, whether there are
statistically significant differences between the types of fertilizers used and between
the blocks of land.

We consider the set of treatments X = {1, 2, 3, 4, 5, 6, 7} to be the 7 types of
fertilizer used. On the other hand, let B = {Bi : i ∈ X} denote the set of 7 blocks
into which the field is divided.

• Since each block of land is divided into 4 plots, only 4 types of fertilizer can
be applied per block. Therefore, it is clear that the block size must be k = 4.

• Given that b = v = 7, we are dealing with a symmetric design. Thus, k = r =
4, and by Theorem 2.3, it follows that λ = 2.

Hence, the design that best fits the problem is a 2-(7, 4, 2) symmetric design.
We propose a biplane of order 2 (see construction in [19]) with blocks:

B = {{1, 2, 4, 7}, {1, 2, 3, 5}, {2, 3, 4, 6}, {3, 4, 5, 7}, {1, 4, 5, 6}, {2, 5, 6, 7}, {1, 3, 6, 7}} .

Now, in order to apply this design to our problem, we must remove from each
block the fertilizer types that are not part of the corresponding block. That is, we
will eliminate fertilizers 3, 5, and 6 from block B1, fertilizers 4, 6, and 7 from block
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B2, and so on for the other blocks. The resulting data matrix is

M =




96 92 − − 98 − 91
95 90 88 − − 95 −
− 96 93 100 − − 94
78 − 85 79 85 − −
− 86 − 78 89 93 −
− − 76 − 97 72 94
75 − − 89 − 76 95




.

This matrix M represents the observed yields (in percentage) for the seven
different types of fertilizers applied to seven different blocks of land. For each block,
only four of the seven fertilizers are used. The dashes represent the missing data
for the fertilizer types that were not applied in that particular block.

Next, we will perform an analysis of variance to assess whether there are
significant differences in the cotton seed yield between the different fertilizers and
between the different blocks. We will consider a significance level of α = 0.05. The
results of the ANOVA will be summarized in Tables 7 and 8.

Table 7. ANOVA Table for the Fertilizer Effect

Table 8. ANOVA Table for the Block Effect

By comparing the calculated F -statistics with the critical values from the
F -distribution table at a significance level of α = 0.05 (F0.05;6;15 = 2.79), we can
conclude, by Algorithm 3.32 that:

(1) Since Fexp = 2.43 < 2.79, we fail to reject the null hypothesis. Therefore, there
are no statistically significant differences in the yield of cotton seed among the
different types of fertilizer.

(2) Since F ∗exp = 1.05 < 2.79, we also fail to reject the null hypothesis. It is
concluded that the effects of the plots (blocks) of land do not significantly
differ from each other. That is, dividing the land into plots and using different
types of fertilizer within the same block does not result in significant changes
in cotton seed productivity.
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5. Conclussion

The use of BIBDs in the teaching of combinatorics provides a powerful and
engaging pedagogical tool. By connecting abstract mathematical ideas to real-world
problems—such as message encryption, cybersecurity, or organizing fair tourna-
ments—students are encouraged to build a deeper, more intuitive understanding of
combinatorial structures.

Through their foundation in algebraic and matrix-based concepts, including
permutation groups, group actions, finite fields, and incidence matrices, BIBDs
make it possible to explore advanced topics in a way that remains accessible and
meaningful to learners. These connections also open the door to interdisciplinary
learning, especially through links with statistics and experimental design, showing
students how mathematics applies across different fields.

The approach taken in this work-blending clear theoretical development with
constructive algorithms and practical examples-supports not only the development
of mathematical thinking but also helps spark interest in discrete mathematics by
presenting it in an applied and relevant context. In this sense, BIBDs serve as
an effective educational resource for promoting active, contextualized learning in
upper-level mathematics education.
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