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Abstract. Banach’s fixed point theorem is a part of standard curriculum of
several university courses. It is also an example of a discrete dynamical system that
is very regular – in the limit, the orbit of each point “ends” at a single fixed point.
This is the starting point for this article. We begin by analyzing how small changes in
the assumptions of this theorem affect the regularity of the system. We then discuss
how the concept of regularity and chaos can be formalized. With this goal in mind,
we talk about topological entropy.

We give definitions and some examples of topological and polynomial entropy in
dynamical systems. We also explain two ways of looking at these dynamical invariants.

We also consider points that are in a sense the opposite to fixed points, namely
wandering points and at the end we explain the role of wandering points in measuring
the complexity of a dynamical system.
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1. Introduction

A topological dynamical system consists of a pair (X, f), where (X, d) is a
compact metric space and f : X → X is a continuous map. If f is additionally a
homeomorphism, we say that the dynamical system is reversible.

We define f0 to be the identity map id, and for n ∈ N, fn := f◦. . .◦f (n times).
If f is reversible, we also define f−n := f−1 ◦ . . . ◦ f−1. Since fm+n = fm ◦ fn,
the set of maps {fn} forms a semigroup, for n ∈ N, or – when f is reversible – a
group, for n ∈ Z.

The positive orbit of an element x ∈ X is the set O+(x) := {fn(x) | n ≥ 0}.
When f is reversible, we can define the full orbit O(x) := {fn(x) | n ∈ Z}. One
can also consider the finite orbits, of length n.

The simplest orbits are those of fixed points, they consist only of the point
itself. The next simplest orbits are periodic orbits, i.e. the orbits of periodic points
(a point x is periodic if there exists an integer k > 0 with fk(x) = x).

We are interested in predicting the behavior of particular orbits, or a group
of some orbits, or all orbits together, when n →∞.

Example 1. (Banach’s fixed point theorem) Let f : X → X be a
contraction, i.e. there exists λ ∈ [0, 1) with d(f(x), f(y)) ≤ λ·d(x, y) for all x, y ∈ X.
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Then, according to the Banach fixed point theorem, there exists a unique fixed
point p of f , and all orbits fn(x) converge to p, when n → ∞. The Banach fixed
point theorem holds in more general spaces, namely complete ones (in this paper,
however, we are mainly concerned with compact spaces).

For the proof of this classical theorem see, e.g., [12].

The previous example illustrates a very simple asymptotic behaviour, since
the sequence of iterates of any point converges to the same point.

If f is not a contraction but an isometry, we cannot expect asymptotic be-
haviour as in Example 1.

Example 2. Let X = S1 = {z ∈ C | |z| = 1} be the unit circle and f = ρθ

the rotation
ρθ(z) := e2πθiz.

Then, if θ ∈ Q, every orbit of ρθ is periodic, with the same period, and if ρ /∈ Q,
there are no periodic orbits. Moreover, if ρ /∈ Q, the orbit of every point is dense
in S1.

We give an example of a slightly more complicated dynamical system.

Example 3. Let f : [0, 1] → [0, 1] be a non-decreasing continuous map. Then
there exists a fixed point of f , possible not unique (this is a special case of the more
general Brouwer fixed point theorem, see [10]). It is not hard to prove that for any
x ∈ [0, 1], the sequence fn(x) converges to some fixed point. It does not have to
be a unique limit: take, for example, a strictly increasing map with the set of fixed
points p1 < p2 < . . . < pm. Then we have:

• if f(x) > x holds for all x ∈ (pj−j , pj), then fn(x) → pj−1 for all x ∈
(pj−j , pj),

• if f(x) < x holds for all x ∈ (pj−j , pj), then fn(x) → pj for all x ∈ (pj−j , pj),

see Figure 1.

Figure 1. The fixed points of f are p1 = 0, p2 = p and p3 = 1.
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The question that interests us is which dynamical system is more complicated
than the other. We can discuss this question using Examples 1, 2 and 3. The first
natural conclusion is that a contraction has the simplest orbital behavior, for two
reasons: all orbits converge and they all converge to the same point. Moreover,
it is obvious that an irrational rotation is more complex than a rational rotation.
Furthermore, looking at the behavior of a single point orbit, it is safe to say that an
irrational rotation has the most complicated orbits of all three examples. However,
since it is an isometry, it is not possible to clearly determine whether an irrational
rotation is more or less complex than a non-decreasing interval map when looking
at all orbits. This motivates the introduction of a finer invariant that measures
the complexity of a dynamical system, namely different types of entropy. These
invariants must vanish for all isometries (see Example 6), so from this point of view,
a non-decreasing interval map becomes more complex than any isometry.

What all these examples have in common, however, is that all orbits behave
in the same way, either they all converge to some point, or they are all periodic, or
they are all dense; this means that the dynamical system is not chaotic.

2. Topological entropy

The topological entropy is one of classical measures of the complexity of a
dynamical system.

Let (X, d) and f be as above. Denote by df
n(x, y) the dynamic metric (induced

by f and d):
df

n(x, y) := max
0≤k≤n−1

d(fk(x), fk(y)).

Two points x and y are close to each other (with respect to the metric df
n) if all

iterates in the corresponding orbits of length n are close to each other.

Example 4. If f is an isometry or a contraction, it holds d(fk(x), fk(y)) ≤
d(x, y), for all k ≥ 0, so df

n(x, y) = d(x, y). This means that the points do not move
away from each other. This is not the case for any non-decreasing interval map.
For example, if f(x) =

√
x, and y 6= 0, than d(fk(0), fk(y)) ≤ d(fk+1(0), fk+1(y)),

so df
n(0, y) = d(fn−1(0), fn−1(y)) = 2n−2

√
y.

For ε > 0, we say that a finite set E ⊂ X is (n, ε)-separated if for every
x, y ∈ E it holds df

n(x, y) ≥ ε. Let sep(n, ε) denote the maximal cardinality of an
(n, ε)-separated set E.

The number sep(n, ε) gives the maximal number of orbits of length n that
can be distinguished, up to an error ε (meaning that the error is less than ε). This
means that the orbit of any other point x of length n is less than or ε-close to the
orbit of some point in E. The number sep(n, ε) increases with respect to n and
decreases with respect to ε.

We are interested in the asymptotic behaviour of the number sep(n, ε) when
n →∞ and ε → 0+.
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Definition 5. The topological entropy of the map f is defined by

(1) htop(f) := lim
ε→0

lim sup
n→∞

log sep(n, ε)
n

∈ [0,∞].

Example 6. If f is a Lipschitz map with a Lipschitz constant λ ≤ 1, then
df

n = d, so sep(n, ε) = sep(1, ε) and htop(f) = 0. This is the case in Example 1
and Example 2. If f is as in Example 3, it also holds htop(f) = 0, but for some
other reasons. However, another type of entropy will not vanish for such a map, see
Example 16. This gives another, finer measure of the complexity of a dynamical
system, which we will analyze further.

The topological entropy measures the exponential growth of the distinguished
orbits, because if sep(n, ε) ∼ ϕ(ε)eαn, then htop(f) = α. It is also possible to
measure a different growth, e.g. polynomial, logarithmic, etc. The reason for the
choice of exponential growth in the basic definition of topological entropy lies in
the definition of the entropy of a random variable in information theory (see [9]) as
well as metric entropy in a measurable space (see [6]), both of which historically
preceded the concept of topological entropy.

Remark 7. There are other measures of complexity of a dynamical system.
Let us mention one of them – chaos. As we have already said, a system is not chaotic
if all iterates behave similarly. One way to describe chaos is that, informally, there
are many periodic points, as well as points that are far from being periodic. More
precisely, the system is Devaney chaotic if both:
• the set of periodic points, and
• the set of points x whose (positive) orbits are dense in X

are dense in X.1

In some situations, positive topological entropy implies Devaney chaos, and
in some vice versa, Devaney chaos implies htop > 0. In general, however, these two
invariants are not equivalent.

In the rest of the paper we will show two ways of looking at topological entropy:
a geometric one (as a measure of stretching) and a combinatorial one (as a measure
of all possible codings of orbits).

2.1. Entropy as a measure of streching

We have already said that htop(f) = 0 if f is a Lipschitz map with a Lipschitz
constant λ ≤ 1. Let us prove the following simple generalization of this fact.

Let D(X) denote the ball dimension of a compact metric space, defined as

D(X) := lim
ε→0+

log cov(ε)
− log ε

,

1This is one of the definitions of chaos, due to Devaney. There are many more, e.g. Li-Yorke
chaos, Block-Coppel chaos, etc. They are generally not equivalent, although in certain situations
one type of chaos may imply another.
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where cov(ε) is the minimal cardinality of the covering Uε of X, consisting of balls
of radii ε.

It is not difficult to see that the ball dimension of a closed cube in RN or a
compact manifold is equal to the standard dimension. Indeed, let X = [0, 1]N ⊂ RN

and

(2) d ((x1, . . . , xN ), (y1, . . . , yN )) = max{|xj − yj | | j ∈ {1, . . . , N}}.
Then the balls of radius 1/n are the small cubes with the side lengths 1/n and

nN ≤ cov(1/n) ≤ (n + 1)N .

By taking the limit as n → ∞ we obtain D(X) = N . It is easy to see that ball
dimension coincides for equivalent metrics. The case when X is a compact manifold
can be proven in a similar way.

Proposition 8. If f is a Lipschitz map with a Lipschitz constant λ, then

(3) htop(f) ≤ D(X) ·max{0, log λ}.

Here we want to notice how an asymptotic property of a dynamical system
(the left-hand side in (3)) is controlled by the first step (Lipschitz constant) and a
property of the space (the right-hand side in (3)).

Proof of Proposition 8. We have already discussed the case λ ≤ 1 in Exam-
ple 6, so let us assume λ > 1. Since d(f(x), f(y)) ≤ λ d(x, y), we have
d(fk(x), fk(y)) ≤ λkd(x, y) so

df
n(x, y) = max

0≤k≤n−1
d(fk(x), fk(y)) ≤ λn−1d(x, y).

Therefore

(4) sep(n, ε) ≤ sep
(
1,

ε

λn−1

)
.

It is easy to see that

(5) sep(1, α) ≤ cov
(α

2

)
.

Indeed, let sep(1, α) = m and E = {x1, . . . , xm} be (1, α)-separated. If cov(α) > m,
i.e. cov(α) ≥ m + 1, then there exist two points xi and xj from E that belong to
the same open ball of radius α/2. This implies d(xi, xj) < α, which contradicts the
fact that E is (1, α)-separated.

Fix ε > 0. From (4) and (5) we get:

log sep(n, ε)
n

≤ log cov
(

ε
2λn−1

)

n
=

log cov
(

ε
2λn−1

)

− log ε
2λn−1

· − log ε
2λn−1

n

=
log cov

(
ε

2λn−1

)

− log ε
2λn−1

· − log ε + log 2 + (n− 1) log λ

n
.
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If we take the upper limit as n →∞ we obtain

lim sup
n→∞

log sep(n, ε)
n

≤ D(X) · log λ,

and we finish the proof by letting ε → 0.
The previous proposition shows that the topological entropy is in a correlation

with the maximal streching that the map f can make. In this sense, the following
two examples are not surprising (but the rigorous proof is not so simple).

Example 9. One can define the topological entropy for a non-compact metric
space X. If K ⊆ X is compact, we denote by sep(n, ε; K) the maximal cardinality
of an (n, ε)-separated set contained in K and

htop(f ; K) := lim
ε→0

lim sup
n→∞

log sep(n, ε; K)
n

.

Now we define

htop(f) := sup{htop(f ; K) | K ⊂ X is compact}.
Let X be RN and f = L : RN → RN be a linear map. Then

(6) htop(L) =
∑

log |λi|,
where the sum is taken over all eigenvalues λ of L with |λ| > 1. If all eigenvalues
satisfy |λ| ≤ 1, then htop(L) = 0.

The proof of (6) is easy for N = 1 and for the case when the matrix of L
is diagonalizable2 and we leave it to the reader. In the general case, the proof is
slightly more complicated and relies on the Jordan normal form of the linear map.

Example 10. Let X = T2 be the two-torus and

A :=
[

2 1
1 1

]
.

Since A is a matrix with integer entries, the linear map LA : R2 → R2 defined by
A induces the map TA on T2. This map is known as Arnold’s cat map and it can
be proved that htop(TA) = log(3 +

√
5)/2, as in the case of a linear map (note that

the eigenvalues of A are (3±√5)/2).

We would like to mention an important and deep result, due to Yomdin [11]
and Newhouse [8], which has a similar flavor to the previous examples, in the sense
that it concerns the relation between the entropy and a kind of dilatation of f (see
also [2]).

Let M be a smooth Riemannian manifold (by smooth we mean C∞-smooth).
Denote by Σ the set of all smooth compact submanifolds of M . For a Riemannian

2For the latter the following property of entropy can be used: if f × g : X × Y → X × Y is
defined as f × g(x, y) := (f(x), g(y)), then htop(f × g) = htop(f) + htop(g).
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metric g, and σ ∈ Σ of dimension k, let Volg(σ) denote the k-dimensional volume
of σ computed with respect to the measure on σ induced by g. Let f : M → M be
a smooth diffeomorphism. Denote by

v(f, σ, n) = Volg(fn(σ)),

and

v(f, σ) := lim sup
n→∞

log v(f, σ, n)
n

.

Finally, define the volume growth of f as

v(f) := sup
σ∈Σ

v(f, σ).

Theorem 11. [Newhouse, Yomdin] Let M and f be as above. Then htop(f) =
v(f).

3. Coding

In this section, we will try to look at the meaning of topological entropy from
a different angle, which is purely combinatorial.

3.1. Topological entropy via open covers
The following equivalent definition of the topological entropy involves only

open sets. From the fact that the two definitions coincide, it follows that the
topological entropy depends only on the topology defined by the given metric, and
not on the metric itself (hence the term topological).

Let U be an open cover of X, i.e. X =
⋃

U∈U U and all U ∈ U are open. For
a compact set X every open cover has a finite subcover. If we have m open covers
U1, . . . ,Um, define their join by:

m∨

j=1

Uj :=
{ m⋂

j=1

Uj | Uj ∈ Uj

}
.

If f : X → X is a continuous map, and m ≥ 0 an integer, define

f−mU :=
{
f−m(U) | U ∈ U}

.

Note that both
∨m

j=1 Uj and f−mU are open covers of X. Denote by

Un
f :=

n−1∨

j=0

f−j (U) .

Denote by N(U) the minimal cardinality of all open finite subcovers of U . The
topological entropy of f relative to the open cover U is defined as

(7) htop(f,U) := lim
n→∞

log N(Un
f )

n
.
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One can prove that the sequence an := log N
(
Un

f

)
satisfies am+n ≤ an + am, so

the above limit exists (and is finite) due to Fekete’s subadditive lemma.
The following theorem gives the relation between topological entropy defined

by the metric, and the topological entropy defined via open covers.

Theorem 12. It holds:

(8) htop(f) = sup
U

htop(f,U),

where the above supremum is taken over all open covers U of X induced by the
metric d.

The proof of Theorem 12 is quite elementary, but very long and technical, and
it can be found in most classical textbooks on dynamical systems (see [6, 7]).

Remark 13. Let us discuss the definition of N(Un
f ), for a fixed finite open

cover U that has no proper subcover (meaning that the union of any proper subset
of U is not the whole space X). Let U = {U1, . . . , Uk}. We say that the set U is
an alphabet, and that any finite sequence of Uj ’s is a word. We say that a word

(Ui0 , Ui1 , . . . , Uil−1) ∈ U l

is a coding for a finite sequence

(x0, . . . , xl−1) ∈ X l,

if xj ∈ Uij for every j ∈ {0, . . . , l − 1}. Note that the coding of a given sequence
does not have to be unique.

Consider the set Un
f . An element U ∈ Un

f is of the form

U = Ui0 ∩ f−1(Ui1) ∩ . . . ∩ f−(n−1)
(
Uin−1

)
,

for Uij ∈ U . If x ∈ U , then f j(x) ∈ Uij for j ∈ {0, . . . , n − 1}, so the word
(Ui0 , Ui1 , . . . , Uin−1) is a coding for the finite orbit (x, f(x), . . . , fn−1). So N(Un

f )
is the number of all possible codings for all possible orbits (of length n) of all points
in X. Therefore the term htop(f,U) measures the exponential growth of the number
of words from the fixed alphabet U , that are needed to describe all possible orbits
of the system.

In certain situations, it turns out that the supremum in (8) does not have
to be taken over all open covers of X. This can be particularly convenient for
computations or estimates of the entropy.

Let U be a finite open cover, we define its diameter as

diam(U) := max{diam(U) | U ∈ U}.
The following proposition provides a slight simplification for the calculations. The
proof is in the same spirit as that of Theorem 12.
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Proposition 14. Let Un be a sequence of open covers that satisfy diam(Un) →
0, as n →∞. Then the limit lim

n→∞
htop (f,Un) exists and

htop(f) = lim
n→∞

htop (f,Un) .

3.2. Polynomial entropy in wandering setting
Let us try to illustrate a possible reduction of the set of all finite open covers

to a smaller set. We consider an invariant that measures polynomial instead of
exponential orbit growth, i.e., polynomial entropy, in a special (wandering) envi-
ronment.

A subset A ⊂ X that satisfies the condition fn(A) ∩ A = ∅ for all n ≥ 1,
is called a wandering set. A point x ∈ X is wandering if it has a wandering
neighbourhood. The point that is not wandering is said to be non-wandering.
More precisely, the point x ∈ X is non-wandering if for every neighbourhood U 3 x
there exists n ≥ 1 with fn(U) ∩ U 6= ∅.

Example 15. If f : S1 → S1 is a rational rotation as in Example 2, then
every subset of S1 is not wandering and every point x ∈ S1 is non-wandering. More
generally, for any dynamical system every periodic (and in particular fixed) point
is non-wandering.

In the case of a non-decreasing continuous interval map, every point that is
not fixed is wandering. Namely, if f(x0) > x0 then for some δ > 0 the interval
(f(x0−δ), f(x0 +δ)) = f(x0−δ, x0 +δ) is to the right of the interval (x0−δ, x0 +δ)
(i.e. f(x0 − δ) > x0 + δ), and since f is non-decreasing, this is true for all
fn(x0 − δ, x0 + δ).

If f : X → X is a contraction, then every point except the unique fixed point
p is wandering. To see this, take ε > 0 and n0 such that:
• B(x0; ε) ∩B(p; ε) = ∅,
• for n ≥ n0 fn(x) ∈ B(p; ε).

All points x0, f(x0), . . . , fn0(x0) are different from each other, because otherwise
f would have a periodic point, which contradicts the fact that f is a contrac-
tion.3 Choose δ ≤ ε such that the balls B(f j(x0); δ) are pairwise disjoint for
j ∈ {0, 1, . . . , n0}. The ball B(x0; δ) is a wandering neighbourhood of x0.

Note also that a point x can be such that the set {x} is wandering but the
point x itself is non-wandering. This is the case for every point x ∈ S1 and an
irrational rotation f .

Let Y ⊂ X be a set consisting only of wandering points. Denote

M(Y ) := sup
x∈X

] {n ∈ N | fn(x) ∈ Y },

3Indeed, suppose fm(y) = y for m ≥ 2 and y is not fixed. Then it holds d(fm(y), fm+1(y)) =
d(y, f(y)) which is impossible since d(fm(y), fm+1(y)) ≤ λmd(y, f(y)) < d(y, f(y)).
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where ]A stands for the cardinality of the set A. If Y is compact, it can be covered
by a finite number of open wandering sets. No orbit can intersect a wandering set
twice, since

fk(x), fm(x) ∈ A, m > k ⇒ fm−k(A) ∩A 3 fm(x).

Therefore M(Y ) < ∞.
Suppose that Yj ⊂ X are compact sets consisting only of wandering points,

for j ∈ {1, . . . , k}. Denote by Y∞ := X \⋃
j Yj . We think of {Y1, . . . , Yk, Y∞} as

of an alphabet. Denote by

An := An(f ; Y1, . . . , Yn)

the set of all codings of all orbits {x, f(x), . . . , fn−1(x)} of length n, i.e. An is
the set of all n-tuples (w0, w1, . . . , wn−1), where wj ∈ {Y1, . . . , Yk, Y∞} and there
exists x ∈ X such that f j(x) ∈ wj , for all j ∈ {0, . . . , n−1}. (Of course, the family
{Y1, . . . , Yk, Y∞} is not an open cover of X, but the coding is still well defined.)

Since all Yj ’s (except Y∞) are compact and contain only wandering points,
each Yj can occur at most M(Yj)n times in each word (w0, w1, . . . , wn−1). There-
fore

(9) ]An ≤
k∏

j=1

M(Yj)n,

i.e. the growth of the number of words corresponding to an alphabet chosen as
described is at most polynomial.

This is a motivation for the definition of the polynomial entropy. The definition
differs from (5) only in the denominator in the limits. More precisely, we define:

hpol(f) := lim
ε→0

lim sup
n→∞

log sep(n, ε)
log n

.

Example 16. As we saw in Example 6, if f is a Lipschitz map with a Lipschitz
constant λ ≤ 1, then sep(n, ε) = sep(1, ε) and hpol(f) also vanishes. This is the
case of Example 1 and Example 2.

Let us prove that this does not have to hold for Example 3. Let f : [0, 1] →
[0, 1] be a continuous strictly increasing map different from the identity and x0 ∈
[0, 1] such that f(x0) 6= x0. It is easy to see that there exists δ > 0 such
that f(x0 − δ, x0 + δ) ∩ (x0 − δ, x0 + δ) = ∅. Since f is monotone, it holds
fk(x0 − δ, x0 + δ) ∩ (x0 − δ, x0 + δ) = ∅ for all k ≥ 1. We claim that the points

x0, f
−1(x0), . . . , f−(n−1)(x0)

are (n, δ)-separated. Indeed, let l, m ∈ {0, . . . , n− 1} and l < m. We have:

d(f l(f−m(x0), fm(f−m(x0)) = d(f−(m−l)(x0), x0) > δ,
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since f−(m−l)(x0) /∈ (x0 − δ, x0 + δ). We conclude that sep(n, δ) ≥ n so

hpol(f) = lim
ε→0

lim sup
n→∞

log sep(n, ε)
log n

≥ lim sup
n→∞

log sep(n, δ)
log n

≥ 1.

There is an analogous definition of the polynomial entropy via open covers,
one should put log n instead of n in the denominator in (7). It is obvious that

htop(f) > 0 ⇒ hpol(f) = ∞.

Considering Remark 13 and the polynomial growth (9), one can guess that
there is a connection between the cardinality of the set of all codings by a family of
wandering sets and the polynomial entropy. More precisely, we have the following
proposition.

Proposition 17. [3] Suppose that a reversible dynamical system f : X → X
has a unique non-wandering point. Let Yj ⊂ X be compact sets consisting only
of wandering points, for j ∈ {1, . . . , k} and Y∞ := X \ ⋃

j Yj. If we define the
polynomial entropy of the family {Y1, . . . , Yk} as

hpol(f ;Y1, . . . , Yk) := lim sup
n→∞

log ]An(f ; Y1, . . . , Yk)
log n

,

then:
hpol(f) = sup{hpol(f ; Y1, . . . , Yk)},

where the supremum is taken over all finite families {Y1, . . . , Yk} of compact sets
consisting only of wandering points.

We can also reduce the set of all possible codings to the set of all finite sets.
Let us assume that the points x1, . . . , xk are wandering and choose k decreasing
sequences Uj,n, for j ∈ {1, . . . , k} such that {Uj,n}n∈N forms a basis of neighbour-
hoods of xj . In [3], it is proved that the limit limn→∞ hpol(f ; U1,n, . . . , Uk,n) exists
and does not depend on the choice of Uj,n but only on the points x1, . . . , xk. Define

hloc
pol(f ; x1, . . . , xk) := lim

n→∞
hpol(f ; U1,n, . . . , Uk,n).

The following proposition has a similar flavour to Proposition 14 (since in
both cases the sets that are crucial in coding have small diameters).

Proposition 18. [3] Let f : X → X be a reversible system with a unique
non-wandering point. Then

hpol(f) = sup
{
hloc

pol(f ;x1, . . . , xk)
}

,

where the supremum is taken over all finite sets {x1, . . . , xk} of wandering points.

Propositions 17 and 18 can be generalized for the case when f is not reversible
and the set of non-wandering points is not a singleton but finite (see [4]).
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In this subsection we have seen that the polynomial entropy is well suited for
the wandering setting. With the topological entropy the situation is exactly the
opposite. Indeed, if we denote by NW (f) the set of all non-wandering points, then
htop(f) = htop

(
f |NW (f)

)
. The estimate (9) shows that the growth of the cardinality

of the set of codings is at most polynomial for the wandering part of a dynamical
system. However, a rigorous proof of the formula htop(f) = htop

(
f |NW (f)

)
is

more complicated. For example, if f is a contraction from Example 1 we have
NW (f) = {p}, and since obviously hpol

(
f |{p}

)
= 0, we get another proof of the

fact mentioned in Example 6.
This is an interesting difference between the topological and the polynomial

entropy: although their definitions are similar, and they share many properties
(which we have not listed here), the first only recognizes the non wandering set,
while the second also recognizes the wandering part.
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