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GRAPH SOLUTION OF A SYSTEM
OF RECURRENCE EQUATIONS
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Abstract. We define a chain of cubes as a special part of the 3-dimensional
cube grid, and on it, we consider the shortest walks from a base vertex. To a well-
defined zig-zag walk on the cube chain, we associate a sequence described by a system
of recurrence relations and using a special directed graph we determine its recurrence
property. During our process, we enumerate and collect some directed shortest paths
in the directed graph. In addition, we present two other examples of our graphical
method to transform a system of recurrence equations of several sequences into a
single recurrence sequence.
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1. Introduction and preliminaries

Recently, graph theory is one of the most frequented topics of mathematics
among the researchers and in the education, as well. Combinatorics and number
theory are also inescapable areas of research and education fields. Geometry is less
popular, but unmissable. In our short note, we will combine them. First, we start
a geometric construction, and then we examine on it a combinatorial “walking on
graph” problem, whose solution can be described by number theoretical methods,
and finally, for the proof we show an interesting graph theoretical method, which
can be well-followed for the students, as well. Furthermore, we give two more
examples of graph solution of system of recurrence sequences. The first comes from
a simple planar combinatorial problem, the second is the generalization of our main
task. We think that our short examples will be very useful not only in research
work, but also in higher education.

Németh and Szalay [4] defined a special zig-zag square grid (or graph) and
on it, they considered the number of the shortest paths from a certain base ver-
tex to each vertex. Then they determined special zig-zag paths and examined the
properties of their number sequences. They generally described the recurrences of
some special zig-zag sequences associated with the grid, as well, and gave new com-
binatorial interpretations to more than forty sequences appearing in the On-Line
Encyclopedia of Integer Sequences (OEIS, [6]). These sequences can be considered
as a special generalization of the Fibonacci numbers, since the first, the easiest zig-
zag construction yields the Fibonacci sequence. Németh and Szalay [5] also dealt
with zig-zag sequences in case of the hyperbolic Pascal triangle.
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In this article, first, we give a 3-dimensional generalization of the 2-dimensional
Euclidean square zig-zag graph, and for its associated sequences we present a graph-
ical solution to give the recurrence relation instead of usual algebraic manipulations.
Secondly, we give two other examples of our graphical solution method.

Fiorenza and Vincenzi [2], Vincenzi and Siani [7], and Anatriello and Vincen-
zi [1] dealt with the Fibonacci, Fibonacci-like sequences, and their articles show
possibilities to use the geometric construction and their identical recurrence rela-
tions in education. We also feel that our two and three dimensional constructions,
their associated sequences, and our graphical method (instead of algebraic method)
using directed graphs could be very useful in education.

2. Spatial zig-zag cube graph and related sequences

2.1. Chain of cubes
Now, we define a chain of cubes as an infinite part of the cube grid in the

3-dimensional space. (This construction was first showed by one of the authors as
a presentation in [3].) Let a cube be given as the first item of the chain. We choose
one of its vertices as a base vertex of our construction and let it be denoted by a0

(see Figure 1). Let a3 be the opposite vertex to a0, and a shortest path between
them along the edges (blue edges in the figure) determines the vertices a1 and a2.
Let b1 and b2 be the fourth vertices of the faces a0a1a2 and a1a2a3, respectively.
Moreover, let c1 and d2 be the fourth vertices of the face a0a1b2 and the rest vertex
of the cube, respectively. Notice that each index denotes the edge-distance from the
base vertex, as well. Furthermore, the denotations of the vertices simultaneously
give the number of the shortest walks along edges from the base vertex. In that
way, a0 = a1 = b1 = c1 = 1, a2 = b2 = d2 = 2, and a3 = 6.

b
1

c
1

a
0

a
1

b
2

d
2

a
2

a
3

Fig. 1. The first cube of chain

Let the second cube be the cube having a common face a1a2a3 with the first
cube, and let a4 be its nearest vertex to a3 (this is the furthest from a0, 4 edge-
length). Then let the third be the cube having a common face a2a3a4 with the
second cube and its nearest vertex to a4 is denoted by a5, and so on. In this way,
generally, the nth cube has exactly one common face ai−1aiai+1 with the (i− 1)th
cube of the chain, its furthest vertex from a0 is the vertex an+2 . Moreover, for
i ≥ 2 let bi+1, ci, and di+1 be the fourth vertices of the faces aiai+1ai+2, ai−1aibi+1,
ai−1bici, respectively (see Figure 2 on the right-hand side). Now we associate the
vertices with positive integer, which give the numbers of the shortest paths to the
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Fig. 2. Chain of cubes in a zig-zag form

vertex from the base vertex of the first cube. The first eight cubes and the values
of the vertices of the chain, see Figure 2 on the left-hand side.

Finally, we obtain the sequences (ai), (bi), (ci) and (di) associated with the
vertices of the cube chain. Table 1 shows their first few items, and all of them
appear in OEIS [6].

i 0 1 2 3 4 5 6 7 8 9 in OEIS [6]

ai 1 1 2 6 12 25 57 124 268 588 A214663

bi 0 1 2 3 8 18 37 82 181 392 A232165

ci 0 1 1 2 6 12 25 57 124 268 A232164

di 0 0 2 3 5 14 30 62 139 305 A232162

Table 1. First ten items of sequences (ai), (bi), (ci), and (di)

2.2. Recurrence sequences
Examining Figure 2 we are able to receive the connections of sequences recur-

sively using each other. Thus, we gain the system of homogeneous linear recurrence
equations for i ≥ 0

(1)

ai+1 = ai + bi + di,

bi+1 = ai + ci,

ci+1 = ai,

di+1 = bi + ci,
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with a0 = 1 and b0 = c0 = d0 = 0.
System (1) can be rewritten in a directed graph form as follows in Figure 3.

Fig. 3. Graph of the system of recurrences (1)

We are interested more extensively in the sequence (ai), because its path in
the chain of cubes is a special zig-zag form. Thus, we want to solve (1) for ai, so
we give the recurrence relation of ai. For this, we describe a new, illustrative graph
method as follows.

2.3. Visual solution with graphs
When we extend the digraph in Figure 3 for a longer period, we gain the graph

in Figure 4.

Fig. 4. Full system of recurrences

Now, in our process, we boil down to enumerating all the directed shortest
paths from the vertex ai+1 to the previous vertices ai, ai−1, . . . , in order to avoid
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the use of b-, c-, and d-type vertices. In Figure 4 the bold red directed edges of
the graph determine the shortest paths searching for and in lexicographical order
(understanding that ai ≺ bi ≺ ci ≺ di) they are

ai+1 −→ ai,

ai+1 −→ bi −→ ai−1,

ai+1 −→ bi −→ ci−1 −→ ai−2,

ai+1 −→ di −→ bi−1 −→ ai−2,

ai+1 −→ di −→ bi−1 −→ ci−2 −→ ai−3,

ai+1 −→ di −→ ci−1 −→ ai−2.

Finally, we just gather the a-terms on the right-hand side of these paths, and
create the final recurrence equation given in the following theorem as our main
theorem.

Theorem 1. The sequence (ai)∞i=0 satisfies the fourth-order linear homoge-
neous recurrence relation

ai+1 = ai + ai−1 + 3ai−2 + ai−3, (i ≥ 3)

with initial values a0 = 1, a1 = 1, a2 = 2, a3 = 6. It appears in OEIS [6] as the
sequence A214663 (see A232164).

3. Other examples

3.1. Example 1

The problem considered in Section 2 led to the recurrence equation with a
fixed number of a-terms, but the same graphical process is easily applicable to
more general cases. Consider, for example, the case introduces shorter than the
case in Section 2 as follows.

We consider a zig-zag path P with step right, then step up, and so on, on
the square grid as in Figure 5. We consider all the squares of the grid which join
to this path in at least one vertex. They form an infinitely long special square
zig-zag form denoted by Z. (See more zig-zag form in [4].) Let us denote by ai,
i ≥ 0 the vertices of P and denote the other vertices of Z by bi and ci according to
Figure 5 on the right-hand side. Furthermore, as in Section 2, the denotations of
the vertices simultaneously give the number of the shortest walks along edges from
the base vertex a0 walking on the edges of Z.

Now, we would like to determine the sequence (ai), (bi), and (ci) associated
with the vertices of Z. The left-hand side of Figure 5 and Table 2 show the first
few items and their numbers in OEIS [6].
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Fig. 5. Square zig-zag form

i 0 1 2 3 4 5 6 7 8 9 in OEIS [6]

ai 1 1 2 3 6 10 19 33 61 108 A028495

bi 0 1 1 3 4 9 14 28 47 89 A006053

ci 0 0 1 1 3 4 9 14 28 47 A006053

Table 2. First ten items of sequences (ai), (bi), and (ci)

The right-hand side of Figure 5 yields the system of recurrence equations for
i ≥ 0,

(2)

ai+1 = ai + bi,

bi+1 = ai + ci,

ci+1 = bi,

with a0 = 1 and b0 = b0 = 0. Figure 6 illustrates the digraph of (2).

Fig. 6: Full system of recurrences
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We are interested in the recurrence relation of (ai) and for this we write the
shortest paths in lexicographical ordering from ai+1 to the previous a’s. They are

ai+1 −→ ai,

ai+1 −→ bi −→ ai−1,

ai+1 −→ bi −→ ci−1 −→ bi−2 −→ ai−3,

ai+1 −→ bi −→ ci−1 −→ bi−2 −→ ci−3 −→ bi−4 −→ ai−5,

ai+1 −→ bi −→ ci−1 −→ · · · −→ ai−7,

...
After collecting the a-terms on the right-hand sides we have

(3) ai+1 = ai + ai−1 + ai−3 + ai−5 + ai−7 + · · · = ai +
b i−1

2 c∑

j=0

ai−2j−1.

Similarly, we find the recurrence ai−1 = ai−2 + ai−3 + ai−5 + ai−7 + · · · , and
subtracting it from (3) we obtain ai+1 − ai−1 = ai + ai−1 − ai−2. Finally, the
sequence (ai)∞i=0 satisfies the third-order linear homogeneous recurrence relation

ai+1 = ai + 2ai−1 − ai−2, (i ≥ 2),
where the initial values are a0 = 1, a1 = 1, a2 = 2.

Example 2
In this example, we generalize our first case introduced in Section 2 by weight-

ing the steps along the edges of the cubes so that generalized system (1) becomes

(4)

ai+1 = α1ai + α2bi + α4di,

bi+1 = β1ai + β3ci,

ci+1 = γ1ai,

di+1 = δ2bi + δ3ci,

where the coefficients α1, α2, α4, β1, β3, γ1, δ2, and δ3 are real numbers, coincide
the weights and the initial values are a0 = 1 and b0 = c0 = d0 = 0. The coefficients
appear as labels of edges of the graph, see in Figure 7.

For reasons of clarity, we denoted the labels in extended digraph in Figure 8
only along the edges of the shortest paths from ai+1 to the previous a’s.

In lexicographical ordering the shortest paths are
ai+1

α1−→ ai,

ai+1
α2−→ bi

β1−→ ai−1,

ai+1
α2−→ bi

β3−→ ci−1
γ1−→ ai−2,

ai+1
α4−→ di

δ2−→ bi−1
β1−→ ai−2,

ai+1
α4−→ di

δ2−→ bi−1
β3−→ ci−2

γ1−→ ai−3,

ai+1
α4−→ di

δ3−→ ci−1
γ1−→ ai−2.
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Fig. 7: Graph of the system of recurrences (4)

Fig. 8: Extended digraph of system of recurrences (4)

Now, we again collect a’s on the right-hand sides and for it, it is enough to multiply
the labels of the edges from each shortest walk to obtain the coefficients for the
transformed recurrence equation. Thus, for i ≥ 3 the sequence (ai)∞i=0 satisfies the
fourth-order linear homogeneous recurrence relation

ai+1 = α1 ai + α2β1 ai−1 + (α2β3γ1 + α4β1δ2 + α4γ1δ3) ai−2 + α4β3γ1δ2 ai−3,

and the initial values provide the equation system (4).
For example, if

ai+1 = 2ai + bi + di,

bi+1 = 3ai + ci,

ci+1 = −ai,

di+1 = 2bi − ci,

then ai+1 = 2ai + 3ai−1 + 6ai−2 − 2ai−3.
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4. Conclusion

In this article, we have introduced problems in which we have combined ge-
ometry, combinatorics, graph theory and number theory. First, we have defined a
special chain of cubes and on it a zig-zag walk associated with a zig-zag sequence.
Then we have presented a graph method in which we collected certain shortest
paths to solve a system of homogeneous linear recurrence sequences. As well, we
have provided two additional examples of the graphical method.

To conclude, the article does contribute to the teaching of mathematics by
introducing the graphical aid to transform a system of recurrence equations of
several sequences into a single recurrence equation in one sequence. We think that
our short article will be useful not only for researchers, but also for the teachers at
different levels of education.
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