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1. Introduction and preliminaries

Problems of determining a sequence or examining its convergence often appear
at various student competitions when the sequence is given by a higher-order lin-
ear recurrent relation with variable coefficients. Considering that such recurrence
relation is equivalent to a linear difference equation with variable coefficients, it
is essential that students are prepared to solve these equations exactly. There are
different methods to solve them, and we will demonstrate several methods in this
paper.

The following problem appeared at the famous Putnam (USA) student com-
petition, which motivated us to write this paper.

Problem 1. (Problem A1, Putnam, 1990 [1]) Prove that the sequence 2, 3,
6, 14, 40, 152, 784, . . . with general term

(1) Tn = (n + 4)Tn−1 − 4nTn−2 + (4n− 8)Tn−3, (n ≥ 3),

is the sum of two well-known sequences.

The official solution reads:
“Answer : n! + 2n. Easy.
This is not a nice problem. We know the answer is easy (because A1 is almost

always easy), so we are looking for something simple. Just try substituting various
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simple sequences until you recognize the result. I was lucky: 152, 784 vaguely
reminded me od 120, 720.”

However, the problem would become much more difficult if one were asked to
determine the general form of the sequence satisfying the given recursive relation.
Since there are many problems of this type, we will offer four different methods for
solving Problem 1. As such recursive relation is equivalent to the corresponding
difference equation, the mentioned methods are methods for solving linear difference
equations with variable coefficients, such as the difference equation (1). We will
solve the problem with the following methods: the operator method, the invariant
method, the method of generating functions, and the Z-transform method.

First, let us familiarize ourselves with the basic terms from so-called difference
calculus (see. e.g. [2, 3, 4, 5]), which is the discrete analog of the familiar differential
and integral calculus.

Definition 2. Let x(t) be a function of a real or complex variable t. The
difference operator is defined by

(2) ∆x(t) = x(t + 1)− x(t).

If we assume that the domain of the function x is the set {1, 2, . . . }, i.e., t = n,
then (2) can be written as

∆xn = xn+1 − xn.

Definition 3. The shift operator is defined by

Ex(t) = x(t + 1),

or, in particular case, Exn = xn+1.

Note that ∆a = 0 and ∆at = (a− 1)at, where a is a constant.

Definition 4. An antidifference operator (or antidifference) of x(t), denoted
as ∆−1x(t), is any function such that, for each t,

∆(∆−1x(t)) = x(t).

Theorem 5. If y(t) is an antidifference of x(t), then any antidifference of
x(t) is given by

∆−1x(t) = y(t) + C(t),
where C(t) is a function with the same domain as the function x and such that
∆C(t) = 0.

Assume that function x is defined on a set of the form {a, a + 1, a + 2, . . . }.
Then, every antidifference of x(t) is of the form ∆−1x(t) = y(t) + C, where C is a
constant.

Note that ∆
(

n−1∑
k=0

ak

)
= an, wherefrom we obtain

(3)
n−1∑
k=0

ak = ∆−1(an) + C,

where C is a constant.
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Also, the following so-called summation by parts

(4) ∆−1(xn ∆yn) = xnyn −∆−1(Eyn ∆xn),

is often useful.
Since the method of generating functions will be used, it is also necessary to

introduce this concept.

Definition 6. If there exists a function g(x) such that

(5) g(x) =
∞∑

n=0
anxn,

for all x in a neighborhood of zero, then g is called the generating function for the
sequence {an}∞n=0.

The method of generating functions can sometimes be used successfully when
solving linear differential equations with constant or variable coefficients. The gen-
erating function often satisfies some differential equation, which is solvable and
whose solution is expressed using elementary functions. However, if this is not the
case, a different tactic must be used, as will be demonstrated in the next section.

Let us now introduce the notion of Z-transform, a method similar to that of
generating function.

Definition 7. The Z-transform of a sequence {xn}∞n=0 is a function X(z) of
a complex variable defined by

(6) X(z) = Z[xn] =
∞∑

n=0

xn

zn
,

and we say that Z-transform exists provided there is a number R > 0 such that
the series in (6) converges for |z| > R.

It is to be expected that the inverse Z-transform should be defined simultane-
ously, and the main features of both transformations would be used. However, due
to the specificity of our problem, just the definition of the Z-transform will suffice.

2. Four solutions for Problem 1

Solution 1. Method of factorization operators
The equality (1) can be written in the form

(7) Tn+3 − (n + 7)Tn+2 + 4(n + 3)Tn+1 − 4(n + 1)Tn = 0, n ≥ 0,

which is a third-order homogeneous linear difference equation with variable coeffi-
cients; initial conditions are T0 = 2, T1 = 3, T2 = 6. By using shift operator E, the
equation (7) becomes

(8) (E −An)(E −Bn)(E − Cn)Tn = 0,
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i.e., (E −An)(E −Bn)(Tn+1 − CnTn) = 0, which is the same as the following

(E −An)(Tn+2 − Cn+1Tn+1 −BnTn+1 + BnCnTn) = 0,

or

Tn+3 − Cn+2Tn+2 −Bn+1Tn+2 + Bn+1Cn+1Tn+1 −AnTn+2

+ AnCn+1Tn+1 + AnBnTn+1 −AnBnCnTn = 0.

The last equation can be written as

Tn+3 − (An + Bn+1 + Cn+2)Tn+2(9)

+ (AnBn + AnCn+1 + Bn+1Cn+1)Tn+1 −AnBnCnTn = 0.

By comparing the equation (9) with (7) we get

AnBnCn = 4(n + 1), An + Bn+1 + Cn+2 = n + 7,

AnBn + AnCn+1 + Bn+1Cn+1 = 4(n + 3).

With a little effort, it can be seen that the following holds

An = 2, Bn = 2, Cn = n + 1,

and by substituting this into (8), we have that (E − 2)(E − 2)(E − (n + 1)Tn) = 0,
i.e.,

(10) (E − 2)(E − 2)(Tn+1 − (n + 1)Tn) = 0.

If we set yn = (E − 2)(Tn+1 − (n + 1)Tn), then from (10) it implies that

(E − 2)yn = 0 ⇐⇒ yn+1 − 2yn = 0 ⇐⇒ yn+1

2n+1
− yn

2n
= 0

⇐⇒ ∆
(yn

2n

)
= 0 ⇐⇒ yn

2n
= C1.

Since y0 = (E − 2)(T1 − 1 · T0) = T2 − 4T1 + 2T0 = −2, we obtain that C1 = −2
and yn = −2n+1, that is

(E − 2)(Tn+1 − (n + 1)Tn) = −2n+1.

If xn = Tn+1 − (n + 1)Tn, then from (10) we have (E − 2)xn = −2n+1, that is

xn+1 − 2xn = −2n+1 ⇐⇒ xn+1

2n+1
− xn

2n
= −1 ⇐⇒ ∆

(xn

2n

)
= −1

⇐⇒ xn

2n
= ∆−1(−1) + C2 ⇐⇒ xn = −n 2n + 2nC2.

Since x0 = T1 − T0 = 1, it implies that C2 = 1 and

xn = −n2n + 2n ⇐⇒ Tn+1 − (n + 1)Tn = −n2n + 2n

⇐⇒ Tn+1

(n + 1)!
− Tn

n!
=
−n2n + 2n

(n + 1)!
⇐⇒ ∆

(Tn

n!

)
=
−n2n + 2n

(n + 1)!

⇐⇒ Tn

n!
= ∆−1

( −n2n

(n + 1)!

)
+ ∆−1

( 2n

(n + 1)!

)
+ C3.
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By using (4) we have that

∆−1
( 2n(−n)

(n + 1)!

)
=

∥∥∥∥
x(n) = 2n Ey(n) = 1

(n+1)!

∆y(n) = −n
(n+1)! y(n) = 1

n!

∥∥∥∥ =
2n

n!
−∆−1 2n

(n + 1)!
.

Now,
Tn

n!
=

2n

n!
−∆−1 2n

(n + 1)!
+ ∆−1 2n

(n + 1)!
+ C3 =

2n

n!
+ C3,

wherefrom it follows that
T0

0!
=

20

0!
+C3, i.e., C3 = 1. Finally, we get

Tn

n!
=

2n

n!
+ 1,

that is Tn = n! + 2n.

Solution 2. Method of generating functions

Let g(x) =
∞∑

n=0
Tnxn be the generating function of the sequence {xn}n∈N.

Multiplying the equation (7) by g(x) and summing from 0 to ∞, we get
∞∑

n=0
Tn+3x

n −
∞∑

n=0
(n + 7)Tn+2x

n + 4
∞∑

n=0
(n + 3)Tn+1x

n − 4
∞∑

n=0
(n + 1)Tnxn = 0,

which is the same as the following equation

∞∑
n=0

Tn+3x
n −

∞∑
n=0

(n + 2)Tn+2x
n − 5

∞∑
n=0

Tn+2x
n + 4

∞∑
n=0

(n + 1)Tn+1x
n

(11)

+ 8
∞∑

n=0
Tn+1x

n − 4
∞∑

n=0
nTnxn − 4

∞∑
n=0

Tnxn = 0.

Since

∞∑
n=0

Tn+3x
n =

g(x)− T0 − T1x− T2x
2

x3
=

g(x)− 2− 3x− 6x2

x3
,

∞∑
n=0

Tn+2x
n =

g(x)− T0 − T1x

x2
=

g(x)− 2− 3x

x2
,

∞∑
n=0

Tn+1x
n =

g(x)− T0

x
=

g(x)− 2
x

,
∞∑

n=0
(n + 2)Tn+2x

n =
g′(x)− T1

x
=

g′(x)− 3
x

,

∞∑
n=0

(n + 1)Tn+1x
n = g′(x),

∞∑
n=0

nTnxn = xg′(x),

the equation (11) becomes

g(x)− 2− 3x− 6x2

x3
− g′(x)− 3

x
− 5

g(x)− 2− 3x

x2
+ 4g′(x)

+ 8
g(x)− 2

x
− 4xg′(x)− 4g(x) = 0,

i.e.,

(12) g′(x) +
x− 1

x
g(x) = − 1

x2
+

3x− 1
x2(2x− 1)2

.
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The equation (12) is a first-order differential equation. The standard proce-
dure would be to obtain the solution of the differential equation and then to write
it as a sum of some power series, from which Tn would be calculated. However,
the situation here is specific because the solution of the equation (12) cannot be
expressed using elementary function. For this reason, we will replace the functions

g(x) =
∞∑

n=0
Tnxn and g′(x) =

∞∑
n=1

nTnxn−1 in (12). Since

3x− 1
x2(2x− 1)2

= − 1
x
− 1

x2
+

2x

(2x− 1)2
= − 1

x
− 1

x2
+

∞∑
n=1

n2n+1xn,

the equation (12) becomes

∞∑
n=1

nTnxn−1 =
( 1

x2
− 1

x

) ∞∑
n=0

Tnxn − 2
x2
− 1

x
+

∞∑
n=1

n2n+1xn,

i.e.,

∞∑
n=0

(n + 1)Tn+1x
n =

∞∑
n=0

Tnxn−2 −
∞∑

n=0
Tnxn−1 − 2

x2
− 1

x
+

∞∑
n=1

n2n+1xn.

By writing down all the sums in powers of xn, we get

T1 +
∞∑

n=0
(n + 1)Tn+1x

n =
∞∑

n=−2
Tn+2x

n −
∞∑

n=−1
Tn+1x

n − 2
x2
− 1

x
+

∞∑
n=1

n2n+1xn,

i.e.,

∞∑
n=1

[(n + 1)Tn+1 − Tn+2 + Tn+1 − n2n+1]xn =
T0 − 2

x2
+

T1 − T0 − 1
x

+ T2 − 2T1,

where T0 = 2, T1 = 3, and T2 = 6, and wherefrom

(n + 1)Tn+1 − Tn+2 + Tn+1 − n2n+1 = 0, Tn+2 = (n + 2)Tn+1 − n2n+1,

that is Tn+2 = (n + 2)Tn+1 − n2n+1. This equation can be written in the form

(13) Tn+1 = (n + 1)Tn − (n− 1)2n,

which is a first-order difference equation. Its solution is of the form

Tn =
[

n−1∏
i=0

(i + 1)
]
T0 −

n−1∑
k=0

[
n−1∏

i=k+1

(i + 1)
]
(k − 1)2k

= T0n! +
n−1∑
k=0

(k + 2)(k + 3) · · ·n(1− k)2k = 2n! + n!
n−1∑
k=0

(1− k)2k

(k + 1)!
.

By using (3) and the results given in Solution 1, we obtain
n−1∑
k=0

(1− k)2k

(k + 1)!
=

2n

n!
+ C,

so that
Tn = 2n! + n!

(2n

n!
+ C

)
.
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Using the initial conditions for n = 1 we get C = −1, thus Tn = n! + 2n. The

solution of the differential equation (12) will be g(x) =
∞∑

n=0
(n! + 2n)xn, and con-

sidering the introduced substitution g(x) =
∞∑

n=0
Tnxn gives Tn = n! + 2n, which is

the solution to Problem 1.

Remark 8. As we have already mentioned, when we use the method of
generating functions, we often obtain the solution of the differential equation, which
can be written as the sum of some powers series, from which Tn (or xn) would be
calculated. So, for example, solving the equation [4, Problem 3.3.37]

xn+2 =
3

n + 2
xn+1 − 2

(n + 1) (n + 2)
xn, n = 0, 1, . . . ,

using the method of generating functions like the above yields the following differ-
ential equation

g′′ (t)− 3g′ (t) + 2g (t) = 0,

whose solution is
∞∑

n=0
xntn = g (x) = C1e

t + C2e
2t =

∞∑
n=0

1
n!

(C1 + C22n) tn,

wherefrom it follows that xn =
1
n!

(C1 + C22n), n = 0, 1, . . . .

Solution 3. Method of invariants
Equation (7) can be transformed to the following form

Tn+3 − (n + 5)Tn+2 + 2(n + 2)Tn+1 = 2[Tn+2 − (n + 4)Tn+1 + 2(n + 1)Tn],

from which

1
2n+2

[Tn+3 − (n + 5)Tn+2 + 2(n + 2)Tn+1]

=
1

2n+1
[Tn+2 − (n + 4)Tn+1 + 2(n + 1)Tn] = · · · = 1

2
[T2 − 4T1 + 2T0] = −1.

That is how we get

(14) Tn+2 − (n + 4)Tn+1 + 2(n + 1)Tn = −2n+1,

which is one invariant of the initial equation. Equation (14) is a second-order
equation, and in this way, we managed to lower the order of the difference equation
by one. Now, let us try to find the invariant of the equation (14). Namely, the
equation (14) can be written in the form

1
2n+1

[Tn+2 − (n + 2)Tn+1] + n =
1
2n

[Tn+1 − (n + 1)Tn] + n− 1

= · · · = 1
20

[T1 − T0]− 1 = 0.
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This implies that 1
2n [Tn+1 − (n + 1)Tn] + n− 1 = 0, i.e.,

(15) Tn+1 = (n + 1)Tn + (1− n)2n.

Equation (15) is a first-order non-homogeneous linear difference equation. Using
the method of invariants, we managed to reduce the third-order difference equation
to a first-order one. Since the equations (13) and (15) are the same, its solution is
Tn = n! + 2n, too.

Solution 4. Z-transform method
By applying Z-transform to the equation (1), we get

Z[Tn+3]− Z[(n + 2)Tn+2]− 5Z[Tn+2] + 4Z[(n + 3)Tn+1](16)

+ 8Z[Tn+1]− 4Z[nTn]− 4Z[Tn] = 0.

Since,

Z[Tn] =
∞∑

n=0

Tn

zn
= X(z), Z[nTn] = −zX ′(z), Z[Tn+1] = zX(z)− 2z,

Z[(n + 1)Tn+1] =
∞∑

n=0

(n + 1)Tn+1

zn
= z

∞∑
n=1

nTn

zn
= z(−zX ′(z)),

Z[Tn+2] = z2(Z[Tn]− T0 − T1z) = z2X(z)− 2z2 − 3z3,

Z[(n + 2)Tn+2] =
∞∑

n=0

(n + 2)Tn+2

zn
=

∞∑
n=2

nTn

zn−2
= z2

∞∑
n=2

nTn

zn
= z2

( ∞∑
n=1

nTn

zn
− T1

z

)

= z2

( ∞∑
n=1

nTn

zn
− 3

z

)
= z2

(
−zX ′(z)− 3

z

)
= −z3X ′(z)− 3z,

Z[Tn+3] = z3
(
Z[Tn]− T0 − T1

z
− T2

z2

)
= z3X(z)− 2z3 − 3z2 − 6z,

by substituting these expressions into (16), we obtain

z3X(z)− 2z3 − 3z2 − 6z + z3X ′(z) + 3z − 5(z2X(z)− 2z2 − 3z3)

+ 4(−z2X ′(z) + 2zX(z)− 4z) + 8(zX(z)− 2z) + 4zX ′(z)− 4X(z) = 0,

i.e., after rearranging,

(17) X ′(z) +
(
1− 1

z

)
X(z)− 2z2

(z − 2)2
+

7z

(z − 2)2
− 4

(z − 2)2
= 0.

This equation is a first-order differential equation. The usual procedure is to obtain
the differential equation’s solution and calculate the inverse Z-transform. However,
the situation here is specific because the solution of the equation (17) cannot be
expressed using elementary functions. Therefore, we will proceed as in Solution 2.

We have

X(z) =
∞∑

n=0

Tn

zn
, X ′(z) = −

∞∑
n=1

nTn

zn+1
= −

∞∑
n=2

(n− 1)Tn−1

zn
,
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and by standard procedures we obtain

2z2

(z − 2)2
=

∞∑
n=0

(n + 1)2n

zn
,

z

(z − 2)2
=

∞∑
n=1

n2n−1

zn
,

1
z − 2

=
∞∑

n=1

2n−1

zn
,

1
(z − 2)2

=
∞∑

n=2

(n− 1)2n−2

zn
.

Substituting these expressions into (17), we have

−
∞∑

n=2

(n− 1)Tn−1

zn
+

∞∑
n=0

Tn

zn
− 1

z

∞∑
n=0

Tn

zn

− 2
∞∑

n=0

(n + 1)2n

zn
+ 7

∞∑
n=1

n2n−1

zn
− 4

∞∑
n=2

(n− 1)2n−2

zn
= 0,

i.e.,

∞∑
n=2

−(n− 1)Tn−1 + Tn − Tn−1 − (n + 1)2n+1 + 7n2n−1 − 4(n− 1)2n−2

zn
= 0,

which implies
Tn+1 = (n + 1)Tn + (1− n)2n.

This equation is the same as the equation (13), and we obtain that Tn = n! + 2n.

Remark 9. A somewhat more complicated problem would be if, instead of
solving the equation (1), we were asked to examine the convergence of the following
sequences: {Tn}∞n=0,

{
Tn

n!

}∞
n=0

, and
{

Tn

2n

}∞
n=0

. By solving the equation (1) using
some of the methods mentioned above, we get

a) lim
n→∞

Tn = lim
n→∞

(n! + 2n) = +∞, the sequence {Tn}∞n=0 is divergent,

b) lim
n→∞

Tn

n! = lim
n→∞

(
1 + 2n

n!

)
= 1, the sequence

{
Tn

n!

}∞
n=0

is convergent,

c) lim
n→∞

Tn

2n = lim
n→∞

(
1 + n!

2n

)
= +∞, the sequence

{
Tn

2n

}∞
n=0

is divergent.

3. About another method

Although it cannot be helpful when solving Problem 1, it is still important
to familiarize us with another method for solving linear difference equations with
variable coefficients, the so-called factorial series method. For this purpose, we
introduce falling factorial power according to the following definition.

Definition 10. The falling factorial power t(s) is defined as follows, according
to the value of s.

1. If s is a positive integer, then t(s) = t (t− 1) · · · (t− s + 1).

2. If s = 0, then t(0) = 1.
3. If s is a negative integer, then t(s) =

1
(t + 1) (t + 2) · · · (t− s)

.
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4. If s is not an integer, then t(s) =
Γ (t + 1)

Γ (t− s + 1)
, where Γ is the well-known

gamma function.

Let us highlight one significant fact that is used in the factorial series method:

∆tt
(s) = st(s−1), s 6= 0.

The following example will illustrate the application of the factorial series
method.

Example 11. Enquire with respect to the convergence the sequence given by
the following recurrence relation:

(18) xn+2 =
3(n + 2)
n + 3

xn+1 − 2n + 1
n + 3

xn, n = 1, 2, . . .

Solution. The equation (18) is equivalent to the following linear equation

(19) (n + 3)xn+2 − 3(n + 2)xn+1 + (2n + 1)xn = 0, n = 1, 2, . . . .

Equation (19) is a homogeneous second-order linear difference equation whose so-
lution is the general term of the given sequence. To determine the solution of this
equation, we will use the method of descending factorials series after translating it
into the appropriate form, as follows

(n + 3)E2xn − 3(n + 2)Exn + (2n + 1)xn = 0.

Since E = 4+ I, we obtain

(n + 3)(∆ + I)2xn − 3(n + 2)(∆ + I)xn + (2n + 1)xn = 0,

i.e.,

(20) (n + 3)∆2xn − n∆xn − 2xn = 0.

Assume that the solution xn has the form xn =
∞∑

k=−∞
ckn(k), where ck = 0, for

k < 0. Now, we have that

(21) ∆xn =
∞∑

k=−∞
kckn(k−1), ∆2xn =

∞∑
k=−∞

k(k − 1)ckn(k−2).

By substituting (21) into (20), we get
∞∑

k=−∞
k(k − 1)cknn(k−2) +

∞∑
k=−∞

3k(k − 1)ckn(k−2)(22)

−
∞∑

k=−∞
kcknn(k−1) −

∞∑
k=−∞

2ckn(k) = 0.

Since nn(m) = n(m+1) + mn(m), (22) can be written in the following form
∞∑

k=−∞
k(k − 1)ck[n(k−1) + (k − 2)n(k−2)] +

∞∑
k=−∞

3k(k − 1)ckn(k−2)

−
∞∑

k=−∞
kck[n(k) + (k − 1)n(k−1)]−

∞∑
k=−∞

2ckn(k) = 0.
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By changing the index in the previous sums, we get

(23)
∞∑

k=−∞
{(k + 1)(k + 2)(k + 3)ck+2 − (k + 2)ck}n(k) = 0.

Since (23) is an identity, each coefficient must be zero, i.e.,

(k + 1)(k + 2)(k + 3)ck+2 − (k + 2)ck = 0, k = 0, 1, 2, . . . ,

or (k + 1)(k + 3)ck+2 − ck = 0, k = 0, 1, 2, . . . . From this, we have

1 · 3 ·C2 −C0 = 0, 2 · 4 ·C3 −C1 = 0, 3 · 5 ·C4 −C2 = 0, 4 · 6 ·C5 −C3 = 0, . . . ,

i.e.,

C2 =
C0

1 · 3 , C3 =
C1

2 · 4 , C4 =
C0

1 · 32 · 5 , C5 =
C1

2 · 42 · 6 , . . . ,

which implies that the solution of the equation (18) has the form

xn = C0

(
1 +

n(2)

1 · 3 +
n(4)

1 · 32 · 5 +
n(6)

1 · 32 · 52 · 7 + · · ·
)

+ C1

(
n(1) +

n(3)

2 · 4 +
n(5)

2 · 42 · 6 +
n(7)

2 · 42 · 62 · 8 + · · ·
)

,

and lim
n→∞

xn = +∞. It means that the sequence is divergent.

4. Conclusion

Motivated by Problem 1, we demonstrated several methods for solving linear
difference equations with variable coefficients: the operator method, the method of
invariants, the method of generating functions, the Z-transform method, and the
factorial series method. In doing so, a particular curiosity emerged when using the
methods of generating functions and the Z-transform method. Namely, an unusual
situation occurred when the solutions of the differential equations obtained by these
methods could not be represented using elementary functions. That is why we
had to solve the differential equations using the power series method and, in this
way, finally get the explicit form of the general term of the given sequence. We
demonstrated the factorial series method on a separate equation since it could not
be applied to solving Problem 1.

As we have seen, only some methods are suitable for certain situations. That is
why it is vital that students, especially those who participate in math competitions,
are familiar with all the methods of solving linear difference equations with variable
coefficients.
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