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TWO HIDDEN PROPERTIES OF HEX NUMBERS
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Abstract. In this paper, we prove that the n-th hex number is exactly the
sum of the number of pieces and the number of triple points associated with an
‘n-balanced’ partition of a triangle obtained by n−1 cevians from each vertex. More-
over, we see via hex numbers an extension of a Feynman’s result: the (k + 1)-th
hex number is the ratio of the area of a triangle T and the area of central triangle
associated with a regular partition of T of order 2k + 1.
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1. Introduction

Among many fascinating relationships of numbers are those that suggest (or
were derived from) the arrangement of points representing numbers into a series
of geometrical figures. Such numbers, known as figurate numbers, appeared in
15th-century books and were probably known to the ancient Chinese, but they
were of particular interest to ancient Greek mathematicians (see [14]). In the
Didactics of Mathematics, figurate numbers are objects of relevant interest (see
[1–4, 8–10]; in particular, as highlighted in the article of Kempen and Biehler
[11], the use of figurate numbers can be considered “a heuristic in the field of
problem solving or proving, which involves interesting perspectives of the semiotic
theory of Peirce (‘diagrammatic reasoning’ and ‘collateral knowledge’) and cognitive
psychology (‘schema theory’ and ‘Gestalt psychology’)”.

Polygonal numbers and centred polygonal numbers are special kinds of figurate
numbers (see Figure 1). For an exhaustive introduction to figurate numbers, see [5].

Fig 1. Examples of polygonal numbers and centred polygonal numbers (see [15])
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Particular centred polygonal numbers are centred hexagonal numbers, also
called hex-numbers (see [5, p. 41]). They are Hex(1) = 1, Hex(2) = 7, Hex(3) =
19, Hex(4) = 37, . . . (see Figure 1) and have many interesting properties (see
A003215 in OEIS, [13]). In this article, we will see two elementary properties
referring to the partition of a triangle which do not seem to be highlighted in the
literature.

Definition. Let T be a triangle. An n-balanced partition of T , Fn, is a
dissection of T obtained by dividing each side in n parts by arbitrary (n−1) points
and joining them to the opposite vertex by (n − 1) cevians. Every intersection of
such cevians will be called repartition point. A repartition point will be called triple
(or cevian) if it is the intersection of three cevians (see Figure 2).

Fig. 2. Two examples of 2-balanced partitions F2 and F′2.

Left: in F2, there are three distinct repartition points.

Right: the cevians of F′2 are concurrent in a repartition triple point.

Clearly, referring to Figure 2, in F2, we find 7 pieces, while, in F′2, we find 6
pieces and 1 triple point. Thus, it appears that in every 2-balanced partition, the
sum of the number of pieces and triple points is in any case 7.

A first question then arises:

Does the invariance property expressed for the configuration of order 2, that
is, that the sum of the number of pieces and of the triple points of any partition
F2 of a triangle is constant, hold for partitions of order greater than 2?

In this article, we will prove that the answer is positive, and that in general
the sum of the pieces and triple points in any balanced partition of order n is the
n-th centred hexagonal number, Hex(n) (see Theorem 2.1).

Hex numbers appear again in another context referred to as special partitions
of a triangle.

An n-balanced partition is said to be regular if each side is divided in n equal
parts. We will denote these partitions as Rn. A well-known example is the 3-
regular partition of a triangle (see Figure 3, where the area of the inner triangle
formed by these lines is exactly one-seventh of the area of the initial triangle (for
example, see [6]).

We will see that for every regular partition of odd order n = 2k + 1 we can
define a central triangle Fn associated with a regular partition Rn, and that the
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Fig. 3. The area of F3 = P1P2P3 is one-seventh of ABC

ratio between the area of the triangle ABC and Fn is exactly Hex(k+1) (Theorem
3.1).

2. Hex numbers as the sum of the number of pieces
and triple points in balanced partitions

Hex numbers are connected to triangular numbers T (n) by an elementary
relation:

Hex(n) = 6T (n− 1) + 1; moreover, it is easy to see that(1)

Hex(n + 1) = Hex(n) + 6n.(2)

Fig. 4. Left: a visual proof for hex numbers: Hex(n) = 6T (n− 1) + 1, where T (n− 1) is the

(n− 1)-th triangular number. Note that Hex(2) = 7, Hex(3) = 19, Hex(4) = 37.

Right: a property of Hex numbers.

Remark 1. The reader can easily check by visual proof that for any n-centred
polygonal number Cl(n) (l vertices), the above relations (1) and (2) become the
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following:

Cl(n) = l T (n− 1) + 1,(3)

Cl(n + 1) = Cl(n) + l n.(4)

We also highlight that easy induction shows the following:

Hex(n) = 3n2 − 3n + 1.

The following result shows that hex numbers are strongly related to the bal-
anced partitions of a triangle.

Theorem 2.1. Let Fn be an n-balanced partition of a triangle T . Then
the sum of the number of pieces and the number of triple points of Fn is equal to
Hex(n).

Proof. In the following, for every positive integer, we will denote by #(Fn)
the sum of the number of pieces and the number of triple points of Fn.

The statement is trivial if n = 1. Indeed the 1-balanced partition F1 has just
one piece and no triple point, so #(F1) = 1; on the other hand Hex(1) = 1.

We have already observed that #(F2) = 7; therefore, since Hex(2) = 7 the
statement also holds for n = 2. Let now n > 2, and proceeding by induction assume
that for every (n− 1)-balanced partition Fn−1, the relation #(Fn−1) = Hex(n− 1)
holds (see Figure 5).

Fig. 5. Left: (n− 1)-balanced partition Fn−1 without triple points.

Right: an (n− 1)-balanced partition F′n−1 with a triple point.

In both the cases, #(Fn−1) = #(F′n−1) = Hex(n− 1).

Starting from Fn−1, we will show that for every n-balanced partition of T , we
have #(Fn) = Hex(n).

For, let r := CD be a new cevian from the vertex C. In this way, T will be
dissected into more pieces and other possible triple points could appear. Clearly, r
will cross only those pieces just lying between two consecutive C-cevians of Fn−1
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Fig. 6. Adjoining to a balanced partition Fn−1 one more cevian r,

the number of pieces increases, and some more triple points might appear.

(see Figure 6), so that the other parts of the new dissection coincide with those of
Fn−1.

Then, to determine the variation in the number of pieces and the number of
triple points in the transition from Fn−1 to the new dissection Fn−1 ∪ r, we have
to count the number of pieces of Fn−1 that are crossed and hence spit into two
pieces by r, and the number of repartition points crossed by r. To show that this
variation is 2(n− 1)− 1, we consider two possible cases:

1) The new cevian r does not pass through repartition points of Fn−1: in this
case, r does not generate new triple points, and intersects n−2 A-cevians and
n−2 B-cevians. Thus, also considering the extremes of r we have 2(n−2)+2 =
2(n − 1) points dividing r into 2(n − 1) − 1 segments, each of which divides
a piece of Fn−1 (crossed by r). In this case the number of pieces increases by
2(n− 1)− 1 (see Figure 7, left).

2) The new cevian r passes through some repartition points of Fn−1: in this
case, if t is the number of points crossed by r, we have t new triple points;
moreover, r intersects the cevians of Fn−1 in 2(n−2)−t distinct points. Thus,
also considering the extremes of r, we have 2(n−2)−t+2 = 2(n−1)−t points
dividing r in 2(n− 1)− t− 1 segments, each of which divides a piece of Fn−1

crossed by r. In this case the number of pieces increases by 2(n− 1)− t− 1.
In total we have an increment of 2(n − 1) − t − 1 pieces and t triple points,
the sum of which is 2(n− 1)− 1 (see Figure 7, right).
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Fig. 7. Left: the cevian r := CD does not cross any repartition points.

In the new dissection Fn−1 ∪ r of ABC the number of pieces increases by 2(n− 1)− 1.

Right: the cevian r := CD crosses through a repartition point of Fn−1 and generates a new

triple point. The number of pieces increases by 2(n− 1)− 2, one less than in the first case.

Starting from the new configuration Fn−1 ∪ r, we may consider an A-cevian
s := AE (see Figure 8). Taking into account that Fn−1 ∪ r has an additional C-
cevian, (r), repeating the above argument we have that the number of pieces and
the number of triple points determined by s increases by 2(n−1)−1+1 = 2(n−1).

Fig. 8. Left: the cevian s does not determine triple points.

Right: a possible configuration in which s determines a new triple point.

Repeating the same reasoning again with a B-cevian u := BF (outgoing from
B) compared to the configuration Fn−1 ∪ r ∪ s, we have that the increment of the
number of pieces plus the number of triple points is 2(n− 1) + 1 (see Figure 9).

Fig. 9. Two examples of balanced partitions. Slightly modifying the position of D, we see that

triangle GHL collapses at triple point. It turns out that the right partition has one more

triple point and one less piece than the left partition.

Therefore, the sum of the number of pieces and the number of triple points
in the partition Fn = Fn−1 ∪ r ∪ s ∪ u, is incremented with respect to those of the
partition Fn−1 by [2(n − 1) − 1] + 2(n − 1) + [2(n− 1) + 1] = 6(n − 1). It follows



Two hidden properties of Hex numbers 27

from Eq. (2) and by induction hypothesis that
#(Fn) = #(Fn−1) + 6(n− 1) = Hex(n− 1) + 6(n− 1) = Hex(n).

The theorem is proved.

3. Hex numbers in generalized Feynman’s triangles

The result shown in Figure 3 in Introduction, is often referred to as Feynman’s
theorem and the central triangle is also called Feynman’s triangle. It appears that
the great physicist tried to show the theorem at the end of a dinner with a guest,
Prof. Kai Li Chung of Stamford University during a visit to Cornell University.
Feynman proved the theorem for equilateral triangles, and in the more general
case, there are different proofs for this theorem (see [6]). Indeed, extensions of this
theorem were already known.

Fig. 10. Routh’s theorem: The area of P1P2P3 can be given in terms of the ratios
CA1

A1B
,

BC1

C1A
, and

AB1

B1C
.

One of these theorem, as suggested in [12], is Routh’s theorem, which can be
found for example, in H. S. M. Coxeter, (see [7, Equation 13.55]) in the following
form:
(5)

Routh’s formula T (λ, µ, ν) =
(λµν − 1)2

(λµ + λ + 1)(µν + µ + 1)(νλ + ν + 1)
ABC,

where
CA1

A1B
= λ,

BC1

C1A
= µ,

AB1

B1C
= ν, and T (λ, µ, ν) both denotes the triangle

P1P2P3 and its area.
Let now n = 2k + 1 be an odd integer, and let Rn be a regular partition of

order n of a triangle T := (ABC). Then every side of T is divided into n parts
by 2k cevians. If we consider the k-th cevian (counterclockwise) from each vertex,
ak, bk, and ck, we obtain a central triangle Fn := T (

k+1
k , k+1

k , k+1
k

)
(see Figure 11),

that we call the n-th Feynman’s triangle associated with the regular partition Rn.
Clearly, the triangle shown in Figure 3 is the third-Feynman’s triangle associated
with the regular partition R3.

Remark 2. Let T be a triangle. We have seen that
T
F3

= 7 = Hex(2).

Applying the Routh’s formula, one may check that
T
F5

= 19 and
T
F7

= 37, which

coincide with Hex(3) and Hex(4), respectively.
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Fig. 11. Left, the central triangle F5 associated with the partition R5: its sides lie on

the cevians a2, b2 and c2. Right, the central triangle F7 associated with the partition

R7: its sides lie on the cevians a3, b3 and c3.

Remark 3. First we note that the area of every n-th Feynman’s triangle can
be obtained by Eq. (5):

Fn = T
(

k + 1
k

,
k + 1

k
,
k + 1

k

)
=

((k+1
k )3 − 1)2

[(k+1
k )2 + k+1

k + 1]3
ABC.

On the other hand, for every integer k, the number ((k+1
k )3 − 1)2 is different from

0, which implies that the area of Fn is not zero, and in particular, the intersection
points of ak, bk and ck are three distinct points.

The relations given in Remark 2 are particular cases of a general result, which
shows another property of hex numbers.

Theorem 3.1. Let n = 2k + 1 be an odd integer, and let Rn be a regular
partition of order n of a triangle T := (ABC). Then, the ratio of the area of T and
the area of the central triangle Fn associated with Rn is the k + 1-th hex number:

T
Fn

= Hex(k + 1)

Proof. The m-th Hex number is

Hex(m) = 3m(m−1)+1 = 3m2−3m+1, (see A003215 in the OEIS, or [5, p. 41]),

so that

Hex(k + 1) = 3(k + 1)2 − 3(k + 1) + 1 = 3k2 + 6k + 3− 3k− 3 + 1 = 3k2 + 3k + 1.

By definition, Fn := T (
k+1

k , k+1
k , k+1

k

)
, and by the Eq. (3) we have:

ABC

Fn
=

[(k+1
k )2 + k+1

k + 1]3

((k+1
k )3 − 1)2

=
(k+1

k )2 + k+1
k + 1

(k+1
k − 1)2

=
(k+1)2

k2 + k+1
k + 1

1
k2

= (k + 1)2 + k(k + 1) + k2 = 3k2 + 3k + 1 = Hex(k + 1).
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