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THE RELATION BETWEEN PAPPUS’S AND CEVA’S THEOREM
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Abstract. In this paper, we provide a proof of Pappus’s theorem following
the idea presented in the book “Geometry Revisited” by H.S.M. Coxeter and S.L.
Greitzer. Our proof is based on Ceva’s theorem instead of Menelaus’s theorem.
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Introduction

Pappus of Alexandria, who lived in the 4th century A.D., was one of the last
great geometers of antiquity. His major work in geometry is entitled Synagogue or
the Mathematical Collection and was originally written in eight books. In it, he
collected various discoveries of the most famous mathematicians and a multitude
of curious propositions and lemmas intended to facilitate reading their works. Still,
the collection includes several important discoveries made by him. Two propositions
of Book VII (Propositions 138 and 139, see [3]), have together become known as
Pappus’s theorem, the theorem that we will discuss here.

Pappus proved his theorem using Euclidean methods – proportion. Through-
out the centuries, this theorem has inspired mathematicians, and consequently,
nowadays, there are plenty of different proofs of Pappus’s theorem. Some involve
the use of a famous theorems, and some others use vector algebra, projective ge-
ometry, symbolic computation, computer programs, etc.

Although the proof of Pappus’s theorem can be found in a multitude of books,
a view from a different angle is always valuable, so we intend to present another
exciting proof of this remarkable theorem. Let us start by recalling the proof of
Pappus’s Theorem given in the brilliant book “Geometry Revisited” by H. S. M.
Coxeter and S. L. Greitzer. Their proof was based on Menelaus’s Theorem (see [1],
p. 67). Precisely, they proved Pappus’s Theorem by applying Menelaus’s Theorem
six times. Following the idea presented in that book, we intend to reveal the
connection between Pappus’s and Ceva’s theorem.

In Section 1 we shall say a few words about Ceva’s theorem. In addition, we
will formulate Pappus’s theorem and point out where several different proofs may
be found. In Section 2 we will give a proof of Pappus’s theorem, which illuminates
its connection with Ceva’s theorem.
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1. Preliminaries

Ceva’s Theorem

Ceva’s theorem gives a necessary and sufficient condition which ensures that
the line segments joining a vertex of a triangle to a point on the opposite side
are concurrent. As is known, these segments are called cevians. More precisely,
if X, Y , Z are points on the respective sides BC, CA, AB of triangle ABC,
the segments AX, BY , CZ are cevians. This term comes from the name of the
Italian mathematician Giovanni Ceva (1647–1734), who first published proof of the
mentioned theorem [1]. Although he was not the first mathematician who knew
about it1, this theorem now bears his name. We will not prove this classical theorem
here. Instead, we refer the readers to the book [1] where the proof may be found.

Theorem 1. (Ceva’s Theorem) Let ABC be a triangle. The cevians AX,
BY , CZ are concurrent if and only if the product of three oriented length ratios
along each of the triangle edges satisfies the equality

|AZ|
|ZB|

|BX|
|XC|

|CY |
|Y A| = 1.

Remark 1. By |AB| we denote the distance from a point A to a point B.
For three distinct collinear points P , Q, R we set

|PR|
|RQ| :=

{
PR
RQ , if point R is between P and Q,

−PR
RQ , otherwise.

Under the term Ceva triangle, we as-
sume a triangle with the points X, Y , Z
on the edges BC, CA, AB, respectively,
such that

|AZ|
|ZB|

|BX|
|XC|

|CY |
|Y A| = 1.

Fig. 1. Ceva triangle

Furthermore, we will call the points X, Y , Z the auxiliary points and the
point of intersection of cevians will be called the Ceva point.

Pappus’s theorem

Every student sooner or later becomes familiar with the famous Pappus’s
theorem. This well-known theorem, as one of the most important theorems of plane
geometry, was a subject of many investigations and inspired a lot of fascinating
mathematics. We state it as follows:

1This beautiful theorem was actually discovered by Arab mathematician Yusuf Al-Mutaman
ibn Hud in the 11th century. [2]
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Fig. 2. Two drawings of Pappus’s Theorem

Theorem 2. (Pappus’s Theorem) If A, B, C are three points on one line
and A′, B′, C ′ on another, then the three points of intersection X = BC ′ ∩ B′C,
Y = AC ′ ∩A′C and Z = AB′ ∩A′B are collinear.

The interested reader can find information on ancient methods of proof in [5].
The original proof can be found in [3]. In addition to the mentioned books, we
would like to point out the beautiful book on projective geometry by J. Richter-
Gebert [4] where one can find various proofs.

2. Proof of Pappus’s Theorem using Ceva’s Theorem

In Figure 2, we presented two drawings of Pappus’s theorem. The basic idea
of the following proof is to observe the right drawing and to look for Ceva relations
on it. For the labelling in this proof, we refer to Figure 3.

Fig. 3. Labelling for the proof
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Proof. We start by considering the triangle XA′A. Our aim is to prove that
the points X, Y and Z are collinear. The idea for proving this is elementary. We
suppose that XY intersects AA′ at the point β1 and prove that XZ will intersect
AA′ at the same point. For this, let us take a closer look at Figure 3.

Applying Ceva’s theorem to triangle XA′A and point Y , i.e. using the con-
currence of cevians Aα1, Xβ1, A′γ1, we get

(1)
|Xα1|
|α1A′|

|A′β1|
|β1A|

|Aγ1|
|γ1X| = 1.

Analogously, if we consider the same triangle and points C, B′, C ′ and B, respec-
tively, we obtain four more Ceva’s relations

|Xγ1|
|γ1A|

|Aβ2|
|β2A′|

|A′α2|
|α2X| = 1 (2)

|A′β2|
|β2A|

|Aγ2|
|γ2X|

|Xα3|
|α3A′| = 1 (3)

|Xγ2|
|γ2A|

|Aβ3|
|β3A′|

|A′α1|
|α1X| = 1 (4)

|A′β3|
|β3A|

|Aγ3|
|γ3X|

|Xα2|
|α2A′| = 1. (5)

Multiplying all these relations and canceling terms that occur in the numerator as
well as in the denominator, we are led to the relation

(6)
|A′β1|
|β1A|

|Aγ3|
|γ3X|

|Xα3|
|α3A′| = 1.

This translates to the fact that the cevians Aα3, Xβ1, A′γ3 are concurrent, and
since Aα3 and A′γ3 intersect in a point Z, that is the Ceva point in this case. In
other words, we can deduce that XZ intersects AA′ in the point β1, just as the
segment XY . Thus we are done.

Here an interesting construction can be viewed. Let us imagine glueing Ceva’s
triangles corresponding to relations (1) and (2). For example, the first triangle is
coloured yellow and the second pink. We will glue them along the edge AX, since
they have the same auxiliary point on it (this holds because A′, C, Y are collinear
points). Figure 4 illustrates this. What do we get out of it?

Fig. 4. Gluing the first and the second Ceva triangles
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Well, if we multiply the left-hand sides and the right-hand sides of the relations
(1) and (2), we end up with the relation

(7)
|Xα1|
|α1A′|

|A′β1|
|β1A|

|Aβ2|
|β2A′|

|A′α2|
|α2X| = 1.

More precisely, the ratio on the common edge cancels, and we get the relation
between ratios corresponding to a boundary of the quadrilateral formed by these
two triangles. Thus, we can conclude that if we glue two Ceva triangles along an
edge in a way that they share the auxiliary point on it, we will end up with an ex-
pression that contains only ratios from the boundary of the resulting quadrilateral.
Moreover, continuing in the same fashion, we obtain a collection of Ceva triangles
glued along edges and the relation between ratios corresponding to the boundary
of the figure formed by these triangles.

It turns out that by applying this procedure, we may, without any problem,
prove Pappus’s theorem. To be a little more concrete, note that we found three
more Ceva triangles, those corresponding to the relations (3), (4) and (5). For
example, the first triangle is coloured blue, the second purple and the third green.
One after the other, let us glue them edge to edge in a proper way. Figure 5 shows
this process.

Fig. 5. Gluing Ceva triangles

Gluing the blue triangle and considering the product of the relation (3) ob-
tained from it and the relation (7) leaves us with

(8)
|Xα1|
|α1A′|

|A′β1|
|β1A|

|Aγ2|
|γ2X|

|Xα3|
|α3A′|

|A′α2|
|α2X| = 1.

The left picture in Figure 5 illustrates this. What may be seen at the first glance is
that gluing the blue triangle along the edge A′A to the pink one was easy. On the
other hand, we must pay special attention to the purple and the green triangle.

Consider, in particular, the case of the purple triangle. Note that not only
do the purple and the blue triangle have a common edge, but the purple and the
yellow one has it too (in Figure 5 in the middle, we represent the gluing of their
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edges by arrows). In this regard, if we take into account the relation (4) obtained
from the purple triangle as well as the relation (8), and consider their product,
after canceling the ratios on the common edges, we get

(9)
|A′β1|
|β1A|

|Aβ3|
|β3A′|

|A′α2|
|α2X|

|Xα3|
|α3A′| = 1.

What is left is to add a green triangle to the drawing (see the right picture
in Figure 5). Hence, let us multiply the left and the right sides of the previous
relation and the relation (6) implied by the green triangle. In the end, we are left
with

|A′β1|
|β1A|

|Aγ3|
|γ3X|

|Xα3|
|α3A′| = 1,

which is the same relation as the relation (6).
Finally, we see that the relation (6) could be derived without calculation. As

mentioned previously, if we glue several Ceva triangles along common edges (note
that they need to share the auxiliary point on it), we get the relation corresponding
to the boundary of the resulting figure. In this case, that is a triangle! So, using the
final figure, we could immediately conclude that we will end up with the relation (6).
The right picture in Figure 5 illustrates this.

In Figure 6, we presented the missing triangle to form the hexagon in Figure 5
(right), i.e. the hexagon in Figure 7. That is the Ceva triangle that corresponds to
the relation (6).

Fig. 6. The last Ceva triangle Fig. 7. X , Y and Z are collinear

Come to an end, we encourage the readers to compare the proof of Pappus’s
theorem given in [1] with the proof presented in this paper.
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