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A CHAIN OF EIGHT INEQUALITIES
INVOLVING MEANS OF TWO ARGUMENTS

Romeo Meštrović

Abstract. For two positive real numbers a and b, let H := H(a, b), G :=
G(a, b), A := A(a, b) and Q : Q(a, b) be the harmonic mean, the geometric mean, the
arithmetic mean and the quadratic mean of a and b, respectively. In this short note,
we prove the following interesting chain involving eight inequalities:
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2
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2
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where equality holds in each of these inequalities if and only if a = b. Some remarks,
in particular connected with Muirhead’s inequality, and two questions related to a
similar form of chain of inequalities are also given.
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1. The result and its prof

For two positive real numbers a and b, let H := H(a, b) = 2ab/(a + b),
G := G(a, b) =

√
ab, A := A(a, b) = (a + b)/2 and Q := Q(a, b) =

√
(a2 + b2)/2 be

the harmonic mean, the geometric mean, the arithmetic mean and the quadratic
mean of a and b, respectively. Then by the well-known harmonic mean-geometric
mean-arithmetic mean-quadratic mean inequality (H −G−A−Q inequality),

(1) H ≤ G ≤ A ≤ Q,

with equality if and only if a = b.
In this note, we prove the following result involving a chain of eight inequali-

ties.

Theorem. Under above notation, the following inequalities hold:

G ≤
√

QH ≤
√

AG ≤ A + G

2
≤ Q + H

2
(2)

≤
√

A2 + G2

2
≤

√
Q2 + H2

2
≤ Q + G

2
≤ A,

where equality holds in each of these inequalities if and only if a = b.
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Proof. Applying the H −G−A−Q inequality given by (1), we find that

(3) G =
√

AH ≤
√

QH,
√

AG ≤ A + G

2
and

Q + G

2
≤

√
Q2 + G2

2
= A.

Further, using the inequalities (1), the binomial expansions

(a− b)4 = a4 − 4a3b + 6a2b2 − 4ab3 + b4

and

(a− b)8 = a8 − 8a7b + 28a6b2 − 56a5b3 + 70a4b4 − 56a3b5 + 28a2b6 − 8ab7 + b8,

after calculations and factorizations by Mathematica 11, we find that
√

QH ≤
√

AG ⇐⇒ A2G2 −Q2H2 ≥ 0 ⇐⇒ ab(a− b)4/4(a + b)2 ≥ 0,

(A + G)/2 ≤ (Q + H)/2 ⇐⇒ (Q−G)2 ≥ (A−H)2

⇐⇒ (Q2 + G2 −A2 + 2AH −H2)2 ≥ 4Q2G2 ⇐⇒ (a− b)8/16(a + b)4 ≥ 0,

(Q + H)/2 ≤
√

(A2 + G2)/2 ⇐⇒ 2A2 + 2G2 ≥ Q2 + 2QH + H2

⇐⇒ (2A2 + 2G2 −Q2 −H2)2 ≥ 4Q2H2 ⇐⇒ a2b2(a− b)4/(a + b)4 ≥ 0,

(4)

√
(A2 + G2)/2 ≤

√
(Q2 + H2)/2 ⇐⇒ Q2 + H2 −G2 −A2 ≥ 0

⇐⇒ (a− b)4/4(a + b)2 ≥ 0,

√
(Q2 + H2)/2 ≤ (Q + G)/2 ⇐⇒ 4Q2G2 − (2A2 + G2 −Q2)2 ≥ 0

⇐⇒ 2ab(a− b)2 ≥ 0.

The inequalities (3) and (4) immediately imply the chain of inequalities given by
(2), and obviously, equality holds in any of these inequalities if and only if a = b.

2. Muirhead’s inequality and its applications

Muirhead’s inequality is an important generalization of the arithmetic-geo-
metric mean inequality for n positive integers (n = 2, 3, . . . ). It is a powerful tool
for solving numerous inequality problems. In order to give Muirherad’s inequality,
we will need some definitions and related notations given as follows.

Let x1, x2, . . . , xn be positive real numbers and let p = (p1, p2, . . . , pn) ∈ Rn,
where n is a positive integer. Then the p-mean of x1, x2, . . . , xn is defined by

[p] :=
1
n!

∑

σ∈Sn

xp1
σ(1)x

p2
σ(2) · · ·xpn

σ(n),
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where Sn is the set of all permutations of the set {1, 2, . . . , n} and the summation
ranges over all n! permutations σ ∈ Sn.

For example, [(1, 0, . . . , 0)] = 1
n

∑n
i=1 xi is the arithmetic mean of x1, x2, . . . , xn

and [(1/n, 1/n, . . . , 1/n)] = x
1/n
1 x

1/n
2 · · ·x1/n

n is their geometric mean.
The above sum involved in the expression for [p] is in Combinatorics often

written as ∑
sym

xp1
1 xp2

2 · · ·xpn
n .

See [2, Definition 2], where this sum is denoted as T [p1, p2, . . . , pn](x1, x2, . . . , xn).
For example, if p = (3, 1, 0), then

∑
sym

x3y1z0 = x3y1z0 + x3z1y0 + y3x1z0 + y3z1x0 + z3x1y0 + z3y1x0

= x3y + x3z + y3x + y3z + z3x + z3y.

Next we introduce the concept of majorization in Rn. Suppose that the vec-
tors p = (p1, p2, . . . , pn) ∈ Rn and q = (q1, q2, . . . , qn) ∈ Rn satisfy the following
conditions:

1) p1 ≥ p2 ≥ · · · ≥ pn and q1 ≥ q2 ≥ · · · ≥ qn;
2) p1 ≥ q1, p1 + p2 ≥ q1 + q2, . . . , p1 + p2 + · · ·+ pn−1 ≥ q1 + q2 + · · ·+ qn−1

and
3) p1 + p2 + · · ·+ pn = q1 + q2 + · · ·+ qn.

Then we say that (p1, p2, . . . , pn) majorizes (q1, q2, . . . , qn) and write
(p1, p2, . . . , pn) Â (q1, q2, . . . , qn) (or (q1, q2, . . . , qn) ≺ (p1, p2, . . . , pn)).

Under above notations and notions, Muirhead’s inequality ([3]; also see [1] and
[2, Theorem 4]) states that if x1, x2, . . . , xn are positive real numbers and p, q ∈ Rn

are such that p Â q, then [p] ≥ [q]. Furthermore, if p 6= q, equality holds if and
only if x1 = x2 = · · · = xn.

Since (1, 0, . . . , 0) Â (1/n, 1/n, . . . , 1/n), it follows that the arithmetic-geo-
metric mean inequality is a consequence of Muirhead’s inequality.

Example. Let x and y be positive real numbers. Since (2, 2) ≺ (3, 1), by
Muirhead’s inequality (in the sequel, shortly denoted by MI), we have

∑
sym x2y2 ≤∑

sym x3y1, i.e., 2x2y2 ≤ x3y + xy3, or equivalently, 4x2y2 ≤ xy(x + y)2, which
implies the H−G inequality 2xy/(x+y) ≤ √

xy. As it is noticed above (for arbitrary
n instead of 2), since (1/2, 1/2) ≺ (1, 0), MI implies the G − A inequality

√
xy ≤

(x + y)/2. Similarly, because of (1, 1) ≺ (2, 0), using MI we obtain
∑

sym x1y1 ≤∑
sym x2y0, i.e., 2xy ≤ x2 + y2, which is equivalent to (x + y)2 ≤ 2(x2 + y2),

which implies the A−Q inequality (x+ y)/2 ≤
√

(x2 + y2)/2. Hence, applying MI
inequality, we have proven the H −G−A−Q inequality for two positive integers.

Remark 1. A direct calculation, without using software Mathematica 11,
shows that the last inequality from (4) of Theorem is equivalent to a2 + b2 ≥ 2ab,
which is, as it is showed in Example, an immediate consequence of MI.
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Furthermore, the first, third and fourth inequality from (4) reduce to the
following one:

(5) a4 + 6a2b2 + b4 ≥ 4a3b + 4ab3.

Since (4, 0) Â (3, 1), by MI we obtain 2(a4 + b4) ≥ 2(a3b + ab3), i.e., a4 + b4 ≥
a3b+ ab3. On the other hand, since (3, 1) Â (2, 2), by MI we get a3b+ b3a ≥ 2a2b2,
so 6a2b2 ≤ 3a3b + 3b3a. Since the previous two inequalities obviously do not imply
the inequality (5), it follows that the first, third and fourth inequality of (4) cannot
be derived applying MI.

Finally, the second inequality from (4) reduces to the following one:

(6) a8 + 28a6b2 + 70a4b4 + 28a2b6 + b8 ≥ 8a7b + 56a5b3 + 56a3b5 + 8ab7.

Since (8, 0) Â (7, 1), by MI we obtain 2(a8 + b8) ≥ 2(a7b+ab7), i.e., a8 + b8 ≥ a7b+
ab7. On the other hand, since (6, 2) Â (5, 3), by MI we find that 2(a6b2 + a2b6) ≥
2(a5b3 + a3b5), whence it follows that 28a6b2 + 28a2b6 ≥ 28a5b3 + 28a3b5. Adding
the previous two inequalities, we obtain

(7) a8 + 28a6b2 + 28a2b6 + b8 ≥ a7b + 28a5b3 + 28a3b5 + ab7.

Furthermore, since (7, 1) Â (4, 4), by MI we find that a7b + ab7 ≥ 2a4b4, whence it
follows that 7a7b+7ab7 ≥ 14a4b4. As (5, 3) Â (4, 4), by MI we obtain a5b3 +a3b5 ≥
2a4b4, whence it follows that 28a5b3 + 28a3b5 ≥ 56a4b4. Adding the previous two
inequalities, we obtain

(8) 70a4b4 ≤ 7a7b + 27a5b3 + 28a3b5 + 7ab7.

Obviously, the inequalities (7) and (8) do not imply the inequality (6). Clearly, this
would be true if the converse of the inequality (8) were true. Hence, the second
inequality of (4) cannot be derived applying MI.

By the binomial expansion, the obvious inequality (a−b)2n ≥ 0 (n = 1, 2, . . . )
is equivalent to the following one:

(9)
n∑

k=0

(
2n

2k

)
a2n−2kb2k ≥

n∑

k=1

(
2n

2k − 1

)
a2n−2k+1b2k−1.

If n ≥ 2 is an even integer, n = 2m (m = 1, 2, . . . ), then the central term of
the binomial expansion (a− b)4m is

(
4m
2m

)
a2mb2m and this term belongs to the sum

on the left-hand side of (9). Note that 2m < max1≤k≤2m{4m − 2k + 1, 2k − 1}.
Namely, without loss of generality, we can suppose that 2k − 1 ≥ 4m − 2k + 1,
i.e., 2m ≤ 2k − 1, and since 2m is even, it must be 2m ≤ 2k − 2. It follows that
(4m− 2k +1, 2k− 1) Â (2m, 2m) for all k = 1, . . . , m. This shows that if a 6= b, MI
cannot be applied to prove that

(
4m
2m

)
a2mb2m is greater or equal to a sum of some

terms on the right-hand side of the inequality (9).
If n > 2 is an odd integer, n = 2m + 1 (m = 1, 2, . . . ), then the sum of the

first term and the last term on the right-hand side of the inequality (9) is equal



A chain of eight inequalities involving means of two arguments 31

to (4m + 2)(a4m+1b + ab4m+1). The sum of the first term and the last term on
the left-hand side of (9) is equal to a4m+2 + b4m+2 and by Muirhead’s inequality,
a4m+2 + b4m+2 ≥ a4m+1b + ab4m+1. Hence, in order to prove the inequality (9)
applying MI, it would be necessary to show that (4m+1)(a4m+1b+ ab4m+1) is less
or equal to a sum of some terms involved in the left-hand side of (9). However,
this is impossible because 4m + 1 > max1≤k≤2m{4m + 2 − 2k, 2k} implies that
(4m + 1, 1) Â (4m + 2− 2k, 2k) for all k = 1, . . . , m.

Therefore, the inequality (9) can be proved applying Muirhead’s inequality
only for n = 1.

3. Concluding remarks and questions

Remark 2. Notice that using the inequalities (1), we obviously have H ≤√
GH ≤ (G + H)/2 ≤

√
(G2 + H2)/2 ≤ G, and hence, the chain of inequalities

given by (2) can be extended from the left-hand side with these four inequalities.
Similarly, by the inequalities (1), we obviously have A ≤ √

QA ≤ (Q + A)/2 ≤√
(Q2 + A2)/2 ≤ Q, and thus, the chain of inequalities given by (2) can be ex-

tended from the right-hand side with these four inequalities. Therefore, the chain
of inequalities given by (2) can be extended to the chain of inequalities involving
sixteen inequalities (see (10)).

Remark 3. Let x and y be positive real variables, and let M := M(x, y)
be an arbitrary mean of x and y, where M ∈ {H, G,A, Q}. Furthermore, if a
and b are positive real numbers and if M1,M2,M3 ∈ {H,G, A, Q}, where two
or all three means Mk (k = 1, 2, 3) may coincide, then by convention we define
M1(M2, M3) := M1(M2(a, b),M3(a, b)). For example,

A(G,Q) = (
√

ab +
√

(a2 + b2)/2)/2, H(A,G) = 2(a + b)
√

ab(a + b + 2
√

ab),

Q(G,A) =
√

(a2 + b2 + 6ab)/8, G(G,A) = 4
√

ab(a + b)2/4, G(H,A) =
√

ab = G.

Clearly, it holds M1(M2, M3) = M1(M3,M2) for all M1,M2,M3 ∈
{H, G, A,Q}. Notice that M1(M2,M2) = M2 for all M1,M2 ∈ {H,G, A, Q}. An
easy verification shows that in the set

{M1(M2, M3) : M1,M2,M3 ∈ {H,G, A, Q} and M2 > M3 }
there are only two elements which coincide to some mean from the set {H,G, A, Q}:
namely, G(A,H) = G and Q(Q,G) = A. In accordance with the all previ-
ously noted, the number of different expressions of the form M1(M2,M3) with
M1,M2,M3 ∈ {H, G,A, Q} such that M2 ≥ M3 is equal to 4 · (3 · 2) + 4− 2 = 26.

Note that in view of Remark 2, the chain of inequalities (2) from Theorem
which contains eight inequalities can be extended to the chain of sixteen inequalities
involving means of means of two arguments. Using the previous notations, this
chain of inequalities can be written as follows.

H ≤ G(G, H) ≤ A(G,H) ≤ Q(G,H) ≤ G ≤ G(Q,H)(10)

≤ G(A, G) ≤ A(A,G) ≤ A(Q,H) ≤ Q(A,G) ≤ Q(Q,H)

≤ A(Q,G) ≤ A ≤ G(Q,A) ≤ A(Q,A) ≤ Q(Q,A) ≤ Q.
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We say that the inequality M1(M2,M3) ≤ M4(M5,M6) such that Mk ∈
{H, G, A,Q} (k = 1, . . . , 6), M2 ≥ M3 and M5 ≥ M6, is trivial if M1 ≤ M4,
M2 ≤ M5 and M3 ≤ M6. Clearly, each trivial inequality follows immediately from
the inequality (1). Notice that the first four, as well as the last four inequalities in-
volved in (10), and the inequality G(A,G) ≤ A(A,G) from (2) and (10) are trivial.
Thus, both chains of inequalities (2) and (10) can be reduced to the chain involving
seven non-trivial inequalities.

Finally, we propose the following two curious questions concerning the chains
of inequalities whose terms belong to the set M := {M1(M2,M3) : M1, M2,M3 ∈
{H, G, A,Q} } whose total number is 26.

Question 1. Is there a chain of inequalities that contains more than sixteen
inequalities whose members are from the set M?

Question 2. Is there a chain of inequalities that contains more than seven
non-trivial inequalities whose members are from the set M?
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