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Abstract. In this paper, we aim to contribute to the planning and implementa-
tion of education in higher mathematics education for students from non-mathematics
study programs, specifically focusing on multivariable calculus, i.e., multiple inte-
grals. Indeed, the outcomes of various empirical studies indicate that students from
non-mathematical faculties struggle to grasp and comprehend multiple integrals and
multivariable functions in general. The research presented in this paper aims to as-
certain whether there is a significant correlation between students’ achievements in
multiple integrals and their achievements in applying knowledge and skills from an-
alytical geometry (to define sets of points in the plane and space, determined by
lines, curves, planes and surfaces). Additionally, the study investigates whether this
correlation potentially varies based on the various instructional teaching approaches.
The presented empirical research was conducted at the Faculty of Engineering, Uni-
versity of Kragujevac, with 72 second-year students, divided into two groups. The
results indicate that the given linear correlation is statistically significant and posi-
tive. Moreover, the differences in correlation coefficients calculated for two groups of
students who acquired knowledge in multiple integrals through different instructional
approaches are not statistically significant. These findings underscore the need to
devote substantial attention to the teaching of multiple integrals, especially in de-
vising methods that enable students to visualize specific mathematical concepts in
both plane and space. Additionally, a precise definition of integration domains, and
an accurate specification of variable bounds, should be emphasized in the multiple
integrals teaching and learning process.
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Introduction

The main goal of this research is to establish the influence of the proper stu-
dents’ knowledge and skills about defining sets of points in plane and in space,
which students gain during their mathematical education regarding analytical ge-
ometry in plane and in space onto their achievements in solving multiple integral
problems. In many educational studies, the researchers are trying to identify and
compare different methodologies regarding teaching and learning process of vari-
ous mathematical contents, and so it is for calculus contents as well. On the other
hand, for the most mathematics contents it is very important for students that they
have already acquired mathematical knowledge regarding the teaching content that
they should learn and understand in the present moment. As is already stated in
some research regarding teaching and learning of multiple integrals [11, 14, 16, 19]
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when students encounter double or triple integral tasks, two kinds of problems may
appear. One of them is regarding the process of calculating multiple integral that
is directly connected with students’ knowledge and skills regarding calculation of
the definite integral. In that manner, students must master solving definite in-
tegrals and have procedural knowledge about decomposition, about substitution,
and about integration by parts. The other problem regards the lack of students’
success in defining the integration area and setting boundaries for the variables.
This is basically the first part of solving multiple integrals process, because in the
most cases, the task is posed in manner that the integral function is given and
students are informed about which mathematical objects, with their intersections,
determine the integration area for the multiple integrals. So, for students to start
calculating multiple integrals, they must use graphical representation of objects,
and use the algebraic representations of those objects and to solve some equations
and inequalities to determine the boundaries for the multiple integral. This part
of the task shouldn’t be too hard for the students of mathematics study programs,
because before the course of Mathematical Analysis in which they learn about mul-
tiple integrals, they have entire Analytical Geometry course in which they acquire
this type of knowledge and skills. On the other hand, for students from technical,
mechanical, and other non-mathematics academic study programs, understanding
properties of different surfaces in space and understanding their interrelations is
not so easy because in their mathematical curriculum, less attention and less time
is paid for these contents. It is therefore crucial to provide students with appro-
priate visualization of educational content, coupled with an analytical approach to
learning, for them to achieve successful learning outcomes.

Theoretical background

To solve concrete problems from analytic geometry and from multivariable
calculus students need to visualize the adequate mathematical concepts in plane
and/or in space. According to [20], to visualize means to construct, create, or make
connections between an external mathematical object or its representation (a di-
agram, a table, or a picture) and a mental (internal) construct or image and use
analytical approach to develop and advance understanding. Interaction with the
mental image can be through physical models, manipulatives, sketches, computer-
based static outputs, or animations such as simulations [20]. The author of [2] has
stated about visualization: “It’s the ability, the process and the product of cre-
ation, interpretation, use of, and reflection upon pictures, images, diagrams, in our
minds, on paper or with technological tools, with the purpose of thinking about and
developing previously unknown ideas and advancing understandings”. According
to [20], the process of visualization involves the interplay and interrelation between
the mental cognitive framework and the tangible or digital mathematical object
or its representation, whether that representation is internal or external. Sheikh
explains that this connection can manifest in two possible directions. Visualization
can entail mentally constructing objects that are derived from externally observed
entities, or it can involve creating objects or scenarios on an external medium, like
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paper, a chalkboard, or a computer screen, which correspond to concepts or pro-
cesses held in an individual’s mind. Tall [21] argued that dismissing visualization
equates to disregarding the origins of numerous fundamental mathematical con-
cepts. He pointed out that during the initial phases of formulating theories by
students like functions, limits, and continuity, visualization played a pivotal role
in generating foundational ideas. Gutierrez [6] asserted that visual depictions, en-
compassing images, graphs, or illustrations, whether conceived mentally, sketched
on paper, or generated through dedicated software applications, can enhance con-
ceptual comprehension, and play a notable role in the process of discovery.

To manage analytic geometry in space and multiple integrals, students must
have some kind of spatial ability. Spatial ability refers to cognitive functions and
competence that is crucial in solving problems that involve manipulating and pro-
cessing visuo-spatial information [7, 13]. Studies identified indications of robust
spatial-mathematical correlations and the application of spatial interventions lead-
ing to enhanced mathematical comprehension [25]. McGee [15] defines spatial abil-
ity as a collection of four concepts:

(1) imagines the rotation of an object, e.g., zy projection onto 3D object;
(2) fold a net and unfold an object, e.g., sector of a circle in 2D into a cone in 3D;

(3) imagine movements such as translations, rotations, enlargements of 3D ob-
jects;

(4) transform or manipulate spatial patterns into other arrangements, e.g., object
in rectangular to spherical or cylindrical coordinate systems.

Zimmermann [27] discussed the role of visualization in calculus: “the role of
visual thinking is so fundamental to the understanding of calculus that it is diffi-
cult to imagine a successful calculus course which does not emphasize the visual
elements of the subject”. In the study [8], the author reached the conclusion that
fostering the ability for visualization, which impacts the correlation between graph-
ical representations and other forms of representations, enhances the performance
in resolving definite integral problems. Delice et al. [3] concentrated on evaluating
the sketches created by university students while tackling volume problems involv-
ing integrals. Their research demonstrated that students possessing both algebraic
and spatial skills achieve success in the problem-solving process. In a separate
study [10], the authors endeavored to establish whether spatial visualization skills
exert influence on grades in calculus courses. Their findings indicated that spatial
visualization skills have the potential to serve as a predictor for success in a calculus
course. Tall [22] has stated, “of all the areas in mathematics, calculus has received
the most interest and investment in the use of technology”.

Multiple research studies propose that dynamic visualizations, in contrast to
static visualizations, offer greater advantages to students, including those in engi-
neering fields [9]. The level of interactivity within visualizations plays a pivotal
role, with a higher degree of interaction improving comprehension, fostering deeper
learning, and enhancing interactive visualizations. This approach has found exten-
sive application in the realm of science and engineering education [18]. Software
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tools are frequently employed to visualize calculus concepts [16, 24]. In their study
[23], the authors demonstrated that their students, utilizing GeoGebra, invested
more time in analyzing correlations between formulas and their graphical represen-
tations. Furthermore, GeoGebra proved beneficial in helping students with limited
prerequisite knowledge, necessary for problem-solving, to enhance their understand-
ing. The challenge of imagining and sketching in three dimensions posed significant
difficulties for students tackling multivariable calculus [11]. Given the positive im-
pact observed in numerous studies regarding this approach’s effect on students’
comprehension, the integration of technology into calculus education needs serious
consideration [26].

Concerning the role of calculus from the perspective of mathematics educa-
tors, they generally view calculus as an essential component of the mathematics
curriculum and regard it with a higher level of significance and complexity com-
pared to other mathematical subjects such as algebra and geometry [1]. One of the
possible reasons is precisely that dealing with calculus requires certain knowledge
of algebra and geometry.

In the study [5], the authors claim that mechanical engineering students have
difficulty understanding multiple integrals. One of the errors that students made
during multiple integration was that some students could not sketch the regions
of integration correctly, which later influenced their success in solving tasks. Co-
ordination and conversions between the graphical and analytical representations
of the integration domain are often found to be highly beneficial, if not essential,
as emphasized by [4]. Several misconceptions have been identified in research [12]
regarding double integral misconceptions by engineering students. Two of them
include challenges related to the graphical representation of surfaces that form the
integration region, and the transition from Cartesian to polar coordinate systems.
Other difficulties refer to altering the order of integration, challenges in establishing
the integral and algebraic complexities. Furthermore, in another study [17] that
explored students’ comprehension of the limits of integration in double integrals
using the APOS theory framework, it was observed that some students possessed
a basic ability to formulate integrals but appeared to lack a solid geometric un-
derstanding of the significance of these limits which points to a deficiency in their
foundational knowledge.

Purpose of the study

Having in mind, as we stated earlier, that there are efforts to a certain extent in
identifying methodological approaches for teaching and learning multivariable cal-
culus with introducing technology [10, 16, 20], we wanted to investigate are there
differences in strength of influence (correlation coefficient) of students’ knowledge
and skills about determining and defining sets of points with given mathematical
objects (in which visualization of mathematical objects have great impact) on the
students’ success in solving multiple integral tasks, for different teaching and learn-
ing approaches (approach, which is conducted with the use of dynamical software,
and an approach in which technology is not implemented, but both with an accent
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on the visualization of mathematical objects). For those purposes, we conduct-
ed the research in which we carry out teaching of the multiple integrals with 72
second-year students from the Faculty of Engineering in Kragujevac, where the
accent is put on the visualization and analysis of the objects that determine the
integration area and on the setting boundaries for the given variables. To deter-
mine the presence or absence of the significant difference in the linear correlation
between students’ knowledge about the defining set of points in plane or in space
and students’ achievements in solving multiple integral tasks, whether technology
is meaningfully used in teaching, or it is not used, students were divided into two
groups. Practical classes in which students learned about multiple integrals were
realized in the traditional way, with writing and drawing on the blackboard by the
teacher and students and with continuous discussions in one group, while in the sec-
ond group students used the applications Graphing Calculator and 3D Calculator
during their learning process.

Research questions

In our research, we had two research questions.

Q1. Is there a statistically significant linear correlation between students’ success
in solving tasks in which they must define the appropriate set of points in
plane and/or space and set boundaries for the variables and their success in
solving multiple integral tasks (which will implicate that it is necessary for
students to master contents from analytic geometry to solve multiple integral
tasks)?

Q2. Is there statistically significant difference between the correlation coefficients
for solving analytical geometry tasks and multiple integral tasks for two dif-
ferent groups of students—the students who used appropriate mobile appli-
cations for the visualization for the parts of plane or/and space and for the
students who didn’t use them, but made appropriate images using paper and
pen (chalk and blackboard)?

Material and methods

Theoretical lectures from the Mathematics 3 course were conducted in an
identical way in both groups of students, and in those classes the teacher introduced
the students to theoretical concepts related to multiple integrals, making an analogy
with a definite integral. When it comes to practical classes, classes with one group
took place in a traditional way and we will call that group the control group. In
control group the teacher used the blackboard to visualize objects that determine
the integration area, and students made sketches in their papers. The teacher
also combined the graphical and algebraic representations of those mathematical
concepts during practice. Lessons with another group of students were realized
with the use of GeoGebra applications Graphing Calculator and 3D Calculator. We
will call the latter group the experimental group, since the teaching practice in that
group of students has been changed to a greater extent. What should be emphasized
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is that the teacher, in the work with both groups of students (in addition to the
complete implementation of the procedure for calculating multiple integrals when
the limits of the variables were clearly specified), emphasized the detailed analysis
of the area by which the integration is performed. Namely, the students of these
study programs, in their curriculum, didn’t have a great extent of classes for the
realization of teaching content related to analytical geometry in space, while when
it comes to content related to analytical geometry in plane, they previously showed
some gaps in their (prior) knowledge.

Having in mind that for the appropriate determination of the domain over
which the integration is performed, as well as for the correct determination of the
limits of the variables, it is necessary for students that they have proper knowledge
about the elementary functions of one variable, solving equations and inequalities,
knowledge about basic surfaces, lines and planes in space, so the teacher paid special
attention for the analysis of given mathematical objects and their interrelations.
In working with the students of the control group, the teacher associated both
an algebraic representation and a graphic representation on the blackboard of each
mathematical object that determines the domain on which integration is performed.
On that occasion, he pointed out to the students that changes in the algebraic
notation of mathematical concepts also affect the geometric properties of these
objects. After determining the domain on which the integration is performed, and
after determining the limits for the variables, he moved on to the calculation process
of multiple integrals.

When it comes to working with the students in the experimental group, the
process of calculating the integral proceeded as usual (as well as in the control
group of students), while the procedure for solving the task that preceded the
implementation of the calculation process was changed and modernized. In order
to better visualize the corresponding mathematical concepts, the teacher introduced
the students to two very simple and receptive to them, GeoGebra applications—
Graphing Calculator and 3D Calculator. The teacher introduced the students to
the fact that for the purposes of drawing graphs of functions of one variable, for
solving equations and systems of equations using the graphical method, as well as
for graphically representing mathematical objects in a plane such as circles, ellipse,
parabolas, hyperbolas etc. the Graphing Calculator application can be used, while
the 8D Calculator application can be used for graphing of two-variable functions,
for sketching graphs of lines, planes, surfaces (such as paraboloids, cones, cylinders
etc.) in space, as well as for representing different geometric objects in space.

The students then installed the given two applications on their mobile devices,
which they were asked to bring to the practical classes (with the instruction that it
might be more beneficial to use laptop devices due to the screen size, in order to see
the given objects as well as possible, but of course they could also use their mobile
phones). When solving specific tasks, the teacher let students to independently
enter algebraic representations of mathematical objects that define the domain of
integration, in the appropriate application, then to analyze the obtained images and
try to write down the integration domain using mathematical notation, as well as to
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determine the limits for the given two or three variables. Then the students would
cross out the given pictures in their own notebooks, in order to better master and
to better understand the given procedure. Of course, in order for the students to
better understand the determination of the limits of variables when solving triple
integral problems in the 3D, the students drew the corresponding objects using
3D Calculator, and then the given projections of the bodies on the plane, using
the Graphing Calculator. The students entered some mathematical objects in an
explicit form, but to understand the introduction of variable change using polar
coordinates (in the plane), that is variable changes using cylindrical or spherical
coordinates (in space), they entered some objects in a parametric form. In order
to better understand and acquire proper knowledge about the given changes of
variables, students defined sliders and included leaving a trace option, so they
could visually experience the impact of changing one of the variables to the change
in the position of a point in the plane or in space. On Figures 1, 2 and 3 there are
graphical and algebraic representations of mathematical objects for some concrete
tasks.

Fig. 1. Graphs corresponding to the task in which the integration region is defined
T 1
with planes z =0,z =4, z=x+y, y = 3 and with cylinder y = —
x

During the exercises, students solved problems related to double integrals,
for calculating the integral with a given integral function, as well as problems in
which the double integral had to be applied to calculate the area of a part of the
plane. Similarly, students solved tasks related to triple integrals, for calculating
triple integrals with a given integral function, as well as tasks in which the triple
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Fig. 3. Graphs corresponding to the task in which the integration region is defined
with sphere z2 4 y2 + 22 = z and with conus z = /22 + y2

integral had to be applied to calculate the volume of a part of space. In the
work with students of both groups (control and experimental), identical tasks were
solved. For this purpose, nine practical classes were realized, both with control and
experimental group of students.
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Results and discussion

Statistical analysis of results of the pretests

After forming the experimental and control group, both groups of students
solved the pre-test. The students had 30 minutes to complete the test which con-
tained four tasks. For solving the tasks, students had to display theoretical and
practical knowledge regarding solving definite integrals (with knowledge about def-
inite integral properties, method of substitution, integration by parts method).
Students could not use any help in solving tasks on the pre-test (computers or
telephones). The maximum number of points on the pre-test was 20.

In the pre-test there were no statistically significant differences between the
groups tested, the experimental and control group at the level of significance of
0.05. The results of the statistical analysis are given in Table 1.

Table 1. Statistical results of the pre-test

Student’s t-test
Number of .
Group Mean Std. deviation
students ¢ p (2-tailed)

af

Experimental 35 11.09 3.89
70 —0.6 0.55

Control 37 10.51 4.16

Statistical results of the test

The maximum number of points that students could score on the test was 50.
The number of points that students could achieve on the test for each task is given
in Table 2. There were no negative points on the test.

Table 2. Maximum number of points of the per task

Task 1. |2 3. 4. 5.16.17. 18 1]09.] 10

Maximum number of points 313[3+3|3+3|3|6|6|6]|6 5

In the first five tasks, the request in the task was not to solve the multiple
integral tasks, but to define the proper set of points in plane or in space that
is bounded with given mathematical objects. In those five tasks, students had
to define ordered sets of points after introducing change of variable (one task for
polar, one for cylindrical, and one for spherical variables), and in one task students
should redefine the ordered pair of points and to present the independent variable
as dependent one and vice versa.

In the second five tasks, students solved multiple integrals (two double inte-
grals and three triple integrals). While solving those five tasks, students should
solve one double integral after introducing polar coordinates, one triple integral af-
ter introducing cylindrical coordinates, one triple integral after introducing spher-
ical coordinates (see Appendix).
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To illustrate the connection between the results achieved by the students while
solving the first five tasks and the students’ achievements in solving other five tasks,
the linear correlation of the two variables was examined. Pearson’s correlation
coeflicient of variables, which represents the number of points students achieved by
solving the first five tasks on the test and the number of points students achieved
by solving the second five tasks on the test, is equal to 0.809 (Table 3 and Figure 4)
which is considered as a strong and positive, statistically significant correlation
(p < 0.0005). This result indicates that students who achieved better results in
solving the first five tasks had better achievements in solving the second five tasks

on the test.

Table 3. Correlation statistics between the number of points that students achieved by solving the

first five tasks and the second five tasks on the test

Total number of points that students achieved for
solving second five tasks

Pearson Correlation

Total number of points that 0.809
students achieved for solving Coefficient
first five tasks p (2-tailed) < 0.0005
N 72
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Fig. 4. Correlation between the number of points that students achieved by solving the first

five tasks and the number of points achieved by solving the other five tasks on the test

We also wanted to examine the influence of the students’ knowledge about
the change of variables (with polar, cylindrical, or spherical variables) needed for
solving some types of double and triple integrals on the students’ success in solving
the multiple integrals in which these changes should be introduced. In Figure 5
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and Table 4, we can see that there is also significant (p < 0.0005) strong and
positive (r = 0.703) correlation between these two variables, which implies that
for the better students’ achievement in defining the area in plane or space after
introducing change of variables, students achieve better results in solving multiple
integral tasks where the mentioned change is necessary.

Table 4. Correlation statistics between the number of points that students achieved by solving the
tasks in which they needed to introduce the switch of variables

Total number of points that students achieved for solving
multiple integrals tasks in which they should transform
coordinate system after introducing the variables switch

Total number of points that Pearson'@orrelation 0.703
students achieved for Coefficient
solving tasks in which they
should transfprm coo'rdmate p (2-tailed) < 0.0005
system after introducing the
variables switch
N 72
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Fig. 5. Correlation between the number of points achieved by students when solving

the tasks in which they needed to introduce change of variables

These results imply that as long as students better understand the geometrical
property of various 2D and 3D objects and their interrelations they better solve
double and triple integral tasks. Moreover, as long as they better understand in
which way the change of variables maps the Cartesian coordinate system (Ozy
when we introduce the change to polar coordinates or Oxyz when we introduce
the change to cylindrical or spherical coordinates) the better they solve multiple
integral tasks in which the change of variables should be introduced.
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After determining the existence of a significant, strong, positive correlation
between students’ success in defining sets of points in space or plane and solving
multiple integral tasks, we wanted to examine the equality of correlation coefficients
calculated for the group of students who used mobile applications for visualization
of the aforementioned sets of points and the group of students who did not use
mobile applications (who visualize those figures by drawing by hand).

Table 5. Correlation statistics between the number of points that two groups of students achieved
by solving the first five tasks and the second five tasks on the test

Total number of points that students achieved for solving second five tasks
Control group Experimental group
Total number of Pearson Pearson
points that students Correlation 0.828 Correlation 0.761
achieved for Coefficient Coefficient
solving first five p (2-tailed) < 0.0005 p (2-tailed) < 0.0005
tasks
N 37 N 35

group: control
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Fig. 6a. Correlation between the number of points that control group students achieved by solving
the first five tasks and the number of points achieved by solving the other five tasks on the test

To examine the equality of the correlation coefficients 7con = Texp We used the
z-test to compare the correlation coefficients of two samples. First, we calculate the

z values for both samples according to the formulas z¢on = % In ( }f%) and Zzexp =

Lin (P52 ). So we get zeon = 31n (HEB525) = 1182, 20y = 31n (1£5201) =

0.999. Further, we have z = Z;""_Ze"" — = 1'1?_0'993 = 0.744. Having in
Treon—3 " Nexp—3 \/37—3+35—2

mind that o = 0.05, critical area for the given test is (—oo, —1.96) U (1.96, +00),
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group: experimental
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Fig. 6b. Correlation between the number of points that experimental group students achieved by

solving the first five tasks and the number of points achieved by solving the other five tasks

and since —1.96 < 0.744 < 1.96, we can conclude that we can accept the hypothesis
that there is no statistically significant difference between the correlation coefficients
between the total number of points achieved on the first five tasks and the total
number of points achieved on the second five tasks, in the control and experimental
groups of students.

Analogous to the previous procedure, we examined whether there are statis-
tically significant differences between the correlation coefficients of the control and
experimental groups of students between the total number of points that students
achieved for solving tasks in which they should transform the coordinate system af-
ter introducing the change of variables and the total number of points that students
achieved for solving multiple integral tasks in which they also should transform the
coordinate system after introducing the change of variables.

Using the abovementioned z-tests, we get zcon = %ln (}fg:ggg) = 0.793,
Zowp = 310 (HE0T82) = 0877 and » = —GTULSTT — 0343, Since ~1.96 <
37-3135-2

—0.343 < 1.96, we can again accept the hypothesis that there is no statistically
significant difference between the correlation coefficients in the total number of
points achieved on the tasks were students transformed the coordinate system after
introducing change of variables and number of points that students achieved while
solving multiple integrals where the cahenge of variables and transformation of the
coordinate system is done previously.
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Table 6. Correlation statistics between the number of points that two groups of students achieved
by solving the first five tasks and second five tasks in which students needed to introduce the
switch of variables

[ Total number of points that students achieved for solving multiple integrals
tasks in which they should transform coordinate system after introducing the
variables switch
Control group Experimental group
Total number of points Pearson Pearson
that students achieved . ;
. . Correlation 0.660 Correlation 0.705
for solving tasks in
which they should Coefficient Coefficient
transform coordinate
system after p (2-tailed) < 0.0005 p (2-tailed) < 0.0005
introducing the
variables switch
N 37 N 35

group: control

should
g the
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Fig. 7a. Correlation between the number of points that control group students achieved by solving

the first five tasks and the number of points achieved by solving the other five tasks in which

students needed to introduce the switch of variables

Since there is no significant difference in the linear correlations of students’
success (for the two groups of students) in solving tasks in which they have to show
knowledge about determining sets of points defined with some mathematical ob-
jects and setting boundaries for variables and theoretical and practical knowledge
about solving multiple integral tasks, we can confirm that as long as we better
teach students to visualize and to know, understand and analyze some concepts
from analytical geometry (in plane or in space), by using different methods and
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Fig. 7b. Correlation between the number of points that experimental group of students achieved
by solving the first five tasks and the number of points achieved by solving the other five

tasks in which students needed to introduce the switch of variables

methodological approaches, and as long as they better acquire the proper knowl-
edge, the better results they will achieve while solving multiple integrals.

Conclusion

After analyzing students’ success in determining parts of space, and/or plane
defined by some lines, planes, surfaces etc. and students’ success in solving double
and triple integral problems, we can conclude that there is a strong connection
between these students’ achievements. It is shown that as better the knowledge and
skills students have in determining the sets of points specified with some objects
in plane and determining sets of points which belong to the body bounded with
planes and surfaces in space, the better results they achieve when they solve double
and triple integral tasks. This is a very significant result because it highlights the
importance for the teacher to be sure that students can visualize and understand
in which way the integration domain is defined and how to define bounds for the
variables in the concrete task. Only when the teacher is quite sure that students
have achieved an appropriate level of reasoning and understanding, they can go
further into the calculation process of multiple integrals.

The other, also quite significant conclusion of our research is that there is
no statistically significant difference between the correlation coefficients for two
groups of students (the students who used mobile applications for the visualisation
of the integration area and the students who visualized those areas using chalk
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and blackboard, i.e., pencils and notebooks) when it comes to their success in de-
termining sets of points defined by some mathematical objects and using changes
of variables to redefine those sets of points (which should be significant in order
to calculate multiple integrals) and students’ success in solving concrete multiple
integral tasks. As mentioned earlier, there have been some studies to determine
methodological approaches that influence positively on the students’ outcomes in
determining the domain for multiple integrals and to set boundaries for variables
in order to calculate the multiple integral task. Having that in mind, this result is
quite significant because, based on the results of this research, the better students
understand the geometric properties of lines, curves (in the plane), and planes and
surfaces (in space), as well as how the Cartesian coordinate system is mapped in
the plane (by using polar coordinates), i.e., how the Cartesian coordinate system in
space is mapped (by using cylindrical or spherical coordinates), the better results
they have in solving multiple integral tasks. These results provide us with feedback
and give us an impuls to further investigate how the visualization of mathematical
concepts and their mutual relations could be further accelerated (by meaningful
use of technology, which can be used in different ways, and also perhaps by creat-
ing teaching aids and manipulatives that could help us enable students to create
appropriate visual representations). Some further research could be carried out in
that direction.

Appendix
Test

1. Determine the area of domain D in the coordinate plane xQy if it is bounded
by the line z = 2, parabola y = 22 and hyperbola zy = 1.

2. Represent the set of points D = {(x,y) | 0 <z < 2,22 <y < 2z} in plane in
the form D' = {(z,y) | a(y) <z < B(y),c <y < d}, so that variable y is the
independent one, and variable z dependent one.

3. Determine the set of ordered pairs (¢, ) that are (after the appropriate change
of variables) mapped onto the subset D in coordinate plane xOy:

a) D={(z,y) |1 <a®+y* <12}
b) D = {(z,y) | 2z < 2® +y? < 4}.

4. After the appropriate change of variables, determine:

a) ordered triplet (p, ¢, z) that corresponds to the point in space M (1, —1,4);
b) set of ordered triplets (p,p,z) that are mapped onto the 3D area V

bounded by the cone z = /2 + y2, cylinder 22 + y? = 16 and plane

z=0.
5. Determine the set of ordered triplets (p, ¢, 8) that is mapped onto the 3D area
V bounded by the sets of points given by equations z = /16 — 22 — y2 and

2z = /25 — 22 — 92, after using change to spherical coordinates.

6. Calculate [/ p  dz dy if the domain D is determined by the z-axis, line x = e
and the graph of real function y = Inz.
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10.

1

(2]

[4

[5]

[10]

(11]

(12]

(13]
14]
[15]

[16]

Calculate [[}, cos(z? 4 y?) da dy if the domain D is determined by the central
circle with radius 3, for y > 0.

Calculate the volume of the body determined by the planes z = 0, =z = 6,
y =0,y =4, z=0 and the graph of function f(z,y) = zy.

Calculate [[[, e* dxdydz if the domain V' is bounded by the sets of points
defined by the equations z = 1 + 22 + 3% and 22 + 42 = 5.

Calculate [[[, (2% +y®+2?) dx dy dz if the domain V is bounded by the central
sphere with radius 5.
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