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Abstract. Starting from the well-known and elementary problem of inscribing
the rectangle of the greatest area in an ellipse, we look at gradually more and more
complicated variants of this problem. Our goal is to demonstrate to an average but
motivated student of Calculus how to start from an inconspicuous textbook problem
and to arrive at considerably more interesting and complicated problems, some of
which can be subjects of independent research.
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Introduction

The following problem is a standard staple of Calculus textbooks (see e.g.
[6, p. 344, Problem 30]). What are the dimensions of the rectangle of the greatest

area inscribed in the ellipse
x2

a2
+

y2

b2
= 1? A little bit more interesting (but also

simple) problem of finding the rectangle of the greatest perimeter inscribed in the
ellipse is employed in Calculus textbooks considerably less often. We add to these
two problems the third one: to find the rectangle inscribed in the ellipse with the

greatest ratio
S

P 2
, where S is the area of the rectangle and P is its perimeter.

After looking at the solutions to these problems in the case of an ellipse we
discuss possible generalizations in three incremental steps.

I. We consider rectangles inscribed in the curve
|x|α
Aα

+
|y|α
Bα

= 1, where A,B and
α are positive real numbers.

II. We slightly change the problem by considering the rectangles inscribed in the

curve
|x|α
Aα

+
|y|β
Bβ

= 1, α > 0, β > 0. As the reader will see, this small change
makes some of our three problems more difficult to solve.

III. We discuss the case of differentiable (or piecewise differentiable) closed curves
symmetric about the x and y-axes, state some results, and pose some open
problems.1

1We would like to emphasize that optimization is not our area of expertise, and when we
state that a problem is open, we mean by it that we were not able to find its solution in the
literature.
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In the second part of the paper, we consider similar problems related to rectan-
gular parallelepipeds inscribed in surfaces symmetric about the coordinate planes.
As can be expected, some of these problems are considerably more interesting and
difficult than the corresponding two-dimensional problems.

Part 1. Optimization problems in two dimensions

Part 1A. Ellipse

(a) Find the dimensions of the rectangle of the greatest area inscribed in the

ellipse
x2

a2
+

y2

b2
= 1.

Notice that the area of an inscribed rectangle is 4xy, where (x, y) is the vertex
of the rectangle in the first quadrant. This expression attains its maximum together

with the product
x2

a2
· y2

b2
. Using the well-known fact that the product of two

nonnegative numbers u and v with a fixed sum s takes its greatest value if and only

if u = v =
s

2
we see that

x2

a2
=

y2

b2
=

1
2
. Hence, the dimensions of the rectangle of

the greatest area inscribed in the ellipse are 2x = a
√

2, 2y = b
√

2 and its area is
2ab.

Remark 1. The rectangle with the area 2ab inscribed in the ellipse
x2

a2
+

y2

b2
=

1 is unique, but there are infinitely many (continuum) quadrilaterals of the same
area inscribed in this ellipse. All of them are parallelograms and one of them is the
rhombus with the vertices (a, 0), (−a, 0), (0, b), (0,−b). We refer the reader to [3]
for an excellent presentation of proof of these facts.2

(b) Find the dimensions of the rectangle of the greatest perimeter inscribed in the

ellipse
x2

a2
+

y2

b2
= 1.

We have to maximize the sum x + y subject to
x2

a2
+

y2

b2
= 1, x > 0, y > 0.

The method of Lagrange multipliers provides the equations

1 =
2λx

a2
=

2λy

b2
.

Thus, y =
b2

a2
x, and combining this equation with the equation of the ellipse we

easily conclude that,

x =
a2

√
a2 + b2

, y =
b2

√
a2 + b2

.

2To avoid possible ambiguity let us agree that by a rectangle inscribed in a curve symmetric
about the coordinate axes we always understand a rectangle with the vertices on the curve and
the axes of symmetry parallel to the coordinate axes. Similar agreement relates to rectangular
parallelepipeds inscribed in surfaces symmetric about coordinate planes.
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Fig. 1

The maximum perimeter is Pmax = 4
√

a2 + b2. Notice that the rhombus inscribed
in the ellipse has the same perimeter. Figure 1 shows the rectangle of the greatest

perimeter and the rhombus inscribed in the ellipse
x2

16
+

y2

9
= 1.

Problem 1. Is it true that the perimeter of any quadrilateral inscribed

in the ellipse
x2

a2
+

y2

b2
= 1 does not exceed 4

√
a2 + b2? If it is true, are there

any quadrilaterals with perimeter 4
√

a2 + b2, except the rectangle of the greatest
perimeter and the rhombus?

(c) Find the dimensions of the rectangle inscribed in the ellipse
x2

a2
+

y2

b2
= 1 with

the greatest ratio R =
S

P 2
, where S is the area of the rectangle and P is its

perimeter.
We have to maximize the ratio

xy

(x + y)2
subject to

x2

a2
+

y2

b2
= 1, x > 0,

y > 0. Equivalently, we have to minimize
(x + y)2

xy
=

x

y
+

y

x
+ 2. Using Lagrange

multipliers, we write
1
y
− y

x2
=

2λx

a2

1
x
− x

y2
=

2λy

b2
.

From these equations and the equation of the ellipse follows that λ = 0. Therefore,

x = y =
ab√

a2 + b2
and Rmax =

1
16

.

Problem 2. Is it true that for any quadrilateral inscribed in the ellipse
x2

a2
+

y2

b2
= 1 the ratio R =

S

P 2
does not exceed

1
16

? If it is true, are there any
quadrilaterals, inscribed in the ellipse, except the square, for which this value of R
is attained?
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Part 1B.
|x|α
Aα

+
|y|α
Bα

= 1, α > 0 (1)

(a) The same reasoning as in Part 1A (a) shows that the dimensions of the rec-

tangle of the greatest area inscribed in the curve
|x|α
Aα

+
|y|α
Bα

= 1 are defined

by the equations
xα

Aα
=

yα

Bα
=

1
2
. Hence, x = 2−1/αA, y = 2−1/αB, and the

maximal area is 4xy = 22−2/αAB.

Remark 2. It follows from the definition of the Beta function (see e.g. [1]) that

the area of the region bounded by the curve
|x|α
Aα

+
|y|α
Bα

= 1 is 4AB
B( 1

α , 1
α + 1)
α

.
Thus, the ratio of the greatest possible area of a rectangle inscribed into the curve
(1) and the area of the region bounded by this curve is Rmax(α) =

α

22/αB( 1
α , 1

α + 1)
.

We leave it to the reader to verify that Rmax(α) is a strictly decreasing function of
α and that limα→0+ Rmax(α) = 0 and limα→∞Rmax(α) = 1.

(b) The problem of inscribing the rectangle of the greatest (or smallest) possible
perimeter into the curve (1) can be stated as optimizing the sum x+y subject

to
xα

Aα
+

yα

Bα
= 1, x > 0, y > 0.

Using the Lagrange multipliers, we obtain
λαxα−1

Aα
=

λαyα−1

Bα
= 1. Combin-

ing these equations with (1) we obtain

x =
Aα/(α−1)

(Aα/(α−1) + Bα/(α−1))1/α
, y =

Bα/(α−1)

(Aα/(α−1) + Bα/(α−1))1/α
,

P = 4(x + y) = 4(Aα/(α−1) + Bα/(α−1))(α−1)/α.

To find out whether these values of x and y provide the maximum or the minimum
of x + y we look at the bordered Hessian. We refer the reader to [2, pp. 383, 384]
for the definition of bordered Hessian. In our case the bordered Hessian is

H =

∣∣∣∣∣∣∣∣∣∣∣

0
αxα−1

Aα

αyα−1

Bα

αxα−1

Aα

α(1− α)xα−2

Aα
0

αyα−1

Bα
0

α(1− α)yα−2

Bα

∣∣∣∣∣∣∣∣∣∣∣

=
α3(α− 1)(xy)α−2(xαBα + yαAα)

A2αb2α
.

Therefore, if α > 1 then H > 0 and formulas (2) define the inscribed rectangle of
the greatest perimeter, while if α < 1 then H < 0 and these formulas define the
inscribed rectangle of the smallest perimeter.

Remark 3. Instead of using the bordered Hessian we can notice that when
x = 0 or y = 0 the perimeter of the (degenerated) rectangle is 4B, respectively 4A,
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and that

4(Aα/(α−1) + Bα/(α−1))(α−1)/α > 4 max(A, B) if α > 1 and

4(Aα/(α−1) + Bα/(α−1))(α−1)/α < 4 min(A,B) if α < 1.

Remark 4. It is trivial to notice that if α = 1 and A 6= B then neither the
inscribed rectangle of the greatest perimeter, nor the one of the smallest perimeter,
exist. While if A = B, all the inscribed rectangles have the same perimeter.

Figure 2 shows the rectangle of the greatest perimeter inscribed into the curve

|x|3 +
|y|3
8

= 1. The coordinates of the vertex of the rectangle in the first quad-

rant are x =
1

3
√

1 + 2
√

2
≈ 0.6392340079, y =

2
√

2
3
√

1 + 2
√

2
≈ 1.808026807. The

maximum perimeter is 4(x + y) = 2(1 + 2
√

2)2/3 ≈ 9.789043256.

Fig. 2

On Figure 3 we see the rectangle of the smallest perimeter inscribed in the

curve 3
√

x +
3
√

y

2
= 1. The coordinates of the vertex of the rectangle in the first

quadrant are x =
1

(1 + 1/2
√

2)3
≈ 0.4032494905, y =

x

2
√

2
≈ 0.1425702245. The

perimeter of this rectangle is Pmin =
1

(1 + 1/2
√

2)2
≈ 2.183278859.

(c) We consider the problem of inscribing in the curve (1) the rectangle with the

greatest ratio R =
S

P 2
=

xy

4(x + y)2
.

Equivalently we have to minimize
(x + y)2

xy
=

x

y
+

y

x
+2 subject to

xα

Aα
+

yα

Bα
=

1, x > 0, y > 0. The same reasoning as in Part 1A (c) shows that the maximum

value of R, Rmax =
1
16

is attained when x = y.
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Fig. 3

Part 1C. The curves
|x|α
Aα

+
|y|β
Bβ

= 1, α, β > 0 (2)

(a) To find the dimensions of the rectangle of the greatest area inscribed in a
curve (2) we use the method of Lagrange multipliers:

y =
αλxα−1

Aα
, x =

βλyβ−1

Bβ
. (3)

From (3) follows
αλxα

Aα
=

βλxβ

Bβ
= xy and therefore,

yβ

Bβ
=

xα

Aα
· α

β
. (4)

Combining (2) and (4) we obtain

x = A
[ β

α + β

]1/α

, y = B
[ α

α + β

]1/β

,

Smax = 4AB
α1/ββ1/α

(α + β)1/α+1/β
.

(b) Optimize the sum x + y subject to
xα

Aα
+

yβ

Bβ
= 1, x > 0, y > 0.

Proposition 1. (1) If α > 1 and β > 1, then the rectangle of the greatest
perimeter exists and is unique. The rectangle of the smallest perimeter does not
exist.

(2) If α < 1 and β < 1, then the rectangle of the smallest perimeter exists and
is unique. The rectangle of the greatest perimeter does not exist.

(3) If α > 1 and β < 1 (or α < 1 and β > 1), then the rectangle of the greatest
perimeter and the rectangle of the smallest perimeter both exist and are unique.
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Proof. Let x = Au, y = Bv. Then x + y = Au + Bv = Au + B(1 − uα)δ,
where δ = 1/β. Let F (u) = Au + B(1− uα)δ. Then

F ′(u) = A−Bαδuα−1(1− uα)δ−1,

F ′′(u) = −Bαδuα−2(1− uα)δ−2[(α− 1)(1− uα) + (1− δ)αuα].

We have to consider three cases.
1. Let α > 1, β > 1. Since in this case F ′(0) = F ′(1) = A > 0 and F ′′ < 0 on

[0, 1] the function F has the unique maximum in (0, 1). Thus, the rectangle of the
greatest perimeter exists and is unique. The rectangle of the smallest perimeter
does not exist.

2. Let α < 1, β < 1. In this case limu→0+ F ′(u) = limu→1− F ′(u) = −∞ and
F ′′ > 0 on [0, 1]. Therefore, the function has the unique minimum in (0, 1). Thus,
the rectangle of the smallest perimeter exists and is unique. The rectangle of the
greatest perimeter does not exist.

3. Let α > 1, β < 1 (or α < 1, β > 1). In this case F ′(0) > 0 and
limu→1− F ′(u) = −∞. Moreover, in this case the equation F ′′(u) = 0 has exactly

one solution on (0, 1): u =
( α− 1

αδ − 1

)1/α

. Therefore F has exactly one maximum

and exactly one minimum on (0, 1), and both the rectangle of the greatest perimeter
and of the smallest perimeter exist and are unique.

Fig. 4

Example 1. We consider the curve
|x|3
27

+

√
|y|
2

= 1. We have to optimize

x + y subject to
x3

27
+
√

y

2
= 1, x > 0, y > 0. The method of Lagrange multipliers

provides 1 = λ
x2

9
= λ

1
4
√

y
. Hence,

√
y =

9
x2

, and from the equation of the curve
we get

8
27

x5 − 8x2 + 9 = 0. (5)



Some optimization problems with calculus 75

Equation (5) has two positive solutions: x1 ≈ 1.086810566, x2 ≈ 2.855105222.
The corresponding values of y are y1 ≈ 3.628587998, y2 = 0.07618624391. Figure 4

shows the curve
|x|3
27

+

√
|y|
2

= 1 and the rectangles of the greatest and the smallest
perimeter inscribed into it.

(c) Minimize
xy

(x + y)2
subject to

xα

Aα
+

yβ

Bβ
= 1, x > 0, y > 0.

The method of Lagrange multipliers provides the equations:

1
y
− y

x2
=

λαxα−1

Aα
,

1
x
− x

y2
=

λβyβ−1

Bβ
.

From these equations follows that
αλxα

Aα
+

βλyβ

Bβ
= 0. Therefore, λ = 0 and x = y.

Part 1D. Regions bounded by closed curves symmetric about the x
and y-axes.

In this part we assume that A and B are positive real numbers and that f is
a function continuous on [0, A], strictly decreasing on this interval, and such that
f(0) = B, f(A) = 0. We consider the curve defined by the equation:

|y| = f(|x|). (6)

(a) The existence of a rectangle of the greatest area inscribed in a curve (6)
follows from the standard argument: the function xf(x) takes its greatest value in
the interval (0, A). Only the continuity of the decreasing function f is required.
More interesting is the question under what conditions on f the rectangle of the
greatest area is unique. The following proposition is a trivial consequence of Rolle’s
theorem.

Proposition 2. Assume that the function f is twice differentiable on (0, A)
and that at any point t ∈ (0, A) we have 2f ′(t) + tf ′′(t) 6= 0. Then the rectangle of
the greatest area inscribed in the curve (6) is unique.

Corollary 1. If the function f is convex down, then the rectangle of the
greatest area inscribed in the curve (6) is unique.

Remark 5. The sufficient condition in Proposition 2 is not necessary. Indeed,
as we have seen in Part 1C (a), the rectangle of the greatest area inscribed in
curve (2) is unique, but as the proof of Proposition 1 shows, in the case when
min(α, β) < 1 the function y = y(x) either is convex up or has exactly one inflection
point in the interval (0, A).

Nevertheless, as the next example shows, we cannot completely dispense with
the condition in Proposition 1.
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Example 2. There is a strictly decreasing on [0, A], continuously differen-
tiable on (0, A) and strictly convex up function f such that there are exactly two
rectangles of the greatest area inscribed in the curve |y| = f(|x|). We define the
function f on the interval [0, 4] as follows:

f(x) =





4(1−√x)2, 0 ≤ x ≤ 9
25

,

P (x) = −15625
1176

x3 +
14125
588

x2 − 17401
1176

x +
851
245

,
9
25

< x ≤ 16
25

,

1
4
(2−√x)2,

16
25

< x ≤ 4.

Figure 5 shows the curve |y| = f(|x|) and two inscribed in this curve rectangles of

the greatest area. The vertices of these rectangles in the first quadrant are
(1

4
, 1

)

and
(
1,

1
4

)
, respectively.

Fig. 5

Remark 6. At the price of increasing the degree of polynomial P we can for
any positive integer n find a function f with the properties described in Example 2
and continuously differentiable n times on (0, 4).

Clearly, if the decreasing function f is real-analytic on (0, A), then the problem
of finding a rectangle of the greatest volume inscribed in the curve |y| = f(|x|) has
a finite number of solutions. In connection with it we pose the following problem.

Problem 3. Let P be a polynomial function of degree n decreasing on an
interval [0, A] and such that P (A) = 0. What is the maximum number of rectangles
of the greatest area inscribed in the curve |y| = f(|x|)?

On the other hand, the situation is completely different if instead of real-
analytic functions we consider functions continuously differentiable on (0, A). We
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assume that the reader is familiar with some standard facts concerning the topology
of the real line.

Proposition 3. Let E be a nonempty closed bounded subset of (0, +∞).
There are a positive real number A and a function f , such that:
(∗) E ⊂ (0, A),
(∗∗) The function f is continuous and strictly decreasing on [0, A], moreover
f(A) = 0,
(∗∗∗) The function f is continuously differentiable and strictly convex up on (0, A),
(∗ ∗ ∗∗) The rectangle with the vertex (x, f(x)) inscribed in the curve |y| = f(|x|)
has the greatest possible area if and only if x ∈ E.

Proof. Let m = min{x : x ∈ E}, and M = max{x : x ∈ E}. The open set
[m.M ]\E is the union of at most countable family of pairwise disjoint open intervals,
E =

⋃∞
n=1(an, bn). We order these intervals in such a way that bn+1 − an+1 ≤

bn − an. We include the case when the family of intervals (an, bn) is finite, or
E = [m,M ] by assuming that for some p ≥ 1 the interval (ap, bp) is empty. We
define the function f as follows:

f(x) =





1
x

, if x ∈ E,

1
x
− εn(x− an)2(x− bn)2, if x ∈ (an, bn),

1
m
− 1

m2
(x−m) +

1
m3

(x−m)2, if x ∈ [0, m),

1
M

− 1
M2

(x−M) + ε(x−M)2, if x ∈ (M, A],

(7)

where ε ≤ 1
4M3

and A =
2εM3 + 1 +

√
1− 4εM3

2εM2
. The positive numbers εn in (7)

clearly can be chosen in such a way that the function f is decreasing and strictly
convex up. Moreover, if the family of intervals (an, bn) is infinite, we chose εn in
such a way that εn ↓ 0, ensuring that f is continuously differentiable on (0, 2M).

Remark 7. It is not difficult to modify the definition of the function f in such
a way that it becomes continuously differentiable n times where n is an arbitrary
positive integer. Moreover, if the family of intervals (an, bn) is finite we can modify
the definition of f in such a way that it becomes differentiable infinitely many times
on (0, A). Indeed, we put,

f(x) =
1
x

+ εn exp
(
1− 1

(x− an)2
)

exp
(
1− 1

(x− bn)2
)
, x ∈ (an, bn).

The definition of f on [0,m] and on [M, A] should be modified as well.
Remark 7 gives rise to our last problem in this subsection.

Problem 4. Let E be a closed bounded subset of (0, +∞). What conditions
on E are necessary and/or sufficient for existence of a function f with properties
listed in Proposition 3 and differentiable infinitely many times on (0, A)?
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(b) In regard to inscribing a rectangle of the largest or the smallest perimeter
in a curve (6) we state the following trivial proposition.

Proposition 4. Let A > 0 and f be a strictly decreasing continuous function
on (0, A) such that f(A) = 0. Let C be the closed curve defined by the equation
|y| = f(|x|).
(I) Assume that f is twice differentiable and convex down on (0, A). Also assume
that limx→0+ f ′(x) > −1 and limx→A− f ′(x) < −1. Then the rectangle of the
greatest perimeter inscribed in C exists and is unique.
(II) Similarly, if f is twice differentiable and convex up on (0, A) and
limx→0+ f ′(x) < −1 and limx→A− f ′(x) > −1, then the rectangle of the smallest
perimeter inscribed in C exists and is unique.
(III) Let E be a closed subset of [0, A] and n is a positive integer. There is an n
times continuously differentiable on (0, A), strictly decreasing function f such that
f(0) = A, f(A) = 0, and the rectangle inscribed in the curve |y| = f(|x|) with the
vertex (x, f(x)) has the greatest possible perimeter if and only if x ∈ E ∩ (0, A).

Problem 5. Let A and B be positive real numbers. Describe the classes A
and B of closed subsets of [0, A] defined as follows.

E ∈ A if and only if there is a strictly decreasing function f such that f(0) =
B, f(A) = 0, and the rectangle inscribed in the curve |y| = f(|x|) with the vertex
(x, f(x)) has the greatest possible perimeter if and only if x ∈ E ∩ (0, A).

E ∈ B if and only if there is a strictly decreasing function f such that f(0) =
B, f(A) = 0, and the rectangle inscribed in the curve |y| = f(|x|) with the vertex
(x, f(x)) has the smallest possible perimeter if and only if x ∈ E ∩ (0, A).

(c) In this subsection we consider the problem of inscribing in curve (6) a rectangle

with the greatest ratio R =
S

P 2
.

Proposition 5. Let f be a continuous strictly decreasing function on [0, A]
such that f(A) = 0. Among the rectangles inscribed in the curve |y| = f(|x|) the
square has the greatest ratio R.

Proof. Assume first that the function f is continuously differentiable on [0, A].
We have to minimize

x

y
+

y

x
subject to y − f(x) = 0. The method of Lagrange

multipliers provides the following equations:

1
y
− y

x2
= λf ′(x),

1
x
− x

y2
= −λ.

Therefore, x2 − λy2 = λx2yf ′(x) = λxy2. Hence, x = y.
The general case follows from what we have proved because, if f is an arbitrary

strictly decreasing continuous function on [0, A] such that f(A) = 0, then for any
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integer n we can find a continuously differentiable and strictly decreasing on [0, A]

function fn such that fn(A) = 0 and maxx∈[0,A] |f(x)− fn(x)| ≤ 1
n

.

Remark 8. The reader not familiar with the Weierstrass approximation
theorem can use the following simple argument in the proof of Proposition 5. Divide
[0, A] into small intervals, on each of these intervals change f to the linear function
with the same values at the ends of the interval and smooth the curve at the angles
by using appropriate cubic polynomials.

Part 2. Optimization problems in three dimensions

Part 2A. Inscribing a rectangular parallelepiped with the greatest
volume in a surface symmetric about coordinate planes

Let α > 0. The problem of inscribing the rectangular parallelepiped of the

greatest volume in the surface
|x|α
Aα

+
|y|α
Bα

+
|z|α
Cα

= 1 is trivial. Because the product
of three positive numbers with the fixed sum takes the greatest value if and only

if the numbers are equal, we have
|x|α
Aα

=
|y|α
Bα

=
|z|α
Cα

=
1
3
. Therefore, x =

A

31/α
,

y =
B

31/α
, z =

C

31/α
and Vmax =

8ABC

33/α
.

Example 3. Let α = 3. Then Vmax =
8ABC

3
. The volume of the solid

bounded by the surface
|x|3
A3

+
|y|3
B3

+
|z|3
C3

= 1 is Vsolid = 8ABC
8π3

√
3

243Γ
(2

3

)3 . The

ratio
Vmax

Vsolid
is

81 Γ
(2

3

)3

8π3
√

3
≈ 0.4681168362.

Next, we consider the region in R3 bounded by the surface

|x|α
Aα

+
|y|β
Bβ

+
|z|γ
Cγ

= 1, A, B,C, α, β, γ > 0. (8)

We have to maximize the product xyz subject to
xα

Aα
+

yβ

Bβ
+

zγ

Cγ
= 1, x, y, x > 0.

The method of Lagrange multipliers provides the following equations:

yz =
αλxα−1

Aα
, xz =

βλyβ−1

Bβ
, xy =

γλzγ−1

Cγ
.

From these equations we obtain that
αxα

Aα
=

βyβ

Bβ
=

γzγ

Cγ
. Combining these equa-

tions with the equation (8) of the surface we get

x = A
( βγ

αβ + αγ + βγ

)1/α

, y = B
( αγ

αβ + αγ + βγ

)1/β

, z = C
( αβ

αβ + αγ + βγ

)1/γ

.

The inscribed rectangular parallelepiped of maximum volume is unique, and its

volume is Vmax = 8xyz = 8ABC
α1/β+1/γβ1/α+1/γγ1/α+1/β

(αβ + αγ + βγ)1/α+1/β+1/γ
.
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Assume that S is a compact connected surface in R3 symmetric about coordi-
nate planes. Assume also that every ray starting at the origin intersects S exactly
once. The existence of a rectangular parallelepiped of the greatest volume inscribed
in S with faces parallel to coordinate planes follows from a standard compactness
argument. The following simple proposition singles out a special case when the
rectangular parallelepiped of the greatest volume is unique.

Proposition 6. Let f, g, h be functions continuous on [0, A], twice differen-
tiable on (0, A) and convex up. Also assume that f(0) = g(0) = h(0) = 0. Let S be
the surface in R3 defined by the equation,

f(|x|) + g(|y|) + h(|z|) = 1. (9)

Then the rectangular parallelepiped of the greatest volume inscribed in S (with faces
parallel to coordinate planes) is unique.

Proof. We have to maximize the product xyz subject to the constraints f(x)+
g(y) + h(z) = 1, x > 0, y > 0, z > 0. The method of Lagrange multipliers provides
the following equations:

yz = λf ′(x), xz = λg′(y), xy = λh′(z). (10)

Assume, contrary to our claim, that equations (10) are satisfied at two distinct
points in the first octant: (x0, y0, z0) and (x1, y1, z1). We can assume without loss
of generality that z1 > z0. From (10) we obtain:

y0g
′(y0) = x0f

′(x0)

z0h
′(z0) = y0g

′(y0)

z0h
′(z0) = x0f

′(x0)

y1g
′(y1) = x1f

′(x1) (a)

z1h
′(z1) = y1g

′(y1) (b)

z1h
′(z1) = x1f

′(x1) (c)

(11)

In virtue of our assumptions the functions xf ′(x), yg′(y) and zh′(z) are strictly
increasing on [0, A]. Indeed, (xf ′(x))′ = f ′(x) + xf ′′(x) > 0. It follows from
z1 > z0 and (11c) that x1 > x0. Therefore, from (11a) we have y1 > y0. But these
inequalities and the fact that the functions f, g, h are strictly increasing clearly
contradict the equation (9)

If we assume the conditions of Proposition 6, and assume that the second
derivatives f ′′, g′′, h′′ are strictly positive on (0, A) then the Gaussian curvature K
of the surface S is positive. Indeed, (see [5])

K(x, y, z) =
f ′′(x)g′′(y)(h′(z))2 + f ′′(x)h′′(z)(g′(y))2 + g′′(y)h′′(z)(f ′(x))2

(f ′(x)2 + g′(y)2 + h′(z)2)2
.

Therefore, the solid bounded by S is convex and we pose the following problem.

Problem 6. Let S be a compact closed smooth surface in R3 symmetric about
the coordinate planes. Assume that the solid bounded by S is strictly convex (the
intersection of every plane tangent to S with S is a singleton). Is it true that the
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rectangular parallelepiped (with faces parallel to coordinate planes) of the greatest
volume inscribed in S is unique?

Part 2B. Inscribing a rectangular parallelepiped of the greatest sur-
face area in a surface symmetric about coordinate planes

This problem is considerably more complicated than the problem described in
Part 2A. We will start by describing its complete solution in the case of an ellipsoid.

We look at the following optimization problem:

Maximize xy + xz + yz subject to
x2

a2
+

y2

b2
+

z2

c2
= 1, x > 0, y > 0, z > 0.

The Lagrange equations are:

y + z =
2λx

a2
, x + z =

2λy

b2
, x + y =

2λz

c2
. (12)

The system (12) of linear equations has a nontrivial solution if and only if the
determinant

∣∣∣∣∣∣∣∣∣∣

2λ

a2
−1 −1

−1
2λ

b2
−1

−1 −1
2λ

z2

∣∣∣∣∣∣∣∣∣∣

=
2(a2b2c2 + λ(a2b2 + a2c2 + b2c2)− 4λ3)

a2b2c2
= 0 (13)

The equation P (λ) = 4λ3 − λ(a2b2 + a2c2 + b2c2) − a2b2c2 = 0 has exactly one
positive solution Λ. We will prove that maximum surface area of the inscribed
parallelepiped is 8Λ. First notice that the system

y + z =
2Λx

a2
, x + z =

2Λy

b2
, x + y =

2Λz

c2
. (14)

has the only one solution (x0, y0, z0) that satisfies the equation
x2

0

a2
+

y2
0

b2
+

z2
0

c2
=

1. Next notice that multiplying both parts of equations (14) by x0, y0 and z0,
respectively, and adding the obtained equations we get x0y0 + x0z0 + y0z0 = Λ. It
remains to prove that the maximum of xy+xz+yz cannot be attained at a point of

the surface
x2

a2
+

y2

b2
+

z2

c2
= 1, x, y, z ≥ 0, where at least one variable takes value 0.

Let us assume that z = 0. The maximum value of xy, subject to the constraint
x2

a2
+

y2

b2
= 1, is

ab

2
. But P

(ab

2

)
= −acb2(a + c)2

2
< 0, and therefore

ab

2
< Λ. The

cases y = 0 or x = 0 can be considered similarly.
In the case of an ellipsoid of revolution, assuming e.g. that b = c, we can solve

the cubic equation (13) explicitly and obtain the following formula,

Smax = 4Λ = b(b +
√

8a2 + b2).

We will now state and prove a more general result.
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Proposition 7. The rectangular parallelepiped of the greatest surface area
with faces parallel to coordinate planes inscribed in the surface

|x|α
Aα

+
|y|α
Bα

+
|z|α
Cα

= 1,

where α > 1, exists and is unique.

Proof. We have to maximize xy + xz + yz subject to the constraints:

xα

Aα
+

yα

Bα
+

zα

Cα
= 1, x > 0, y > 0, z > 0. (15)

We will divide the proof into two steps.
Step 1. We claim that if the function xy+xz +yz attains its global maximum

under the constraints (15) at a point (x0, y0, z0), then x0 > 0, y0 > 0, z0 > 0. As-
sume to the contrary that the global maximum is attained at some point (x0, y0, z0)
on the boundary of surface (15) where at least one of coordinates x0, y0, z0 is equal
to 0. Without loss of generality, we can assume that z0 = 0. Then (see Part1B (a))
we can assume that x0 = 2−1/αA, y0 = 2−1/αB. We fix an ε > 0 and consider the

point (x1, y1, z1), where x1 =
A

21/α

(
1 − εα

Cα

)1/α

, y1 =
B

21/α

(
1 − εα

Cα

)1/α

, z1 = ε.
Then

x1y1 + x1z1 + y1z1 − x0y0 =
AB

22/α

[(
1− εα

Cα

)2/α

− 1
]

+ ε
A + B

21/α

(
1− εα

Cα

)1/α

.

The last expression is positive if ε is a sufficiently small positive number. Indeed,
by L’Hospital’s rule,

lim
ε→0+

(
1− εα

Cα

)2/α

− 1

ε
(
1− εα

Cα

)1/α
= lim

ε→0+

(
1− εα

Cα

)2/α

− 1

ε

= lim
ε→0+

(
1− εα

Cα

)2/α−1−αεα−1

Cα
= 0.

Step 2. We prove that there is a unique point on the surface (15), (X, Y, Z),
X > 0, Y > 0, Z > 0, at which the global maximum of the function xy + xz + yz
is attained. Assume to the contrary that the global maximum is attained at two
distinct points (X0, Y0, Z0) and (X1, Y1, Z1) on the surface (15). Then

X0Y0 + X0Z0 + Y0Z0 = X1Y1 + X1Z1 + Y1Z1. (16)

The method of Lagrange multipliers provides the following equations:

Y0 + Z0 =
αλ0X

α−1
0

Aα
,

X0 + Z0 =
αλ0Y

α−1
0

Bα
,

X0 + Y0 =
αλ0Z

α−1
0

Cα
,

Y1 + Z1 =
αλ1X

α−1
1

Aα
,

X1 + Z1 =
αλ1Y

α−1
1

Bα
,

X1 + Y1 =
αλ1Z

α−1
1

Cα
.

(17)
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Multiplying the equations in the left column by X0, Y0 and Z0, respectively, adding
them, and applying (15) we get αλ0 = 2(X0Y0 + X0Z0 + Y0Z0). Similarly, αλ1 =
2(X1Y1 + X1Z1 + Y1Z1). From (16) follows that λ1 = λ0 = λ and equations (17)
can be written as

Y0 + Z0 =
αλXα−1

0

Aα
,

X0 + Z0 =
αλY α−1

0

Bα
,

X0 + Y0 =
αλZα−1

0

Cα
,

Y1 + Z1 =
αλXα−1

1

Aα
(a),

X1 + Z1 =
αλY α−1

1

Bα
(b),

X1 + Y1 =
αλZα−1

1

Cα
(c).

(18)

We can assume without loss of generality that Z1 > Z0. Then it follows from (18c)
that either X1 > X0 or Y1 > Y0. If, e.g., Y1 > Y0 then it follows from (18a) that
X1 > X0, a contradiction.

The condition α > 1 is sufficient but in general not necessary for existence
and/or uniqueness of the rectangular parallelepiped of the greatest surface area

inscribed in the surface
|x|α
Aα

+
|y|α
Bα

+
|z|α
Cα

= 1. We were not able to find necessary

and sufficient conditions on the parameter α (see Problem 7 below) but in our next
proposition we provide such conditions in a special case when the surface is defined
by the equation:

|x|α + |y|α + |z|α = 1, α > 0. (19)

Proposition 8. If α ≥ 2(ln 3− ln 2)
ln 3

≈ 0.7381404932 then the rectangular

parallelepiped of the greatest surface area inscribed in the surface (19) exists and is

unique. Moreover, it is the cube with sides equal to 2
(1

3

)1/α

.

If 0 < α <
2(ln 3− ln 2)

ln 3
then the rectangular parallelepiped of the greatest

surface area inscribed in the surface (19) does not exist.

Proof. The method of Lagrange multipliers provides the following equations
y + z = αλxα−1, x + z = αλyα−1, x + y = αλzα−1. (20)

We will prove that the only solution of system (20) is x = y = z = (1/3)1/α. We
divide the proof into three parts.

1. α ≥ 1. From (20) we have y−x = λα(xα−1−yα−1), hence y = x. Similarly,
z = x.

2. α =
m

n
, m,n ∈ N, m < n. Let u = x1/n, v = y1/n, w = z1/n. Our problem

then becomes to maximize unvn +unwn +vnwn subject to un +vn +wn = 1. From
(20) we obtain

mun−1vn + nun−1wn = λmum−1,

mvn−1un + nvn−1wn = λmvm−1,

mvn−1un + nwn−1vn = λmwm−1,

It follows that un−m(vn + wn) = vn−m(un + wn) = wn−mun + vn).
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Assume, to the contrary, that there is a solution distinct from x = y = z =
(1/3)1/α. Without loss of generality, we can assume that u > v ≥ w. Assume first
that m ≥ n − m. The first equation can be written as un−mvn−m(um − vm) =

wn(un−m − vn−m). Using the elementary inequality
um − vm

un−m − vn−m
≥ u2m−n we

obtain
un−mvn−m(um − vm)

un−m − vn−m
> wn, a contradiction. Assume now that n−m > m.

From the second equation vn−mwn−m(vm−wm) = un(vn−m−wn−m) and therefore

un vn−m − wn−m

vm − wm
≥ unvn−2m > vn−mwn−m,

again a contradiction.

3. 0 < α < 1. Let αn → α where αn are rational numbers. From the previous
step follows that the Lagrange equations for the problem: maximize (fg)1/α +
(fh)1/α + (gh)1/α subject to f + g + h = 1, f, g, h ≥ 0 have the unique solution
f = g = h = 1/3. It remains to notice that (fg)1/αn + (fh)1/αn + (gh)1/αn →
(fg)1/α + (fh)1/α + (gh)1/α uniformly on the surface f + g + h = 1, f, g, h ≥ 0.

To finish the proof of proposition it remains to notice that the value of xy +
xz+yz at the point (3−1/α, 3−1/α, 3−1/α) is 31−2/α. On the other hand, the greatest
value of this function on the boundary of the region xα +yα +zα = 1, x > 0, y > 0,
z > 0 is 2−2/α. The two expressions are equal when 31−2/α = 2−2/α, solving this

equation we obtain α =
2(ln 3− ln 2)

ln 3
.

Problem 7. (1) Describe all the triples (α, β, γ) such that there exists the
rectangular parallelepiped of the greatest surface area inscribed in the surface (8).
For which triples such a rectangular parallelepiped exists and is unique?

(2) Let S be a compact closed smooth surface in R3 symmetric about coordi-
nate planes. Assume that the solid bounded by S is strictly convex (the intersection
of every plane tangent to S with S is a singleton). Is it true that the rectangular
parallelepiped (with faces parallel to coordinate planes) of the greatest surface area
inscribed in S exists and is unique?

We finish this subsection with two examples. The corresponding calculations
were performed with the help of Maple and Mathematica.

Example 4. The parallelepiped of the greatest surface area inscribed into

the surface |x|3 +
|y|3
8

+
|z|3
27

= 1 exists and is unique. The coordinates of its vertex
in the first octant are x ≈ 0.5842341946, y ≈ 1.446885928, z ≈ 2.250143153. The
surface area is Smax = 8(xy + xz + yz) ≈ 43.32504752.

Example 5. The parallelepiped of the greatest surface area inscribed into
the surface x2 + y2 + |z|3 = 1 exists and is unique. The coordinates of its vertex in
the first octant are x ≈ 0.611945, y ≈ 0.611045, z ≈ 0.632676. The surface area is
Smax = 8(xy + xz + yz) ≈ 9.172594.
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Part 2C. Inscribing a rectangular parallelepiped with the greatest
sum of the edges in a surface symmetric about coordinate planes

Proposition 9. Assume that α, β, γ > 1. If the rectangular parallelepiped

inscribed in the surface
|x|α
Aα

+
|y|β
Bβ

+
|z|γ
Cγ

= 1 with the greatest sum of the edges
exists, then it is unique.

Proof. The method of Lagrange multipliers provides the following equations
αλxα−1

Aα
=

βλyβ−1

Bβ
=

γλzγ−1

Cγ
= 1. (21)

From these equations and the equation of the surface we get
xα

Aα
+

(αBβ

βAα
xα−1

)β/(β−1)

+
(αCγ

γAα
xα−1

)γ/(γ−1)

= 1. (22)

Because the left part of (22) is an increasing function of x this equation has the
unique solution and thus the rectangular parallelepiped of the greatest sum of the
edges is unique, providing that it exists.

In the special case α = β = γ we have a better result.

Proposition 10. There exists a unique parallelepiped of the greatest sum of

the edges inscribed in the region bounded by the surface
|x|α
Aα

+
|y|α
Bα

+
|z|α
Cα

= 1
α > 1.

Proof. Let x0 be the unique solution of equation (22) and let y0, z0 be the cor-
responding values obtained from (22). We claim that the rectangular parallelepiped
with the vertex (x0, y0, z0) in the first octant has the greatest sum of the edges.
From equations (21) and the equation of the surface follows that x0 +y0 +z0 = αλ.
We need to prove that the greatest value of the sum x + y + z on the boundary
of the surface is strictly smaller than αλ = x0 + y0 + z0. Consider first the point

(A, 0, 0). From the Lagrange equation
αλxα−1

0

Aα
= 1 we get αλ = A

Aα−1

xα−1
0

> A.

Similarly, the global maximum of x + y + z cannot be attained at (0, B, 0) or at
(0, 0, C). Assume now that the maximum is attained at some point (x1, y1, 0). At

this point we have
αλ1x

α−1
1

Aα
=

αλ1y
α−1
1

Bα
and x1 + y1 = αλ1. We have that either

x1 > x0 or y1 > y0. In the first case αλ1 =
Aα

xα−1
1

<
Aα

xα−1
0

= αλ. The second case
is similar.

Problem 8. (1) Describe all the triples (α, β, γ) such that there exist rect-
angular parallelepipeds of the greatest and/or smallest sum of the edges inscribed
in the surface (8).

(2) Let S be a compact closed smooth surface in R3 symmetric about coordi-
nate planes. Assume that the solid bounded by S is strictly convex (the intersection
of every plane tangent to S with S is a singleton). Is it true that the rectangular
parallelepiped (with faces parallel to coordinate planes) of the greatest sum of the
edges inscribed in S exists and is unique?
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Part 2D. Inscribing a rectangular parallelepiped with the greatest

ratios
V

S3/2
,

V

L3
,

S

L2
in a surface symmetric about coordinate planes

In the title of this subsection V is the volume of a rectangular parallelepiped,
S is its surface area, and L is the sum of its edges.

Proposition 11. Assume that f, g, h are functions continuous and strictly
increasing on a closed interval [0, A], continuously differentiable on (0, A) and such
that f(0) = g(0) = h(0) = 0. Let S be the surface defined by the equation f(|x|) +

g(|y|) + h(|z|) = 1. The maximum values of the ratios
V

S3/2
,

V

L3
,

S

L2
are attained

in the case when the rectangular parallelepiped inscribed in S is a cube.

Proof. We will prove our claim only for the ratio
V

S3/2
, the other two cases can

be considered similarly. Our problem is equivalent to the following one: minimize

F (x, y, z) =
(xy + xz + yz)3

(xyz)2
subject to f(x) + g(y) + h(z) = 1, x, y, z > 0. The

method of Lagrange multipliers provides
∂F

∂x
= λf ′(x),

∂F

∂y
= λg′(y),

∂F

∂z
= λh′(z),

Therefore,

x
∂F

∂x
+ y

∂F

∂y
+ z

∂F

∂z
= λ(xf ′(x) + yg′(y) + zh′(z)). (23)

It is immediate to see that F (x, y, z) = G
(x

y
,
y

z

)
and therefore (see e.g. [4])

x
∂F

∂x
+ y

∂F

∂y
+ z

∂F

∂z
= 0. Hence, λ = 0 and therefore,

∂F

∂x
=

∂F

∂y
=

∂F

∂z
= 0.

Straightforward computations show that this system of equations is equivalent to

xy + xz − 2yz = 0,

xz + yz − 2xy = 0,

xy + yz − 2xz = 0.

Thus, x = y = z = c, where c is defined in the unique way from the equation
cα

Aα
+

cβ

Bβ
+

cγ

Cγ
= 1.

To conclude this paper, we state our last problem.
Problem 9. What are possible variants of the results and problems discussed

in this paper in the case of higher dimensions?
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