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LAGRANGE’S FORMULA FOR VECTOR-VALUED FUNCTIONS

Milosav M. Marjanović and Zoran Kadelburg

Abstract. In this paper we derive a variant of the Lagrange’s formula for the
vector-valued functions of severable variables, which has the form of equality. Then, we
apply this formula to some subtle places in the proof of the inverse function theorem.
Namely, for a continuously differentiable function f , when f ′(a) is invertible, the points
a and b = f(a) have open neighborhoods in the form of balls of fixed radii such that f ,
when restricted to these neighborhoods, is a bijection whose inverse is also continuously
differentiable. To know the radii of these balls seems to be something hidden and tricky,
but in the proof that we suggest the existence of such neighborhoods is ensured by the
continuity of the involved correspondences.
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Generalizations of the Lagrange’s mean value formula for the vector valued
functions have the form of inequality and their accuracy of estimation of the dif-
ference f(b)− f(a) may be rather poor.

For example, for a continuous function f : [a, b] → Rn, which is differentiable
on (a, b), there exists ξ ∈ (a, b) such that

‖f(b)− f(a)‖ 6 (b− a)‖f ′(ξ)‖,
what is the Lagrange’s formula for this type of functions. Let us consider an
example of this formula when n = 2. Take

f(x) = (cos x, sin x), i.e.
{

u1 = cos x

u2 = sin x,

then, for a = 0, b = 2π, f(b)−f(a) = (1, 0)−(1, 0) = (0, 0), while for each x ∈ (a, b),

f ′(x) =
(− sin x

cos x

)
, ‖f ′(x)‖ = 1.

(See [1], pp. 112–113.)
In the case of a differentiable function f : U → Rm, where U is an open and

convex subset of Rn and K is a constant such that (∀i)(∀j) |∂fi/∂xj | 6 K, the
inequality

‖f(b)− f(a)‖ 6 (mn)1/2K‖b− a‖
is also taken to be the Lagrange’s formula.
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The aim of this paper is the derivation of a variant of the Lagrange’s formula
for vector-valued functions which has the form of equality. Then, such a formula is
applied to some subtle cases in the proof of the inverse function theorem. For the
sake of completeness, we include some related facts, mostly taken from the books
[1] and [2].

Finally, let us also add that, when preparing this paper, we have used some
written notes of the lectures on analysis of the first author.

1. Operator norm

We will denote by Rn the Euclidean space of real n-tuples and by L(Rn,Rm)
the set of all linear mappings from Rn into Rm. The latter set, equipped with
addition and scalar multiplication, is a linear space.

Variables, mappings and their values at a point will be denoted according to
the following correspondences:

x 7→



x1
...

xn


 , A 7→




a11 . . . a1n
...

. . .
...

am1 . . . amn


 A(x) 7→ A · x,

y = A(x) 7→





y1 = a11x1 + · · ·+ a1nxn

...
ym = am1x1 + · · ·+ amnxn.

The space L(Rn,Rm) is normed in the following two standard ways.
For A ∈ L(Rn,Rm), the number

‖A‖ = sup{ ‖A(x)‖ | ‖x‖ = 1 }
is called the operator norm of the mapping (or the operator) A. This norm is taken
to be standard because of the following two inequalities.

1.1. (∀x) ‖A(x)‖ 6 ‖A‖ · ‖x‖
(where ‖A‖ is the best constant for this inequality to hold).

1.2. When A is an invertible mapping, then

(∀x)
‖x‖
‖A−1‖ 6 ‖A(x)‖.

On the other hand, we can identify the matrix A with the vector

(a11, . . . , a1n, . . . , am1, . . . , amn) ∈ Rmn,

and, hence, we can also use the Euclidean norm in L(Rn,Rm):

‖A‖E =
{∑

a2
ij

}1/2

.
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These two norms are topologically equivalent, which follows from the inequality

1.3.
1√
m
‖A‖E 6 ‖A‖ 6 ‖A‖E 6 √

m‖A‖.

In the case when m = n, the mapping A 7→ det(A) is continuous as a poly-
nomial function with variables aij . Further on, we know that the mapping A is
invertible if and only if det(A) 6= 0. As a consequence of the mentioned continuity,
we deduce

1.4. The set I(Rn,Rn) of all invertible mappings from L(Rn,Rn) is open.

Taking into account the known formula for the matrix inverse A−1 = (Aji/∆),
and observing coordinatewise continuity of a mapping belonging to L(Rn,Rn)
( (a11, . . . , ann) 7→ Aji/∆ ), we have

1.5. For A ∈ I(Rn,Rn), the mapping

A 7→ A−1

is continuous.

2. Differentiability

Recall that a function f : U → Rm, where U is an (open) subset of Rn, is said
to be differentiable at a point x ∈ U , if there exists a linear mapping A : Rn → Rm

such that ‖f(x + h)− f(x)−A(h)‖
‖h‖ → 0, h → 0.

In this case, we write f ′(x) = A and this linear mapping is called the derivative of
f at the point x.

2.1. Let U be an (open) subset of Rn, and let f : U → Rm be a given function.

If f is differentiable at x ∈ U then all the partial derivatives
∂fi

∂xj
(x) exist, and f ′(x)

is represented by the matrix



∂f1

∂x1
. . .

∂f1

∂xn
...

. . .
...

∂fm

∂x1
. . .

∂fm

∂xn




,

(which is called the Jacobi matrix of function f).

2.2. Let U be an (open) subset of Rn and let V be an (open) subset of Rm.
(a) For differentiable functions f1, f2 : U → Rm,

(f1 + f2)′(x) = f ′1(x) + f ′2(x)

holds.
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(b) For differentiable functions f and g figuring in the following diagram

(g ◦ f)′(x) = g′(f(x)) ◦ f ′(x)
holds.

A function f : U → Rn is continuously differentiable if the correspondence x 7→
f ′(x) is continuous, i.e. expressed in coordinates, when all the partial derivatives
∂fi

∂xj
(x) are continuous.

Let us also state the following easy assertion.

2.3. Let U be an (open) subset of Rn and let f : U → R be a differentiable

function. If f has an extremum at x ∈ U then (∀j) ∂f

∂xj
(x) = 0.

3. Lagrange’s formula

Observe that for m = 1, according to 1.3, the operator norm is equal to the
Euclidean one. In this case, i.e. for real-valued functions of several variables, the
Lagrange’s formula appears in the from of equality.

3.1. (Lagrange’s formula). Let U be an (open and convex) subset of Rn, let
f : U → R be a differentiable function and let x, x + h ∈ U . Then there exists
ξ ∈ (0, 1) such that

f(x + h)− f(x) = [f ′(x + ξh)](h).

Proof. The function

ϕ(t) = f(x + th)− f(x), (ϕ : (−ε, +ε) → R)

(where x and h are constants) can be seen as a composite function

Applying Proposition 2.2, we obtain

ϕ′(t) = f ′(u) ◦ h, (h =




h1
...

hn


 is a linear mapping).



Lagrange’s formula for vector-valued functions 85

Therefore

f(x + h)− f(x) = ϕ(1)− ϕ(0) = ϕ′(ξ) = f ′(x + ξh) ◦ h = [f ′(x + ξh)](h).

3.2. Let U be an (open and convex) subset of Rn, let f : U → R be a differ-
entiable function and let x, x + h ∈ U . Then

(∀j) sup
x∈U

∣∣∣∣
∂f

∂xj
(x)

∣∣∣∣ 6 K =⇒ |f(x + h)− f(x)| 6 K
√

n‖h‖.

Proof. Applying 3.2, 1.1 i 1.3, we get

|f(x + h)− f(x)| = |f ′(x + ξh)(h)| 6 ‖f ′(x + ξh)‖ · ‖h‖

6
(∑[

∂f

∂xj
(x + ξh)

]2)1/2

· ‖h‖ 6 K · √n · ‖h‖.

The following assertion is the Lagrange’s formula for vector-valued functions
which follows by applying 3.1 to coordinate functions.

3.3. Let U be an (open and convex) subset of Rn, let f : U → Rm be a
differentiable function and let x, x + h ∈ U . Then there exist ξ1, . . . , ξm from
(0, 1), such that

f(x + h)− f(x) =




f ′1(x + ξ1h)
...

f ′m(x + ξmh)


 (h).

Proof.

f(x + h)− f(x) =




f1(x + h)− f1(x)
...

fm(x + h)− fm(x)


 =




f ′1(x + ξ1h)(h)
...

f ′m(x + ξmh)(h)




=




f ′1(x + ξ1h)
...

f ′m(x + ξmh)


 (h).

3.4. Let U be an (open and convex) subset of Rn, let f : U → Rm be a
differentiable function and let x, x + h ∈ U . Then

(∀i)(∀j) sup
x∈U

∣∣∣∣
∂fi

∂xj
(x)

∣∣∣∣ 6 K =⇒ ‖f(x + h)− f(x)‖ 6 K · √mn · ‖h‖.

Proof. Similar to the one of Proposition 3.2.

Since (in the case m = n the correspondence A = (aij) 7→ detA is continuous,
hence, when det A 6= 0, according to 1.4, there exists ε > 0, such that for each
matrix B = (bij) the following implication holds

(∀i)(∀j) bij ∈ (aij − ε, aij + ε) =⇒ detB 6= 0.
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Thus, in this case the matrix A has an ε-neighborhood
∏

(aij − ε, aij + ε) in Rn2

such that all the matrices B contained in it are invertible.
For brevity, we shall denote the matrix




∂f1

∂x1
(x + ξ1h) . . .

∂f1

∂xn
(x + ξ1h)

...
. . .

...
∂fn

∂x1
(x + ξnh) . . .

∂fn

∂xn
(x + ξnh)




by A(x, ξ, h), where ξ = (ξ1, . . . , ξn) and all ξi ∈ (0, 1). Using these denotations
and the previous remarks, we can formulate and prove the following assertion.

3.5. Let U be an (open) subset of Rn and let a function f : U → Rn be
continuously differentiable. Then

det f ′(x0) 6= 0 =⇒[
(∃η > 0)(∀x)(∀h)(∀ξ)x ∈ B(x0, η) and x+h ∈ B(x0, η) =⇒ detA(x, ξ, h) 6= 0

]
.

Proof. The matrix f ′(x0) has an ε-neighborhood, containing matrices with

non-zero determinant. The functions
∂fi

∂xj
are continuous, hence, there exists η > 0,

such that

‖x0 − y‖ < η =⇒ (∀i)(∀j)
∣∣∣∣
∂fi

∂xj
(x0)− ∂fi

∂xj
(y)

∣∣∣∣ < ε.

For x, x + h ∈ B(x0, η), we have x + ξih ∈ B(x0, η), for all ξi ∈ (0, 1), i.e. ‖x0 −
(x + ξih)‖ < η. Then,

(∀i)(∀j)
∣∣∣∣
∂fi

∂xj
(x0)− ∂fi

∂xj
(x + ξih)

∣∣∣∣ < ε,

and hence det A(x, ξ, h) 6= 0.

4. Inverse function theorem

According to this theorem, a continuously differentiable function f is invertible
over some neighborhood of a point x0, provided that det f ′(x0) 6= 0. This means
that the point f(x0) has also a neighborhood such that, if f is considered as a
function between these two neighborhoods, it is injective and surjective, and the
inverse function f−1 (considered as a mapping between these neighborhoods) is
also continuously differentiable. We will first present two assertions which can
be extracted from any of proofs of the inverse function theorem, and which have
meaning on their own.

4.1. Let U be an (open) subset of Rn, let a function f : U → Rn be con-
tinuously differentiable and let x ∈ U . If f ′(x) is invertible then there exists a
neighborhood Ux of the point x, such that the restriction f |Ux is an injection.
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Proof. Take Ux to be the ball B(x, η) from Proposition 3.5. For x′ ∈ B(x, η),
y = x′ + h ∈ B(x, η), according to 3.3 and 1.2, we have

‖f(y)− f(x′)‖ = ‖f(x′ + h)− f(x′)‖ = ‖A(x′, ξ, h)(h)‖

> ‖h‖
‖(A(x′, ξ, h))−1‖ > 0,

implying that f(x′) 6= f(y).

4.2. Let U be an (open) subset of Rn, let a function f : U → Rn be con-
tinuously differentiable and (∀x ∈ U) f ′(x) is invertible. Then f [U ] is an open
set.

Proof. Let a point b ∈ f [U ] be arbitrary. There exists a ∈ U , such that
f(a) = b. Let B(a, η) be the ball over which det f ′ 6= 0 and f is injective, (4.1). For
δ ∈ (0, η), since f is injective, f(a) /∈ f [S(a, δ)], where S(a, δ) = {x | ‖a−x‖ = δ }.
Let

d = dist{b, f [S(a, δ)]} > 0.

We will prove that B(b, d/2) ⊂ f [U ]. For arbitrary y0 ∈ B(b, d/2), the function

ϕ(x) = ‖y0 − f(x)‖2 =
∑

(y0
i − fi(x))2

is continuously differentiable over U . It has the minimum at some point x0 ∈
B(a, δ), because it attains the smallest value on the compact set B(a, δ), and (∀x ∈
S(a, δ)) ϕ(x) > (d/2)2 holds, while ϕ(a) < (d/2)2.

According to 2.3,

(∀j) ∂ϕ

∂xj
(x0) = −

∑

i

2(y0
i − fi(x0))

∂fi

∂xj
(x0) = 0 (j = 1, . . . , n).

This system is homogenous in y0
i − fi(x0), so its determinant (after reducing by 2)

det f ′(x0) 6= 0. Therefore,
(∀i) y0

i = fi(x0),
i.e. f(x0) = y0. Thus, y0 ∈ f [U ].

4.3. (Inverse function theorem) Let U be an (open) subset of Rn and let
a function f : U → Rn be continuously differentiable. If the mapping f ′(a) is
invertible for some a ∈ U , and b = f(a), then:

(a) there exist open sets V and W with a ∈ V , b ∈ W , such that the restriction
f : V → W is a bijection.

(b) the function f−1 : W → V is continuously differentiable and
(f−1)′(y) = (f ′(x))−1, (y = f(x)).

Proof. (a) Since det f ′(a) 6= 0, there exists a neighborhood V of the point a
over which det f ′ 6= 0 and, according to 4.1, over which f is an injection. According
to 4.2, the set f [V ] = W is open. The function f−1 : W → V is continuous, since
for an (open) subset A of V we have

(f−1)−1[A] = f [A],

which is, again according to 4.2, an open set.
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(b) Let y ∈ W , f(x) = y, Ax = f ′(x). We will prove that (f−1)′(y) = A−1
x .

Note that by the relation y + k = f(x + h) we have that h 6= 0 implies k 6= 0,
since f is injective; also, h → 0 implies that k → 0, since f and f−1 are continuous
functions. Now we have

‖f−1(y + k)− f−1(y)−A−1
x (k)‖

‖k‖ =
‖h−A−1

x (k)‖
‖k‖ =

‖A−1
x (Ax(h)− k)‖

‖k‖
6 ‖A−1

x ‖‖Ax(h)− k‖
‖k‖ = ‖A−1

x ‖‖Ax(h)− k‖
‖h‖ · ‖h‖‖k‖ .

The expression ‖A−1
x ‖ does not depend on k, while

‖k −Ax(h)‖
‖h‖ tends to zero as

k, i.e. h tends to zero (since f is differentiable). By 3.3,

‖h‖
‖k‖ =

‖h‖
‖f(x + h)− f(x)‖ =

‖h‖
‖A(x, ξ, h)(h)‖ ,

and by 3.5, A(x, ξ, h) is invertible over certain neighborhood of the point x. Hence,

‖h‖
‖k‖ 6 ‖h‖

‖h‖/‖(A(x, ξ, h))−1‖ 6 ‖(A(x, ξ, h))−1‖.

Since h → 0 implies A(x, ξ, h) → Ax, and since the mapping A 7→ A−1 is contin-
uous, we have that ‖A(x, ξ, h)−1‖ → ‖A−1

x ‖. Therefore, (f−1)′(y) = A−1
x , and so

f−1 is a differentiable function.
Since all the correspondences

y
f−1

7→ x 7→ Ax 7→ A−1
x = (f−1)′(y)

are continuous, f−1 is also a continuously differentiable function.

We conclude with the following

Open question. Can the Lagrange’s formula in the form of equality be
deduced for mappings in arbitrary Banach spaces?
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