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Abstract. Cyclotomic polynomials are an interesting topic and play an im-
portant role for other topics in Number Theory. For special values of n, computing
a cyclotomic polynomial is not difficult; this can be done by using properties of the
polynomial. For a prime value of n, the polynomial can be written quickly. However,
for values which are multiples of odd prime numbers, say 85 = 17 · 5, the task can
be quite difficult if it must be done manually. The polynomial has 41 terms and the
degree of 64. Software for cyclotomic polynomials is available; Maple for example,
can solve the problem of cyclotomic polynomials very easily. However, understanding
of how to compute polynomials is very important for a student in applying various
properties of the cyclotomic polynomial. Here, we will use Maple to help students
understand cyclotomic polynomials from the basic. Answer is not obtained directly
but step-by-step using properties of the polynomial. So, Maple is used to simulate
the process of obtaining the polynomial. Once the students grasp the skill, they will
be able to use the software for advanced applications.
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1. Introduction

The n-th cyclotomic polynomial, Φn(x), where n is any positive integer, can
be defined as the unique irreducible polynomial with integer coefficients. It can
also be defined as the minimal polynomial of the n-th primitive roots of unity.
Cyclotomic polynomials are an interesting topic and play an important role for
other topics in Number Theory such as the factorization of very large numbers;
see [3], for example.

Computing Φn(x) is done by using properties of cyclotomic polynomials, which
will be described in the following part of this paper. For special values of n,
computing the cyclotomic polynomial is not difficult. For a prime value of n, even
a big one such as 65537 (which is the fourth Fermat prime), the polynomial can be
computed easily. For a modest value of n, such as 53, we can write all the terms
of the polynomial quickly. For other values, e.g., for multiples of several integers
such as 85, which is 17 · 5, or 105, which 3 · 5 · 7, the task can be quite difficult if
it must be done manually. But at least undergraduate students who are studying
cyclotomic polynomials are expected to be able to compute Φn(x) manually for
n ≤ 50 or when n is a prime (which we call simple values in this paper). For higher
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values of n the computation of Φn(x) is more difficult except for particular values
of n which will be described in the following part. Symbolic computation software
such as Maple or Mathematica helps us in doing this. For a good treatment on
symbolic computation in general, see [10], for example. Examples of the use of
Maple and Mathematica in scientific computing and engineering can be found in
[12], [15] and [24].

2. Important properties of cyclotomic polynomials

The n-th cyclotomic polynomial, Φn(x) is defined by

Φn(x) =
n∏

j=1
gcd(j,n)=1

(x− e2πij/n) =
ϕ(n)∑

k=0

an(k)xk, (1)

where n and j are positive integers and ϕ is Euler’s totient function. an(k) is the
coefficient of the cyclotomic polynomial; it is 0 if k > ϕ(n). See [3], [4] and [7] for
the basic formulas for cyclotomic polynomials.

The values of ϕ(n) can be computed using the following properties:

ϕ(1) = 1, (2)

ϕ(p) = p− 1, if p is a prime, (3)

ϕ(n) = n
∏

p|n
(1− 1/p), (4)

ϕ(p1p2) = ϕ(p1)ϕ(p2), if p1 and p2 are distinct primes. (5)

Formula (5) can be extended as follows. If p1, p2, . . . , pk are distinct primes, we
then have

ϕ(p1p2 · · · pk) = ϕ(p1)ϕ(p2) · · ·ϕ(pk), i.e.,

ϕ(p1p2 · · · pk) = (p1 − 1)(p2 − 1) · · · (pk − 1). (6)

Formulas (4) and (6) are equivalent for n = p1p2 · · · pk. For detailed description of
Euler’s totient function, see [1], [13], [15] or [16].

Next, we can compute Φn(x) using the following property (see also [3], [4]
and [7]):

Φn(x) =
xn − 1∏

d|n,d<n Φd(x)
. (7)

The first cyclotomic polynomial is Φ1(x) = x− 1. If p is a prime, we simply have

Φp(x) = xp−1 + xp−2 + · · ·+ x + 1. (8)

For example, Φ7(x) = x6 + x5 + x4 + x3 + x2 + x + 1. If n = 2p where p is an odd
integer, we then have

Φ2p(x) = Φp(−x). (9)
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If n = pm where p is a prime, then

Φn(x) = Φp(xk), where k = pm−1. (10)

In general, if n = pmr and r is relatively prime to p, we then have

Φn(x) = Φpr(xk), k = pm−1. (11)

Formulas (8) to (11) are also given in [3], [4] and [7].
The following relationship is very useful:

Φ1(x)Φp(x) = xp − 1; (12)

it can be proved very easily (just multiply Eq. (8) by x − 1). By using Eq. (7)
repeatedly we can deduce that

Φpqr(x) =
Φp(xqr)Φp(x)
Φp(xq)Φp(xr)

, (13)

where p, q and r are distinct primes. This formula is very useful to compute Φn(x)
where n is the multiple of three distinct primes; see [18] and [25], for example.

The degree of Φn(x) can be easily found by using Euler’s totient function
ϕ(n). The following are cyclotomic polynomials for various “simple values” of n:
Φ2(x) = x + 1 ← 2 is prime, use Eq. (8);
Φ3(x) = x2 + x + 1 ← 3 is prime, use Eq. (8);
Φ6(x) = Φ3(−x) = x2 − x + 1 ← 6 = 2 · 3, 3 is prime; use Eq. (9) and Φ3(x);
Φ4(x) = Φ2(x2) = x2 + 1 ← 4 = 22, 2 is prime; use Eq. (10) and Φ2(x);
Φ27(x) = Φ3(x9) = x18 + x9 + 1 ← 27 = 33, 3 is prime; use Eq. (10) and Φ3(x).

We can easily compute the n-th cyclotomic polynomial for n = 997 (which is
prime) or n = 707 281 (which is 294) although writing them completely will take a
lot of space. However, it is more difficult to compute Φ15(x) or Φ77(x).

We will now compute Φ15(x). Since 15 = 3 · 5, all positive divisors of 15 are
1, 3 and 5. From Eq. (7) we have

Φ15(x) =
x15 − 1

Φ1(x)Φ3(x)Φ5(x)
.

From Eq. (12), Φ1(x)Φ5(x) = x5 − 1, so

Φ15(x) =
x15 − 1

Φ3(x)(x5 − 1)
=

x10 + x5 + 1
x2 + x + 1

.

Using synthetics division, we finally have Φ15(x) = x8 − x7 + x5 − x4 + x3 − x + 1.
The degree of Φ15(x) can be found using Eq. (4) or Eq. (6). From Eq. (4), ϕ(15) =
ϕ(3 · 5) = 15(1− 1

3 )(1− 1
5 ) = 8. Or, from Eq. (6), ϕ(3 · 5) = (3− 1)(5− 1) = 8.

Now, for more difficult problems such as computing Φ105(x) or Φ1001(x) we
will resort to software to help us, which will be discussed in the following sections.
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Last but not least, the difficulty of computing Φn(x) does not necessarily depend
on the size of n but also on its properties. Computing Φ65537(x) is far much easier
compared to that of Φ105(x) since 65537 is a prime number!

3. Coefficients of cyclotomic polynomials

Coefficients of all cyclotomic polynomials for n < 105 are in {−1, 0, 1}; this
fact is mentioned in almost any paper on cyclotomic polynomials, see [6], [7] or
[18], for example. For proof, see [7]. 105 is the multiple of the three smallest odd
primes (3, 5 and 7) and it is the smallest number such that some coefficients of the
corresponding cyclotomic polynomial are not in {−1, 0, 1}.

For n < 385, the coefficients do not exceed 2 in absolute value; see [20], for
example. Coefficients of Φ385(x) are in {±1,±2,−3}. It has 177 terms; the degree
of this polynomial is 240. The computation for Φ385(x) will be made in Section 5
of this article.

Schur’s theorem is important: There exist cyclotomic polynomials with coeffi-
cients arbitrarily large in absolute value. However, Schur himself did not prove this
theorem; it was proved by Lehmer [20]. Arnold and Monagan [2] provide a table
for A(n) for n as a product of the smallest odd primes, where A(n) is the maximum
absolute value of the coefficients of Φn(x).

A lot of research has been devoted to compute maximum values of coefficients
for cyclotomic polynomials; see [4], [10], [17], [22] and [24], for more detailes. Zhao
and Zhang [25] provide analysis for the coefficients of the cyclotomic polynomials of
order three. Bachman [4] gives an asymptotic formula for log a(m) where a(m) =
maxn |a(m,n)| and a(m,n) denotes the m-th coefficient of the n-th cyclotomic
polynomial Φn(x), that improves a previous estimate of Montgomery and Vaughan.
In [10], it is mentioned t hat Gallot and Moree in [8] disproved the Bieter conjecture
which asserts that if p < q < r are primes, then |apqr(k)| ≤ p+1

2 .

4. Introduction to Maple, a symbolic computation language

Maple is a very powerful symbolic computation language. It was developed in
the University of Waterloo, Canada. Differently from conventional programming
languages, symbolic computation languages can accept inputs symbolically. Out-
puts can be also produced symbolically. These features are very useful when we
want to derive a formula or to prove a theorem, for example. Moreover, a symbol-
ic programming language can be used for computation that needs multi-precision
arithmetic. We can easily compute a value to thousands of digits very quickly. This
feature is often required in number theory.

Maple has many built-in functions for many areas of mathematics such as
number theory. We can compute a formula (function) directly by calling its name.
Often, we must call a library first where a formula is stored before it can be called.
There are many libraries in Maple with thousands of functions. The Num theory
is a Maple’s library which must be called if we want to compute a cyclotomic
polynomial. In this paper, we will use Maple V, which still needs a user to write
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a command. Newer versions are much easier to use because we can just click a
formula instead of writing its name. We write as follows:
> restart;

> with(Num theory);

Various choices will be shown. What we need is cyclotomic. Suppose we want to
compute Φ7(x), so write
> cyclotomic(7, x);

Maple will produce the following output instantly:

x6 + x5 + x4 + x3 + x2 + x + 1.

> cyclotomic(14, x);

x6 − x5 + x4 − x3 + x2 − x + 1.

This result can be obtained easily using Eq. (9) where Φ14(x) = Φ7(−x).
We can try a very big value, say n = 1879. Just very quickly the result is

displayed in the screen:

x1878 + x1877 + x1876 + · · ·+ x2 + x + 1.

The whole output contains 1879 terms! Here 1879 is a prime.
For a good introduction to Maple refer to Maple Manual such as [12] or [21].

[12] is also very useful for an introduction of Maple to mathematics; the book is
very readable and has many examples. There are many textbooks which provide
applications of Maple in mathematics, physics or engineering. For applications of
Maple in mathematics, see [5], [14] and [23]. Advanced applications of mathematics
are shown in [19].

5. Using Maple to simulate the process of computing
cyclotomic polynomials

Since Maple can compute Φn(x) very easily even for a very large value of n,
why do we need to simulate the process to compute it? As a problem solver, Maple
is very good at its task. It will try to solve problems provided by a user. However,
there is no explanation how it solves a problem. In a learning process, it is very
important that students master a subject they are studying. This goal cannot be
achieved if they just want to get the final result without bothering how to find
it. By applying various properties for the cyclotomic polynomial, they will be able
to compute Φn(x) manually for simple values of n. Here, we will tailor Maple to
help students understand cyclotomic polynomial from the basic. Answer is not
obtained directly but step-by-step using properties for the polynomial. So, Maple
will be used to simulate the process of obtaining the polynomial for reasonably large
numbers. Once the students grasp the skill, they will be able to use the software
for advanced applications. Next, we will give examples how Maple can be used to
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help students understand cyclotomic polynomials better. Several commands and
functions used are explained. Our comments are put inside curly brackets.

After we open Maple (by clicking the icon Maple on the screen), we write the
following commands:
> restart;

> with(Num theory):

> cyc[1] := x-1; # definition for n=1

> cycpr := proc(n,x) # Eq. (8)

{ proc is a procedure in Maple, which is like a function in other programming
languages.}
> local sn,i;

> sn := 0; if is prime(n) then for i from 1 to n do sn := sn +
x^(i-1); od; fi; end;

> cyc2pr := proc(n,x) # Eq. (9)

> local sn,i,m;

> sn := 0; m := n/2; if is prime(m) then for i from 1 to m do sn :=
sn + (-1)^(i-1)x^(i-1); od; fi; end;

> fn := (x,n) -> x^n-1; # Eq. (12)

> fpm := (p,m,x) -> x^(p^(m-1)); # Eq. (10)

Now, we will give three examples how to use the Maple statements to compute
cyclotomic polynomials. Suppose we want to compute Φ88(x). We know that
88 = 23 · 11; so we use Eq. (11). Here, p = 2, m = 3, r = 11 and k = pm−1 =
4, Φ88(x) = Φ2·11(x4). In this case we have to compute Φ22(x) first by calling
cyc2pr(22, x):
> cyc[22] := cyc2pr(22,x); # This produce Φ22(x):

cyc[22] := x10 − x9 + x8 − x7 + x6 − x5 + x4 − x3 + x2 − x + 1.

{we can easily find cyc[2] since 22 = 2 · 11 and 11 is a prime}
Before computing Φ22(x4), we change cyc[22] to a function using unapply as

follows:
> cyc[22] := unapply(cyc[22],x);

cyc[22] := x → x10 − x9 + x8 − x7 + x6 − x5 + x4 − x3 + x2 − x + 1.

Now we can find Φ88(x):
> cyc[88] := cyc[22](x^4)

cyc[88] := x40 − x36 + x32 − x28 + x24 − x20 + x16 − x12 + x8 − x4 + 1.

{instead of changing cyc[22] into a function, we can also find cyc[88] using the
following command:
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cyc[88]:=subs(x=x^4,cyc[22]).

Here, subs is substitution. The result will be the same.}
We can of course compute Φ88(x) directly as follows.

> cyclotomic(88, x);

similar to the example in Section 3. However, this will not enhance the students’
ability to understand cyclotomic polynomials. We will use Maple’s command di-
rectly if we want to check our result.

The next example is the computation of Φ21(x). Since 21 = 1 · 3 · 7, we have,
using Eq. (7),

Φ21(x) =
x21 − 1

Φ1(x)Φ3(x)Φ7(x)
.

But Φ1(x)Φ7(x) = x7 − 1, hence

Φ21(x) =
x21 − 1

Φ3(x)(x7 − 1)
=

x14 + x7 + 1
Φ3(x)

.

Multiplying both numerator and denominator by x− 1 produces

Φ21(x) =
x15 − x14 + x8 − x7 + x− 1

x3 − 1
.

Of course, we do not necessarily do these steps by ourselves. Using Maple, we have
> f1 := fn(x,21): # we just suppress the output x^21-1

> f2 := expand(cypr(x,7)(x-1)): # the output is x^7-1

> f3 := simplify(f1/f2): # the output is x^14+x^7+1

> f4 := expand(f3(x-1)): # what is the output?

> f5 := expand(cypr(x,3)(x-1)): # the output is x^3-1

> cyc[21] := simplify(f4/f5);

cyc[21] := x12 − x11 + x9 − x8 + x6 − x4 + x3 − x + 1.

We can check the highest degree using ϕ(n). Here ϕ(21) = 21(1− 1
3 )(1− 1

7 ) = 12.
There is a command for ϕ(n) in Maple that is phi(n).
> phi (21); # the result is 12

The last example will be the computation of Φ385(x). Since 385 = 5 · 7 · 11 is
a multiple of three distinct primes, we will use Eq. (13) to compute the cyclotomic
polynomial. Here, p = 5, q = 7, and r = 11. So, qr = 77. We then have

Φ385(x) =
Φ5(x77)Φ5(x)
Φ5(x7)Φ5(x11)

. (14)

We can compute each term in aforementioned formula easily. Here,

cyc[5] = Φ5(x) = x4 + x3 + x2 + x + 1,

term[1] = Φ5(x77) = x308 + x231 + x154 + x77 + 1,

term[2] = Φ5(x7) = x28 + x21 + x14 + x7 + 1,

term[3] = Φ5(x11) = x44 + x33 + x22 + x11 + 1.
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Polynomial division is best done by Maple. Doing this manually is tedious and
prone to error, particularly when it involves high degrees. Since the computation
is quite complex, we will resort to Maple to help us to compute the righthand side
of Eq. (14). We will do it step by step using all terms in Eq. (14). Screenshots of
Maple’s programs are shown as follows.

Now, we will ask Maple to compute cyc[385] directly and then verify our
result:

Since the computed cyclotomic polynomials have a large number of coeffi-
cients, it is difficult to see if they are the same. Now, by just subtracting the first
from the other, we can easily verify that they are similar if their difference is zero.

But what is the degree of the polynomial? We know it is ϕ(385) which is
385(1− 1

5 )(1− 1
7 )(1− 1

11 ) = 240. We can also find it using the following command

> degree := degree(");
degree := 240

If we do not sort the polynomials, the degree of the first coefficient may not be 240.
That is why we sort them before displaying the result.
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The coefficients are in {±1,±2,−3}. We can find the number of terms using
> terms := nops("");

terms := 177

We can ask Maple to determine how many terms are there for each value as follows:
> sum1 := 0: for i from 240 by -1 to 0 do

> if ck[i] = -1 then sum1 := sum1 + abs(ck[i]): fi; od; sum1; 68

The aforementioned codes ask Maple to find the number of terms whose values
are −1 each. The answer is 68. Likewise, by slightly modifying the codes we can
determine the number of other terms. The results are shown in Table 1.

Value −3 −2 −1 1 2

Number of terms 3 16 68 70 20

Table 1. Number of terms for each value of the coefficients of Φ385

6. Conclusion

While Maple can compute the n-th cyclotomic polynomial very easily, the
direct use of Maple will not help students understand the computation of the poly-
nomial because they just get the answer but do not know from where the answer
comes. By simulating the computation process using Maple, students will get bet-
ter understanding of the process. They will gain knowledge and skill, which they
will not if they just apply the software directly. Once they grasp the skill, they will
be able to use the software for advanced applications.
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