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GEOMETRY AND MATHEMATICAL SYMBOLISM
OF THE 16TH CENTURY VIEWED THROUGH
A CONSTRUCTION PROBLEM

Milana Dabié

Abstract. This paper represents a construction problem from Problematum
geometricorum IV written by Simon Stevin from Bruges in 1583. The problem is
used for illustrating the geometry practice and mathematical language in the 16th
century. The large impact of Euclid and Archimedes can be noted. In one part of the
construction, Stevin expressed the need for using numbers for greater clarity. Hence,
the link with the work of Descartes and the further geometry development is pointed
out.
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1. Introduction

From the times of Ancient Greece until the 16th century there was no signif-
icant geometrical contribution that would expand the existing geometrical knowl-
edge. Only in the second half of the 16th century we can find geometry works
of Simon Stevin from Bruges (1548-1620). It is believed that his influence was
neglected in the history of mathematics and that his name should be mentioned
together with the name of his contemporary Galileo Galilei, from whom Stevin was
a whole generation older (16 years) [8].

It is considered that Stevin, as a predecessor of Descartes, prepared a path for
introducing correspondence between numbers and points on the line by studying
the 10th book of Euclid’s Elements and translating it to numbers [9]. Besides
his work on the Problematum geometricorum libri V, he wrote Tomus secundus de
geometriae prazi (in 1605) which is: ... different from the Problemata geometrica
and inferior to it; it is also a collection of geometrical problems but it is not arranged
as logically as the former; it was chiefly made to complete the Prince’s geometrical
training [6, p. 261].

Problematum geometricorum libri V is a collection published in 1583, which
consists of five books with different geometry problems. The fourth book deals
with the construction problem which will be presented in this paper.
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2. The terminology used in
Problematum geometricorum, book IV

The fourth book of Problematum presents the construction of a solid, similar
to the one given solid and equal to the other given solid. It is a problem analogous
to the problem in plane proved as Proposition 25 in the Sixth Book of Euclid’s
Elements (here and after referred to as Proposition VI.25). Proposition VI.25
states: To construct one and the same figure similar to a given rectilinear figure
and equal to another given rectilineal figure. We can see that the terminology used
to formulate VI.25 is the same as in formulation of a problem in Problematum.
Stevin uses terms equal and similar in the same way as Euclid does in formulation
of VI.25.

Common notion 5 (or 7) in the First Book of Elements states that: Things
which coincide with one another are equal to one another. But that is not the
equality that Euclid uses in formulation of VI.25. It is the equality used in formu-
lation, for example, of Pythagoras’ Theorem. It allows decomposition of a figure
and rearrangement of its pieces. In this way, the resulting figure will not be equal
to the starting one in the sense of Common notion 5, but its pieces will be. The
equality of the starting and the resulting figure is stated by Common notion 2: If
equals be added to equals, the wholes are equal [7], [1].

Similar rectilinear figures are defined in the Sixth Book of Elements in Defi-
nition 1 as figures that have their angles equal and the sides about the equal angles
proportional. Stevin’s problem stated above deals with similar solids, and its def-
inition is already given in the XI Book as Definitions 9 and 24. The definitions
respectively define similar solid figures as those contained by similar planes equal
in multitude, and similar cones and cylinders as those in which the axes and the
diameters of the bases are proportional. Despite of the existence of these defini-
tions, and the definition of a solid, given as that which has length, breadth, and
depth (Definition 1 in Book XI) Stevin gives a description of geometrical solid in
the following note:

We call Geometrical solid a solid which is constructed by a Geomet-
rical law, such as Sphere, a Segment of a sphere, a Sector of a sphere,
Spheroids, a Segment of a spheroid, a Conoid, a conoidal Segment, a Col-
umn, of which there are two kinds, viz. the Cylinder and the Prism, a
Pyramid, the reqular Solids, the augmented reqular solids, the truncated
reqular solids; the construction of all of which will be dealt with fully in our
Geometry. Indeed, we call these solids and others which are constructed
Geometrically Geometrical solids to distinguish them from bodies such as,
generally, stones, fragments of stones, and the like [9, 313].

This expansion of Euclid’s definitions is due to the fact that Stevin knew the
work of Archimedes and his predecessors, so Stevin includes spheroids, conoids, etc.,
which are not mentioned in the Elements. His construction is presented through
examples of cone and cylinder. Pyramid is used for proof through numbers. Most
of Stevin’s work on this problem is based on the work of Archimedes On the Sphere
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and Cylinder I, and if all propositions needed for the construction and its proof
should be stated here, almost whole book would be presented.

“Constructional tool” for Problematum IV

Beside the “constructional tool” from the postulates and proposition in Ele-
ments which is in use nowadays (e.g. to bisect a given finite straight line, to draw
a straight line at right angles to a given straight line from a given point on it,
etc.), in Problematum IV Stevin uses the construction of the third proportional
(Euclid’s Elements VI.11), the fourth proportional (Euclid’s Elements VI.12) and
the mean proportional (Euclid’s Elements VI.13). The construction of two mean
proportionals Stevin exposes in Problematum, as the first problem. Since the above
mentioned constructions are well known, we will just give a short reminder in mod-
ern symbolism for the third, the fourth, mean and two mean proportional(s). The
third proportional for the given line segments a and b is a line segment ¢ for which
isa:b=2>0:c The fourth proportional for three given line segments a, b and c is
a line segment d for which is a : b = ¢ : d. Mean proportional for two line segments
a and b is the line segment ¢ for which a : ¢ = ¢ : b. The construction of these
proportionals is sufficient for the analogue problem in plane resolved by Eucild in
VI.25, but for Stevin’s problem in space, the construction of two mean propor-
tioanls is needed. For two given line segments a and b two mean proportionals are
line segments ¢ and d for whicha:c=c:d=4d:b.

3. The first three problems of Problematum IV

Before formulating the construction problem, Stevin first deals with three ge-
ometry problems necessary for the construction. The problems are represented in
the way they are exposed in Elements, only with the explicit indication what is
given, what is required, what construction, proof and conclusion are.

The First problem
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Figure 1. Construction of two mean proportionals
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The first problem is the problem of construction of two mean proportionals
for two given line segments. The construction is conducted in the manner of Hero.
Stevin refers that the proof should be found in Eutocius comments to the second
book On the sphere and cylinder of Archimedes.

The Hero’s construction of two mean proportionals is well known, so it is
illustrated here only by Figure 1. It is sufficient to know that AB and C'D are two
given line segments, and KM and HN are two mean proportionals.

The Second problem

The second problem is the construction of a cone equal to a given cone, with
a given altitude. Here we represent the construction in the same way as Stevin
did. Given is the cone ABC, with altitude AD and the base diameter BC, and the
altitude E'F. Required is to construct another cone, equal to the cone ABC and
with the given altitude E'F.

Construction. First, mean proportional G for the AD and E'F is found. Then,
the fourth proportional HI for G, AD, and BC respectively is found. FHI is the
required cone (H is the diameter and EF is the altitude) (Figure 2).
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Figure 2. Construction of a cone equal to the given cone ABC with the given altitude EF

Proof. Here, we will first cite the proof from Stevin’s Problematum, and then
expose the proof using the help of modern symbolism.

»Section 1. AD has to EF the duplicate ratio of that of AD to G,
for G is their mean proportional by the construction.

Section 2. The circle HI is to the circle BC in the duplicate ratio of
that of the homologous line HI to the homologous line BC, as is inferred
from the 20th proposition of Fuclid’s 6th book. But as the line HI is to
the line BC, so is AD to G, by the inverted ratio of the construction.
Consequently, the circle HI is to the circle BC in the duplicate ratio of
that of the line AD to G. But it has been proved in Section 1 that AD is to
EF in the same duplicate ratio of that of AD to G. Consequently, as the
segment AD is to the segment EF, so is the circle HI to the circle BC.
Therefore, the solids are cones whose bases and altitudes are inversely
proportional, so that, by the 15th proposition of Fuclid’s 12th book, the
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cones ABC' and EHI are equal to one another. Moreover, it is evident
from the construction itself that the cone EHI has been constructed with
the given altitude HF.” ]9, 307]

Using modern symbolism, per construction, GG is mean proportional for AD
and EF, so
AD:G=G: EF,

wherefrom it follows
(1) AD: EF = AD*: G*.

Circle with diameter HI to the circle with diameter BC' is HI? : BC?. For this
conclusion, Stevin refers to Elements VI.20 [9, p. 299], which states: Similar poly-
gons are divided into similar triangles, and into triangles equal in multitude and in
the same ratio as the wholes, and the polygon has to the polygon a ratio duplicate of

that which the corresponding side has to the corresponding side. Per construction,
HT is the fourth proportional for G, AD and BC, so

G:AD=BC:HI, ie. HI : BC=AD :G,

wherefrom we conclude that the circle with diameter HI to the circle with diameter
BC'is AD? : G?. From equality (1) and from the previous, the circle with diameter
HT to the circle with diameter BC' is AD : EF. By the Elements XI1.15, “In equal
cones and cylinders the bases are reciprocally proportional to the heights; and those
cones and cylinders in which the bases are reciprocally proportional to the heights
are equal’, cones ABC and FHI are equal.

In a note, Stevin concludes that similar construction and proof can be con-
ducted to cylinders, for Proposition XII.15 includes cylinders too.

The third problem

The third problem is the construction of a cone equal to the segment of a
sphere, and having the same base as the segment of a sphere. The construction
and the proof will not be exposed here. Stevin refers to the proof in On the sphere
and cylinder II by Archimedes, for which numerous propositions from On the sphere
and cylinder I are needed (only some of them are Propositions 1.35-1.44).

4. The fourth problem — main construction

The fourth problem, and as Stevin says “what is sought in this Fourth book” [9,
p. 313] is “for given any two Geometrical solids, to construct a third solid, similar
to one of the given solids and equal to the other”. This problem Stevin exposes
through four examples.

EXAMPLE 1. Let there be any two solids, the two cones ABC and DEF, and
let the altitude of the cone DEF be the line DG, and the diameter of the base EF.
Required is to construct the third cone, similar to the cone DEF' and equal to the
cone ABC (Figure 3).
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Construction. Let us construct the cone HIK equal to the cone ABC with
altitude equal to DG, using the construction presented in the previous, second
problem. Let us denote the diameter of the base by IK. Let L be the third
proportional for EF and I K, and let M N be the first of two mean proportionals
for EF and L respectively. If we denote by OP the fourth proportional for EF, DG
and M N, respectively, then the cone OM N, with base diameter M N and altitude
OP is the required cone.
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Figure 3. Construction of a cone equal to the cone ABC and similar to the cone DEF

Proof. Regarding the construction, OP is the fourth proportional for EF', DG
and MN,so EF : DG = MN : OP, hence, cones DEF and OM N are similar.

L is the third proportional for EF and IK, so “the segment EF is to the
segment L in the duplicate ratio of that of the line EF to IK” [9, p. 315]. In the
original work, there is no further explanation for this statement, but this statement
was frequently used in geometry problems. Using modern notation, it states that
from EF : IK = IK : L it can be concluded that EF : L = EF? : IK?. But,
EF and IK are diameters of the circles, so the circle with diameter FF to the
circle with diameter I K is as EF to L. The circle with diameter EF to the circle
with diameter I K is as the cone DEF to the cone HIK because cones have equal
altitude per construction (this is regarding Elements XII.11). Hence, the cone DEF
is to the cone HIK as the line F'F' to the line L.

Per construction, M N is the first of the two mean proportionals, so “the seg-
ment EF is to L in the triplicate ratio of that of EF to the segment MN” [9, p.
317]. Similar to the previous, it is frequently used that from ratio used in defining
two mean proportionals one can conclude that EF : L = EF3 : MN3. It was ear-
lier proved that the cones DEF and OM N are similar, hence using the previous
equality (and considering FF and M N are base diameters of the cones), the cone
DEF to the cone OMN is as EF to L (this is stated in Elements XII.12). It was
also proved that the cone DEF is to the cone HIK as E'F to L, so the cones OM N
and HIK are equal. Per construction, the cone ABC' is equal to the cone HIK,
so the cone OM N is equal to the cone ABC.
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ExAMPLE 2. In Example 2, it was only stated that the previous construction
could be conducted on cylinder.

EXAMPLE 3 is the construction of the segment of a sphere similar to the first
and equal to the second given segment of a sphere. For this construction, the
constructions exposed as Problems 2 and 3 are needed. The construction will not
be given in this paper.

ExaMPLE 4. In this example, Stevin states: “This problem of ours can also
be demonstrated by means of numbers, which may be effected, for greater clarity,
in the following way.” In this example the construction of a pyramid equal to the
pyramid ABC and similar to the pyramid EFG is given. The pyramid ABC has
a square base with 2 feet side, 12 feet altitude and 16 feet volume and EF'G has a
square base with 8 feet side and 3 feet altitude (Figure 4).

Figure 4. Construction of a pyramid equal to the pyramid ABC and similar
to the pyramid EF'G by the mean of numbers

Representing the construction in terms of numbers was the novelty at the time,
so we expose the way Stevin conducted that construction, with some comments for
easier understanding.

“Construct a pyramid IKL equal to the pyramid ABC, with the al-
titude IM equal to the altitude EH, viz. 3 feet, so that its base (in order

to make a pyramid whose volume be 16 feet) will be a square whose side

KL will be 4 feet. Then find the third proportional, the first term being

FG =38, the second KL = 4; then the third will be N = 2 feet.”

In modern symbolism, N = 2 from equality 8 : 4 =4 : N.

“Subsequently find the two mean proportional between FG = 8 and
N =2, the one of these mean proportionals which follows F'G being OP,
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the cube root of 128; this is proved because 8, and the cube root of 128, and
the cube root of 32, and 2 are four numbers in continuous proportion.”

This statement does not have further explanation, it is stated here as general
knowledge. Nowadays it can be easily concluded that from the equality 8 : OP =
OP :z=x:2, OP is equal to ¥/128 = 4+/2.

“Then find the fourth proportional, the first term being FG = 8, the
second EH = 3, the third OP = the cube root of 128; then the fourth,

3456 ,
viz. the altitude QR, will be the cube root of 512

3456 3
From 8 : 3 = /128 : QR, one can conclude that QR = { T = ;f

“Subsequently, on the square, whose side is OP and with the altitude
QR construct a pyramid QOP; its volume will be 16 feet. The reason is
that the square whose side is OP = the cube root of 128 will be the cube

root of 16384, which, when multiplied by the altitude QR = the cube root

6 56623104
gives the product = the cube root of ESTEE the thzrd gart of

of
which, viz. the volume of the pyramid QOP, is the cube root of W’
i.e. the cube root of 4096, which makes, as said above, 16 feet”.

This part of construction is calculation that attests that the volume indeed is

16 feet, i.e. 7(4\[) \f = 16.

“I say that a thzrd pyramid QOP has been constructed, by means of
numbers, in the same order as has been done above by segments, similar
to the pyramid EFG and equal to the pyramid ABC; as was required. The
proof is evident from the fact that the pyramid QOP is similar to the pyra-
mid EFG and equal to the pyramid ABC, by the numerical construction
itself”. [9, p. 327, 329].
In the end, it is noted that it is possible to construct a cone equal to any

Geometrical solid.

5. Conclusion

Representing this construction, one can see the great impact that Euclid and
Archimedes still had on geometry in the 16th century. The Elements have all
the constructional tools that Stevin uses, and Archimedes proved Problem 3 as
Proposition 5 in On the sphere and cylinder I1. Stevin just generalized this problem
to other solids and gave a different proof.

Mathematical language and symbolism Stevin uses in this book is similar to
the language used in Elements. But, the need for exposing the problem by the
means of numbers is a novelty. After number construction, Stevin says: “This
example can also be dealt with by means of the rule called Algebra, but since this
is common knowledge, we have not thought it necessary to set it forth here.” [9, p.
331]
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Hence, in the 16th century there was a need for linking geometry to num-

bers and algebra. Our opinion is that this work illustrates the mathematical cir-
cumstances in which Descartes made the correspondence between geometry and
numbers. Further development of geometry is well known.
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