
THE TEACHING OF MATHEMATICS

2022, Vol. XXV, 1, pp. 30–35

REVISITING THE FIRST MEAN VALUE THEOREM
FOR INTEGRALS

Humberto Rafeiro and Sehjeong Kim

Abstract. We provide a proof of the first mean-value theorem for integrals
using the Cauchy mean-value theorem, and give an interesting application of the
mean-value theorem related to a Taylor remainder.
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1. Introduction

The textbook proof of the first mean-value theorem for integrals, by which
we mean (2), takes into account the intermediate value theorem for continuous
functions and the elementary estimates

m

∫ β

α

v(t) dt 6
∫ β

α

(u · v)(t) dt 6 M

∫ β

α

v(t) dt,

where v, u are Riemann integrable function, v(t) > 0, and m 6 u(t) 6 M , t ∈ [α, β].
The idea, albeit using sums, already appears in [2], where Cauchy noticed1 that

n−1∑

k=0

(xk+1 − xk)u(xk)v(xk) = u(ξ)
n−1∑

k=0

(xk+1 − xk)v(xk),

for any partition α = x0 < x1 < · · · < xn = β and α 6 ξ 6 β from which the
first mean-value theorem for integrals is obtained. It is worth pointing out that
in [2] both u and v are required to be continuous whereas nowadays the textbook
formulation of such a theorem requires one function to be continuous and the other
Riemann integrable. As an application of such a theorem, Cauchy gave the following
results

∫ β

α

u(t) dt = u(ξ)(β − α),

∫ β

α

u(t) dt = ξu(ξ) ln
β

α
,

for β/α > 0, and ∫ β

α

u(t) dt = (ξ − γ)u(ξ) ln
β − γ

α− γ
,

1in the vingt-troisième leçon, appearing in p. 92.
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for (β − γ)/(α− γ) > 0, which follow from the mean value-theorem taking v(t) = 1,
v(t) = 1/t, and v(t) = 1/(t− γ), respectively.2

In this note, we provide a somewhat different proof, relying on the Cauchy
mean-value theorem and giving a small theoretical improvement when both func-
tions are continuous. This approach is not new but, up to our knowledge, does not
appear in mainstream mathematical analysis books, even as an application of the
Cauchy mean-value theorem, maybe due to some technicality in the proof. We also
provide an application of the mean-value theorem related to a Taylor remainder,
which allows us to obtain a handful of new Taylor remainders to the best of our
knowledge.

2. First mean value theorem for integrals

The first mean value theorem for integrals is a well-known result in analy-
sis. Although, in principle, the proof using the Cauchy mean-value theorem is
straightforward, a technicality appears if v is allowed to be zero, and we need to
use a limiting argument. Even though the complete proof is more involved than
the textbook proof, it nevertheless has a pedagogical interest since it exposes the
students to a limiting argument, which is a quite recurring topic in higher analysis.

Theorem 1. Let u, v ∈ C([α, β]). Then there exists a point ξ ∈ (α, β) such
that

v(ξ)
∫ β

α

(u · v)(t) dt = u(ξ)v(ξ)
∫ β

α

v(t) dt. (1)

If, additionally, v is a nonnegative (or nonpositive) function on [a, b], then
∫ β

α

(u · v)(t) dt = u(ξ)
∫ β

α

v(t) dt, (2)

with ξ ∈ [a, b].

Remark 1. Observe that:

(i) the point ξ in the equation (1) belongs to the interval (α, β), whereas in (2)
the point ξ ∈ [α, β]. In the case v(t) > 0, for all t ∈ [α, β], the first part
of Theorem 1 gives a slight improvement over the textbook formulation of
the first mean-value theorem for continuous functions, which requires that
ξ ∈ [α, β]. This minor improvement is crucial in the proof of Theorem 2;

(ii) the hypothesis that both u and v are continuous is to ensure that we have
antiderivatives for uv and v. We would like to recall that being Riemann
integrable does not entail having antiderivatives, e.g., Heaviside’s function,
and having antiderivative does not imply being integrable, e.g., Volterra’s
function, see [1].

2The book [2] has a misprint in the last application, it is written u(ξ − a) instead of the
correct one u(ξ).
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Proof of Theorem 1. Let ϕ be an antiderivative of uv and ψ an antiderivative
of v. From the Cauchy mean-value theorem, there exists ξ ∈ (α, β) such that

ψ′(ξ)[ϕ(β)− ϕ(α)] = ϕ′(ξ)[ψ(β)− ψ(α)], (3)

from which formula (1) follows.
To prove (1), let us first suppose that v(t) > 0, for all t ∈ [α, β]. Then (2)

follows immediately from (1). If v(t) > 0 we use a limiting argument. For each
n ∈ N, there exists ξn ∈ (α, β) such that

∫ β

α

(u · (v + 1
n ))(t) dt = u(ξn)

∫ β

α

(v(t) + 1
n ) dt.

Since {ξn}n∈N ⊂ [α, β], by Bolzano–Weierstraß theorem, there is a subsequence
{ξnk

}k∈N such that ξnk
→ ξ ∈ [α, β] as k → ∞. The result now follows by a

limiting argument taking into account that the function u is continuous and that
u(v + 1/n) ⇒ uv and v + 1/n ⇒ v in [α, β], allowing to interchange the integral
and taking the limit.

3. An application of the first mean value theorem for integrals

Let f ∈ Cn(I), where I is an open interval of R, and take a, x ∈ I, with a < x
for simplicity. Suppose, moreover, that f (n+1)(a) exists. We have

f (n)(x) = f (n)(a) + (x− a)qa(f (n), x), (4)

where qa is the Newton quotient

qa(ϕ, x) :=
ϕ(x)− ϕ(a)

x− a
, x 6= a. (5)

Applying the Cauchy formula for repeated integration3 to equation (4), we get
∫ x

a

(x− t)n−1

(n− 1)!
f (n)(t) dt

=
∫ x

a

(x− t)n−1

(n− 1)!
f (n)(a) dt +

∫ x

a

(x− t)n−1

(n− 1)!
(t− a)qa(f (n), t) dt. (6)

We have ∫ x

a

(x− t)n−1

(n− 1)!
f (n)(a) dt =

(x− a)n

n!
f (n)(a). (7)

Using (1) and integration by parts, understanding qa(f (n), a) := f (n+1)(a) to have
the function qa(f (n), t) continuous in [a, x], yields

∫ x

a

(x− t)n−1

(n− 1)!
(t− a)qa(f (n), t) dt = qa(f (n), ξ)

∫ x

a

(t− a)
d

dt

(
− (x− t)n

n!

)
dt

=
(x− a)n+1

(n + 1)!
qa(f (n), ξ), (8)

with a < ξ < x, since v(t) = (x− t)n−1(t− a) 6= 0 in (a, x).

3This already appears in the trente-cinquième leçon in [2].
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Defining Fn(x) =
∫ x

a
(x−t)n−1

(n−1)! f (n)(t) dt, we get

Fn(x) =
∫ x

a

(x− t)n−1

(n− 1)!
d

dt

(
f (n−1)(t)

)
dt = − (x− a)n−1

(n− 1)!
f (n−1)(a) + Fn−1(x).

(9)
Taking (6)–(8) and iterating (9), we finally obtain

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2!
f ′′(a) + · · ·

· · ·+ (x− a)n

n!
f (n)(a) +

(x− a)n+1

(n + 1)!
qa(f (n), ξ), (10)

with a < ξ < x. We have thus proved the following result.

Theorem 2. Let f ∈ Cn(I) and a, x ∈ I, where I is an open interval of R.
Assume, moreover, that f (n+1)(a) exists. Then

f(x) = Tn[f, a](x) +
(x− a)n+1

(n + 1)!
qa(f (n), ξ) (a ≶ ξ ≷ x), (11)

where

Tn[f, a](x) :=
n∑

k=0

f (k)(a)
k!

(x− a)k

is the Taylor polynomial of order n of the function f centered at the point a.

Remark 2. Several remarks are in place.
(i) The remainder appearing in (11) is known as the Gonçalves remainder. The

assumption of the existence of f (n+1)(a) is due to our choice of proof since it
is possible to prove Theorem 2 without it, see [4]. It would be interesting to
lift this restriction in our proof since the proof given for Theorem 2 can be
modified to provide several new Taylor remainders.

(ii) The Gonçalves remainder appeared for the first time in the textbook [3]. Since
this textbook was written in Portuguese, it did not draw attention and this
remainder remains, up to this day, almost unknown. It should be pointed out
that this remainder has advantages over other well-known remainders since
the function needs to be differentiable up to order n, instead of n + 1. If
f has derivatives up to order n + 1, the Lagrange remainder follows from
Gonçalves remainder due to Lagrange’s mean-value theorem. For a detailed
history about Taylor remainders, see [5].

(iii) The original proof of (11) appearing in [3] is somewhat different, following a
convoluted bottom-up approach instead of our top-down approach that gives a
very streamlined proof. For completeness of presentation we give the original
proof that runs as follows:
From (5), for x 6= a, we have f ′(x) = f ′(a) + (x − a)qa(f ′, x), from which,
integrating from a to x and by the first mean-value theorem for integrals, we
have

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2!
qa(f ′, ξ1),
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with ξ1 between a and x. Changing f to f ′ in the previous equation, we obtain

f ′(x) = f ′(a) + (x− a)f ′′(a) +
(x− a)2

2!
qa(f ′′, ξ2),

from which, after integrating from a to x, entails

f(x) = f(a) + (x− a)f ′(a) +
(x− a)2

2!
f ′′(a) +

(x− a)3

3!
qa(f ′′, ξ2).

Iterating this idea n times, we arrive at (11).
Other proofs of the Gonçalves remainder, although more elaborate, are known
(see [4] and references therein).

(iv) Instead of the Cauchy formula for repeated integration, we could simply apply
n-iterated integration, which is more appropriate for a classroom exposition.
The usage of the Cauchy formula instead of n-iterated integration has some
advantages, as can be seen from (13)–(15).
The method of proof of Theorem 2 can be easily adapted to obtain other

remainders, which are completely new, to the best of our knowledge. The novelties
will appear when estimating the integral

∫ x

a

(x− t)n−1

(n− 1)!
(t− a)qa(f (n), t) dt (12)

in different ways in comparison with (8). We give several examples, where the
details are left to the reader.
(a) Taking u(t) = (t− a)qa(f (n), t) in the first mean-value theorem gives

G1
n =

(x− a)n

n!
[f (n)(ξ)− f (n)(a)], (13)

thus

Tn[f, a](x) + G1
n = Tn−1[f, a] +

(x− a)n

n!
f (n)(ξ),

which is simply Taylor’s formula of order n− 1 with the Lagrange remainder.
(b) Taking u(t) = (t − a)(x − t)n−pqa(f (n), t) in the first mean-value theorem

applied to (12) gives a remainder with a parameter p

G2,p
n =

(x− ξ)n−p(x− a)p

(n− 1)!p
[f (n)(ξ)− f (n)(a)], (14)

for all p > 0, which is akin to the Schlömilch remainder.
(c) Taking u(t) = [(x− t)n−1(t− a)qa(f (n), t)]/ϕ′(t) in the first mean-value theo-

rem, with ϕ′ ∈ C([min{a, x}, max{a, x}]) and ϕ′ 6= 0 in (min{a, x}, max{a, x}),
we obtain

G3,ϕ
n =

ϕ(x)− ϕ(a)
ϕ′(ξ)

(x− ξ)n−1

(n− 1)!
[f (n)(ξ)− f (n)(a)]. (15)
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We now provide several special cases:

G3,ϕ
n

∣∣
ϕ(t)=(x−t)n+1 = n

(x− a)n+1

(x− ξ)(n + 1)!
[f (n)(ξ)− f (n)(a)],

G3,ϕ
n

∣∣
ϕ(t)=(x−t)n = G1

n,

G3,ϕ
n

∣∣
ϕ(t)=x−t

= (x− a)
(x− ξ)n−1

(n− 1)!
[f (n)(ξ)− f (n)(a)].
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