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AN EMPIRICAL STUDY IN THE NOTION OF AREA:
A SOCRATIC EDUCATIONAL EXPERIENCE ANCHORED

IN VAN HIELE’S MODEL

Maŕıa Ángeles Navarro and Pedro Pérez Carreras

‘Can you do Addition?’ the White Queen asked.
‘What’s one and one and one and one and one

and one and one and one and one and one?’
‘I don’t know,’ said Alice. ‘I lost count.’

‘She can’t do Addition,’ the Red Queen interrupted.

Lewis Carroll, “Through the Looking Glass”

Abstract. In this article our goal is to design a suitable strategy to be im-
plemented on High School students in order to prepare them for the formal study of
approximate and exact integration via a Socratic semi-structured interview. Our dialog
will be closely dependent on the use of a computer generated tool (applet) to encour-
age students participation, provide them with numerical and visual data and allow the
linking of the processes of discovery, understanding and conceptualization in the frame
of an educational model. What follows contains a description of the interview which is
also our instrument for pointing out and detecting the levels postulated by van Hieles
educational model.
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1. Objective

Our purpose is to lay down the basic ideas which are behind the topic of the
definite integral and it is aimed to High School students which have studied nei-
ther limiting processes nor integration yet, but are close to doing so. Since most
students do not really understand the computation of area as a limiting process
and since those limiting processes are neglected at school, we are not interested in
what students can do naturally, but in what they can do accompanied by instruc-
tion. We want to guide them in a journey of discovery and inquiry, not random
but purposeful, testing at every significant stage of the experience the foundations
of their beliefs or their ways of reasoning, very much in the Socratic spirit, and
to explore how far progress can be made in providing meaningful information by
using colloquial language admitting a certain degree of ambiguity present (which
hopefully allow students to invest meaning in the problem studied) while manipu-
lating a computer generated visualization tool. The cognitive structure associated
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to a mathematical concept which includes all mental images, visual representa-
tions, experiences and impressions as well as associated properties and processes is
called concept image, Tall and Vinner [7]. By means of a semi-structured clinical
interview, we shall provide the means for the construction of a solid concept image
of area which incorporates visual, numerical and algebraic connotations, for if one
cannot handle a mathematical concept in more than one register, then understand-
ing of it is limited (Duval). For this purpose and with the help of a mathematical
assistant, we shall design a tool, technological in nature, covering all those aspects
(see Section 4).

Our aim is not to develop a substitute for the concept definition (the con-
ventional linguistic statement precisely delimiting the frontiers of application of
the concept, Tall and Vinner [7]), but rather a somewhat narrower objective: to
describe a battery of actions that should be implemented prior to formal mathe-
matical instruction in the classroom, as done in Herceg and Herceg [1], with the
purpose of, on one hand, constructing a suitable concept image which does not
distort the desired concept definition allowing a smooth transition to it and, on the
other, provoke the need for such a concept definition at a stage where the notion
of limit has not been covered yet. The suitable place to implement such a strategy
is High School.

2. Van Hiele’s educational model

We shall anchor our experience in Van Hiele’s educational model (van Hiele
[8, 9]) which provides a description of the learning process, by postulating the
existence of levels of reasoning (not identified with computational skills) classified
as Level 0 (Pre-descriptive), Level 1 (Visual Recognition), Level 2 (Analysis), Level
3 (Classification and Relation) and Level 4 (Formal Deduction).

In Level 1 students are guided by a series of visual characteristics and lead by
their intuition. In Level 2, individuals notice the existence of a network of relation-
ships. This is the first level of reasoning that can be called “mathematical” because
students are able to describe and generalize through observation and manipulation
properties that they still do not know. Reasoning in Level 3 is related to the struc-
ture of the second level and conclusions are no longer based on the existence or
non-existence of links in the network of relationships of the second level, but rather
on existing connections between those links. Level 4 speaks for itself. Level 3 is
our last port of call since we are interested mainly in the construction of a solid
concept-image of a mathematical concept which makes easy the mental transition
to its concept-definition, once the necessary logical-algebraic maturity is available.

Its success in dealing with concepts outside of the realm of Geometry (see
Llorens and Pérez Carreras [2], Navarro and Pérez Carreras [3–6]) is explained be-
cause the model can be understood as more concerned on how students think about
a specific topic than with the topic itself and also because the model mimics the
genesis of some mathematical concepts: first, the discovery of isolated phenome-
na; second, the acknowledgement of certain characteristics common to all of them;
third, the search for new objects, their study and classification and, fourth, through
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consideration of examples and counterexamples to proposed definitions, the emer-
gence of definitive formulations. The application of this model to a specific subject
requires the establishment of a series of descriptors for each level to enable their
detection. To be considered within van Hiele’s model, several conditions should be
satisfied: (i) levels must be hierarchical, recursive, and sequential; (ii) levels must
be formulated so that they include a progression in the level of reasoning as a result
of a gradual process, resulting from learning experiences; (iii) tests designed for the
detection of levels should take into account the existing relationships among levels
and the language used by apprentices; and (iv) the fundamental objective of the
design must be the detection of levels of reasoning, without confusing them with
levels of computational skill or previous knowledge.

3. Our approach

According to the constructivist perspective which focuses in individual think-
ing and the continuing act of creating learning opportunities, all that can be ac-
complished via an appropriate Socratic discovery-oriented interview design that,
within the context of the model and paying attention to many of the recurrent
themes described in the research literature, allows the detection of students’ levels
of thinking with respect to the specific mathematical concept we are dealing with.
This interview is not a wild-goose chase: it has to be carefully planned with a
strategy in mind and orderly implemented, avoiding inappropriate tactics at the
wrong times or places and allowing for feedback to planning and assessment.

Why an interview as a Socratic dialog? According to (iii) above, we
need students to be able to talk profusely. Our questions should be sharp and
short, their answers are expected to be tentative and long. Most students are very
comfortable functioning without formal definitions in most cases and hence com-
mon language is a perfectly reasonable tool of communication to use: it is rich
in implicit mathematical rules, meanings and conventions and its proper use en-
tails a special competence. There is no such thing as a neutral communication
system: ours allows the interviewer a sense of direction proposing those questions
which concentrate in conceptual understanding and avoiding those more concerned
in assessing performance in procedural items. We shall stress the importance of
mathematical concepts and pattern matching. The dialog provides motivation and
tests the solidity of those ideas and arguments which the student brings and that
are based in prior educative experiences when challenged to dig out and verbalize
his own beliefs; it also allows the student to form his own connections. Since stu-
dents have been well trained to be passive in the classroom, the interview allows
us to break this pattern and turn them in active learners: the downside is that
causes discomfort, but it can be usually ameliorated by frank and open discus-
sion. Since the beliefs and perceptions of students influence and jeopardize their
approach to learning mathematics, the most delicate aspect of the dialog is how
to fight the attitude of most students which are comfortable with inconsistencies,
contradictions and competing meanings which are the main cause of failure in com-
pleting the interview as our questions grow in sophistication. Our only weapon is
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to be persuasive and gently reveal their ignorance and misinformation along with
valid knowledge so that we can help replace one with the other. Summarizing, we
try to approach our problem with an explorer mentality in a living environment
where challenges occur allowing better focalization in mathematics as a process
by encouraging the development of qualities as creativity, imagination, rationality,
critical analysis and, last but not least, a bettering of their communication skills.
This journey can be described as the plot of a good epic: be confronted by a chal-
lenge; leave the safety of your narrow previous knowledge; bond with new ideas;
survive showdown and discover a truth.

Why do we use a computer generated tool with visual and com-
putational capabilities? Regarding visualization, one has to consider that our
evolutionary development has provided us with a remarkable capability to absorb
information from instantaneous vision and we feel this capability should be used in
the learning process, although some aspects of it are not learned automatically but
have to be explicitly taught, not as separate topics, but throughout the experience
in a parallel manner. The generation of images promotes the integration of the
separate components of the item in question and accessing parts of the information
encoded in memory prompts the retrieval of all other pieces of information con-
tained in the image. The main concern is to create a learning environment which
makes difficult the appearance of attitudes common in students which resign them-
selves to learning strategies in order to cope without understanding. In a more
practical vein, when the student is asked questions about dynamics, such as a lim-
iting process, it ought to be easier to extract dynamic information from a dynamic
presentation, which is what our tool can provide, rather than from a static graph.
There are other advantages using such a tool: its use somehow provokes less disap-
pointment if the machine proves them wrong, favours the appearance of conjectures
and frees students’ thought processes. Last but not least, we believe that abstrac-
tion is facilitated by concretization via visual support. Regarding computation,
and with an eye on condition (iv) in the former section, we leave computational
skill to the machine.

Design and implementation. It took considerable time to design the in-
terview and some failed attempts were needed in order to reach a satisfactory
one. After that, twenty interviews on High School students of Valencia and Seville
were carried out, each successful one consuming roughly one and a half hour time.
Students were selected on the basis of their willingness to participate and every vol-
unteer was accepted. They agreed to the audio recording of the interviews and also
to the use of their corresponding anonymous transcriptions in our analysis. Their
previous upbringing in mathematics was the usual consistent (but sadly declining)
one provided by the Baccalaureate in Spain.

How we decided to present it to you. Hoping that the experience might
offer some guidance to teachers wanting to introduce the topic to their students, we
have unified our transcriptions and edited heavily the final text in order to present
a narrative in mature language avoiding clumsiness, false starts, hesitations and
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fragmented and incoherent arguments hopefully preserving what we were able to
experience in terms of clarity of thought and adaptability of our most successful
students, if not in their exact actual words. Overcoming difficulties contribute
to conceptual learning but in order to keep this article within reasonable bounds,
dysfunctions do not show in the following transcription of our interview, since the
responses belong to the more gifted students.

4. Description of the tool

The tool is an interactive screen and the user does not need to have previous
knowledge of the program (MATLAB 6.1) used to design it. An introductory
screen with zooming capability (Figures 1) shows an arc of circumference, allows
us to choose one of its points, draws the tangent line to the curve on this point and
activate two other different screens. The first one (Figure 2) is a combination of
a graphical (GW1) and a computational (CW) window and the second (Figure 3)
is a combination of another graphical window (GW2) and the same CW. In both
combinations it is possible to enter a function, its domain, the number of trapezoids
to be considered and the number of digits allowed in numerical expressions.

Fig. 1

GW1 deals with a region chopped in trapezoids and CW shows three columns
depicting successive approximations to the actual area (calculated with the quad
command of MATLAB) as a result of accumulating areas of trapezoids, error and
percentage of error committed.

Fig. 2 Fig. 3



6 M. Ángeles Navarro, P. Pérez Carreras

GW2 is a visual alter ego of CW. It depicts the former approximations {xn}
as bi-dimensional points (1/n, xn) forming what we call a ‘cloud of points’ and
shows the evolution of those approximations; namely, whether they tend to stabilize
around some value which will stand for the actual area.

In order to study proximity of the cloud to some conjectured value (chosen by
the interviewee and seen as a red line in GW2), we need the capability of zooming
and drawing bands of preselected semi-width (ε); a message window above will
inform us of the height chosen, the number of points of the cloud lying outside the
band and the ε chosen (Figure 4). Pressing ‘Enlarge’, the square contiguous to the
ordinate axis will appear and more points of the cloud can be added to GW2 and
CW (Figure 5), a new red line can be drawn (if a change a conjecture becomes
mandatory) and further enlargements are possible.

Fig. 4 Fig. 5

5. Outline of the interview

Prerequisites deal with the naive sense of area (an undefined term), how to
measure it in linear figures and the transition from exactness to approximation
when dealing with curvilinear figures, leading to the idea that the term ‘area’
remains undefined. If a definition is going to be developed, we ask what kind of
properties should reasonably be present in such a notion.

In Level 1 we deal with information inferred visually with the help of the tool.
The zooming capability allows us to explore local straightness of curvilinear paths
which is essential in how to proceed from known exact areas for linear figures to
unknown areas for curvilinear figures. Local straightness allows the use trapezoids
as building blocks. GW1, as amplifier of our representing capabilities, allows us to
show dynamically how to proceed by exhausting progressively the surface under a
curve using trapezoids. The activation of GW2 is followed by a discussion of what
it represents, namely an abstraction of GW1 where only essential elements are kept
in display and it acts as a predictive tool to where the partial areas are heading.

Level 2 adds numbers to our former analysis and CW shows the evolution of
calculated partial areas and the ideas of numerical approximation and error come
forward. The interviewee will see that GW2 and CW are two sides of the same coin
and its combined use will allow the appearance of conjectures for the area under
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study: GW2 shows tendencies and hence provides a first conjecture; CW permits
refinement in our choice by dealing with the error committed. Moreover, by playing
with the number of digits allowed to appear in the window, we can advance the
dynamical procedure needed to define what ‘actual’ value of the area means.

Once the idea of approximation has been developed, Level 3 deals with ‘close-
ness’ and how to check whether a candidate for area is a reasonable one. Both goals
can be achieved by using the tool with the added bonus of introducing the exper-
imental factor in our experience. Our first task is dealt with GW2 by visualizing
our considerations over error into bands around a candidate; our second task, by
reverting the dynamic process of taking smaller and smaller errors into a game to
be played in GW2, the so-called sceptic’s game. Since first conjectures produced
will hardly be adequate, the experimental factor enters by trial and error.

A further abstraction process takes place as the interviewee notices that only
a tiny part of GW2 is needed to play and reach conclusions, namely the companion
message window above which contains the three key ingredients needed to pro-
duce the definition of area as a limiting process (integral of a positive continuous
function). Students should be ready now for a formal treatment in the classroom.

6. The interview and students’ responses

6.1. Level 0 (prerequisites)

Pr.: We all have some naive sense of ‘area’, but let’s try to really understand what area is. In
fact, the concept of area is not at all a simple one.

St.: We are taught certain formula as children, for example, the area of a triangle are half its
base times its height.

Pr.: Yes, but what does this actually mean?
St.: A way of measuring area.
Pr.: Right, but the term ‘area’ remains undefined.
St.: Area is a quantity representing amount or extent of a surface.
Pr.: Mm, it seems that we cannot arrive to a true way to define area, but this does not mean

that we have no way of properly studying area. Let us find a more humble goal than defining area
– to know when two shapes have the same area or not. Imagine two squares.

St.: They have the same area if both have the same side length, that is, if both are the same
square. Otherwise they have different areas.

Pr.: Could you imagine a movement in the plane where one square is moved to coincide with
the other?

St.: Yes, a translation. Area doesn’t change when a translation is performed.
Pr.: How to proceed if both are rectangles?
St.: (drawing) I use translation, and rotation if necessary. Again, area doesn’t change when

those movements are performed.
Pr.: What if one is square and the other is a rectangle?
St.: Translation and rotation won’t do. We apply the formulas and we are done.
Pr.: In absence of formulas?
St.: Apart from the obvious cases where different areas might be appreciated, if I could construct

a square with the same area of the rectangle, I could compare with the other square.
Pr.: Interesting idea to reduce the problem to squares. Let us take another route: if we take

the area of a square as intuitive, does it suggest a way of defining area by using squares?
St.: The area of a figure is the number of squares required to cover it completely, like tiles on a

floor, but it seems to me that it does not work when dealing with polygons other than rectangles.
Pr.: If p tiles are needed to cover the length of one side and q to cover the other side, how

many tiles do you need to cover the surface of the rectangle?
St.: p× q tiles and hence the formula for the area of the rectangle.
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Pr.: Thus, the formula allowing us to calculate the area of a rectangle is intuitive enough, as
intuitive as the one leading to the area of a square.

We take a small detour by asking him over the difference between perimeter
and area; can they be equal? He will state that perimeter is the length of the
contour and it is measured in centimetres or whatever unit; that area is measured
in square units and that area and perimeter can’t really be equal, because they
are measured in different units; technically, they might be “numerically equal”,
not actually “equal”. Turning our attention away from rectangles, exactness (aka,
formula) takes a step back and the idea of approximation comes forward.

Pr.: Let us go back to the area problem. When dealing with curvilinear plane figures intuition
is too rough a guide and simple formulae fail. We may have to sacrifice exactness.

St.: I don’t know. Anyway, that it is not always the case. What about the area of the circle?
We have the usual formula πr2, which is supposed to be exact, although I do not remember a
justification for such a formula.

Pr.: π is the ratio of the circumference of a circle to its diameter. That is, if you have a string
the length of the circumference, π is how many times it will cover the diameter. It’s a little bit
more than 3.

To avoid losing exactness, he speculates whether disconnecting the circle, mea-
suring it in a straight line and comparing it with its diameter would provide π as
a precise number and the formula would be exact. We express our doubts in get-
ting anything better than 3 for π, since it is not determined by actually measuring
physical circles; π is the ratio of circumference to diameter for any mathematical
circle; but there are no mathematical circles in the real world, so we can’t ever find
π by measuring something. We advance that, in due time, he will learn that π has
all sorts of other strange properties: it’s a number that can never be written all
of. That’s why we just say “pi” instead of writing it down; if we start to write π,
it looks like 3.141592653589 but that’s only the beginning of it, it goes on forever.
Moreover, π is not the exclusive property of circles: every closed contour can be
related to π.

St.: Hmm . . . , even in the case of the circle, is there no way to calculate this area exactly?
Pr.: Once we define the number π in a precise way, and it will come the time, the formula

will be exact for the area of the circle. For the time being, that formula provides you with an
approximation, the better the more digits of π you use.

St.: I see. And the same happens for other curvilinear figures?
Pr.: That’s the point. When dealing with the rectangle, we defined area by the formula that

calculates it, but this approach doesn’t work when dealing with plane curvilinear figures, unless
we had at our disposal formulae for all possible figures, which circles and other figures apart, we
don’t.

We need to define the term ‘area’, as well as try to find it. We shall attempt
to find a (partial) solution for both problems along this interview.

Pr.: If trying to provide a definition to ‘area’, this definition has to comply with our intuitive
ideas or make use of them.

St.: Such as?
Pr.: For starters, the product of length and breadth defines the area of a rectangle.
St.: That again! Sure.
Pr.: But also, that if you slide a figure rigidly along the plane or rotate it, that is, if you arrive

to a congruent figure, it will continue to have the same area.
St.: (impatient) Right. Is there anything else?
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Pr.: Yes, something important: the area of a figure composed of a finite number of non-
overlapping parts is the sum of the areas of the parts.

St.: (pensive) Fair enough.
Pr.: Having those three conditions in mind, what can you say about the area of a triangle?
St.: I know that: complete the figure of the triangle to construct a rectangle, trace the altitude

and the figure shows that the triangle covers half the area of the rectangle.
Pr.: Right. What about calculating areas of trapezoids? What about other polygons?
St.: The area of a trapezoid is obtained by adding the area of a rectangle and a triangle. For

other polygons, cover them with non-overlapping triangles and add areas. And all those formulas
are exact.

6.2. Level 1 (from verbal to visual)
Pr.: Returning to the circle and forgetting about the formula, could you proceed as in Figures 6?
St.: Yes, I understand the idea. The more triangles considered, the better the estimation. Is

this the justification for the formula I was missing?

Pr.: Essentially yes, but it takes some time to arrive from the pictures to πr2: we need to
consider infinity of triangles to get all the way to the formula; using a finite number of them we
are computing something other than the formula. Anyway, we are not interested now in justifying
the formula, but in the method itself.

St.: Covering partially an extension with figures of known areas . . .
Pr.: And depleting the extension left by increasing progressively the number of them, following

a certain procedure . . .
St.: Getting hopefully a close approximation to the area enclosed.
Pr.: That this procedure works is based in an idea we have to elaborate: first, a portion of

continuous curve between two points may look very different from the portion of secant joining
them and hence not very representative.

St.: Sure, but not so much if the points stay close together.
Pr.: The closer they are, the better the coincidence?
St.: Yes, obviously. Pr.: In other words, a continuous curve can be viewed as locally straight.
St.: What do you mean?
Pr.: (activating the tool’s introductory screen where an arc of circumference is shown) Imagine

that you direct your attention to a point in the curve (Figure 7) and perform a zooming process
several times. What do you see?

Fig. 7 Fig. 8 Fig. 9 Fig. 10
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St.: Zooming process means?
Pr.: Going local by applying an equal reduction of scale on both axes around a chosen point.

The more you zoom, the smaller the scale used, like using a microscope with different magnifying
lenses.

St.: After several zooms I see a straight line, well . . . a segment (Figure 8).
Pr.: Imagine you maintain the segment and proceed to undo the zooming process recuperating

the curve (Figure 9). What is the relation between the curve and the segment?
St.: The segment stays tangent to the curve (Figure 10).
Pr.: That curves are locally straight allows the bases of the triangles to almost confound

themselves with portions of the circumference.
St.: What you’ve shown is that the graph over short intervals deviates very little from the

tangent line. Hmm . . . and this idea . . . does it work for any curvilinear figure?
Pr.: You can see it for yourself by drawing a large number of blocks (as we did with triangles)

to approximate the area under a complex curve, hopefully getting a better answer if you use more
blocks.

St.: What kind of blocks? Squares? The triangles are especially suited for the circle, because
there is a centre for the figure, but in absence of a centre, triangles seem hardly suitable.

Pr.: (referring to Figure 6) Right. Imagine we want to estimate the area enclosed. What kind
of blocks can you suggest for covering and exhausting purposes?

St.: (pointing at the screen) I could use triangles again or I may pile up little squares into
stripes, that is, I could use rectangles.

Pr.: (using paper and pencil) The area of such a little block under the curve can be thought
of as the width of the strip weighted by (i.e., multiplied by) the height of the strip which has to
be chosen, let us say at midpoints. In order to compute the enclosed area we chop up the region
into lots and lots of little strips.

St.: But, doing so, we will not be able to succeed completely because there will always be
regions with curved sides untouched.

Pr.: Sure. But the key idea is that the sum of the areas of the strips will be a very close
approximation of the actual area and the more strips we cut, the closer our approximation will
be.

St.: By adding all stripes areas . . . Yes, it should work.

We inquire if, due to continuous curves being locally straight, we may choose
strips looking as trapezoids. With paper and pencil and considering a small portion
of curve he draws a trapezoid using a portion of tangent line and reflects on its
area as being coincident with the corresponding midpoint rectangle. We object
to the use of those trapezoids since tangent lines are required which seems to
complicate our original problem. Can we settle for trapezoids defined by the secant
lines? He will admit that those trapezoids stay also very close to the curve if
there are plenty of them, although he insists that the other trapezoids seemed a
better choice. We confirm that he is right: using tangent-trapezoids (equivalently,
midpoint rectangles) is twice as accurate as using secant-trapezoids, but for our
purposes those last trapezoids are good enough. We activate GW1 for the function
9− x2 in [0, 3] (see Figure 11) and we choose a uniform grid for the whole interval,
see Figure 12.

Pr.: Let us illustrate our point that the global approximation may be made better and better
following a finite number of steps. It would look like this. Feel free to try different grids.

St.: (taking command of the tool and selecting different grids, Figure 13). The smaller the
bases, the better the coincidence which means that I need to consider more trapezoids. Is that
the idea?

Pr.: So it looks. Looking at GW1, our estimations are larger or smaller than the number we
are searching?

St.: Smaller, indeed.
Pr.: (erasing GW1, activating GW2 and explaining the behaviour of the cloud from right to

left, see Figure 13) The corresponding cloud of points seems to grow in height as the number of
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Fig. 11 Fig. 12 Fig. 13 Fig. 14

trapezoids is increased.
St.: Seen from right to left, the points in the cloud correspond to underestimations; they grow

and should stay below the desired value, which is not to be seen in this window.
Pr.: (activating GW1 for a decreasing concave upwards path of (x − 3)2, x ∈ [0, 3] and GW2

thereafter, see Figure 14) What is the situation now?
St.: Now we are dealing with overestimations and the cloud of points should stay above the

desired value.
Pr.: Could you affirm that the method seems to work for monotonic continuous paths?
St.: So it seems. Whether we are dealing with over or underestimations depends on the

concavity of the curve.
Pr.: Let us summarize our findings: the trapezoid choice provides apparent good approxima-

tions for monotonic continuous curves because, selecting an appropriate uniform grid, the curve
can be well approximated by lines and, moreover, that choice provides the exact value for linear
paths.

Fig. 15

Pr.: (producing a non-monotonic graph at the screen, Figure 16) What shall we do with this
graph?

Fig. 16 Fig. 17 Fig. 18 Fig. 19

St.: Hmm . . . , decompose it in monotonic paths, construct trapezoids to each path and add
areas.

Pr.: Right. (We show the graph of x2(1 − x2)1/2, Figure 17) Here you have two monotonic
paths. Is it easier to evaluate approximately the area beneath the slowly changing path than the
one which changes fast?



12 M. Ángeles Navarro, P. Pérez Carreras

St.: (pensive) Fast meaning steeper and slow meaning flatter. A good grid for the slow changing
one may not be good enough for the fast changing path (see Figure 2). It is a nuisance to repeat
procedure two times. Why not select a grid for the whole interval determined by our choice in
the second path?

Pr.: Why don’t you try using the tool?
St.: (proceeds with GW1, Figure 18 and GW2, Figure 19) OK, it works.

6.3. Level 2 (from visual to numerical)
Pr.: What do you understand under the term ‘error’?
St.: The difference between a true value and an approximation obtained by any measurement

means.
Pr.: Let us call it absolute error. Absolute error divided by true value, is called relative error,

that is, a measure of accuracy; it tells us how close a particular measurement is to the correct
value. Multiply the relative error by one hundred and you get the ‘percentage of error’.

St.: I see. But we can only determine them when we know the true value.
Pr.: Right. We are going to put numbers to our analysis above and we are going to use our

tool to do so. Be aware that an unavoidable error, called round-off error, occurs because only
a finite number of digits appear in the display. Calculations are performed with approximate
representations of the actual numbers.

St.: How does it affect the calculations?
Pr.: Fortunately this error is negligible for our computing purposes. Thus, consider them as

actual values. (Activating CW for five digits to be shown, 8 trapezoids and our former function
9 − x2). The numerical translation of our former pictures and beyond can be seen in CW: you
can see how the approximations to the hoped actual area are evolving (see Figure 20)

Fig. 20

St.: And I can guess the numerical value of the actual area to be 17.9.
Pr.: Why are you sure that these three digits are exact?
St.: The last two entries have the same first four digits, so is it reasonable certain that the first

three digits represent the actual area. Isn’t it?
Pr.: Given the smooth path of our graph, it is reasonable. But remember that what you

are seeing is an approximate guess: be conscious of the inevitable error that accompanies the
approximation. By the way, are those overestimations or underestimations of the supposed actual
area?

St.: We covered that already in the visual screen. Since they are evolving upwards and each
one is supposed to be better than the former one, I guess we are dealing with underestimations.

Now we deal with the delicate concept of ‘actual’ area under that curve. We
point out that we are still lacking a definition of what area really is; he advances
the idea that being able to measure the extension shown in Figure 20 could act as
a definition. We ask him to elaborate this idea further; after some considerations
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he adventures a tentative definition. First, a method that works for our figure
and all possible others should be available; he admits that the trapezoid method
should be considered, even if his direct experience dealing with it is very limited.
This method complies with his intuition over the area of the rectangle, but how
does he deal with the fact that this method doesn’t deliver an exact figure for the
extension in Figure 20? He seems puzzled, but considers that the next best thing
to exactness is that the method provides successively better and better estimations
and that should be good enough. How does he know that those numbers are really
related to the ‘actual’ area? Apart from intuition and what the screens GW1 and
GW2 provide, he admits that it should be nice to have some warranty that those
figures are heading inexorably somewhere and that place should correspond to the
actual area.

Pr.: Even if we won’t or can’t get exactness, let us settle for a narrower objective for the time
being. Is it reasonable at least to ask to be able to have some kind of control over the error
committed?

St.: Meaning knowing how far I am from the actual value? But I do not know the actual value!
Anyway, if there is any connection between the figures shown and the estimations calculated,
those estimations using trapezoids look pretty good to me.

Pr.: One should be cautious. How good a figure looks depends on the scale used. Observe that
some may think that our estimations are not brilliant: it took 7 trapezoids to get 3 exact digits
and we had to go further to ensure it.

We point out that, in absence of figures or dealing with heavily oscillating
curves where the trapezoids may go wildly (see Figures 21), just a list of values
might be misleading since we might be very far from the actual area, supposing it
exists.

Fig. 21

St.: I am confused. Supposing there is an actual value, considering trapezoids and using the
tool, the estimations obtained might not be approximations to the actual value. Is that what you
mean?

Pr.: Yes. Some information on how the error behaves along the procedure of taking more and
more trapezoids is necessary in order to know how far you are from the actual value. In a perfect
world I would be happy providing you with a verifiable statement such as: if you want to have an
error of magnitude . . . in the estimation of the area provided by our procedure of using trapezoids,
you need to take . . . trapezoids.

St.: That would provide us with a clear rule and how far the approximation is from the actual
value.

Pr.: Yes, but such a statement warrants a deeper insight on how this procedure works and its
relation with the function considered and will come later in your mathematical life.
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St.: No actual value and no way of knowing if my estimations are really approximations. What
then?

Pr.: Let us see if our tool has predicting powers over the actual value and a glimpse on how
fast the approximations run.

St.: I guess you are talking about, again, an approximate prediction.

We return to the function 9− x2, x ∈ [0, 3] and we activate GW2 and CW in
our tool.

Pr.: What do you see?
St.: A cloud of points heading to the ordinate axis. (Looking at the area column) They seem

to come close to the value 18.
Pr.: (directing his attention to the other two columns) Observe that the first one shows the

difference between estimations and your predicted value and the second provides the percentage
of error (see Figure 22) Observe that as n = 5, 10, 20, 100 increases, the error decreases.

Fig. 22 Fig. 23

St.: Is what it should happen if the method works, isn’t it?
Pr.: Yes, but we are interested in how does this change occur. Have a look at the percentage

window.
St.: From n jumping from 5 to 10 and (Figure 23), then, from 10 to 20 the percentages decrease

to one fourth of the preceding number.
Pr.: Could you express what you just said but referring to GW2 in terms of band-width and

location of the cloud?
St.: If the red line is drawn at height 18 and if we divide by one fourth the semi-width of the

band around the red line, then the number of points of the cloud lying outside the band doubles
(Figures 23 and 24).

Fig. 24 Fig. 25

Pr.: All the information you need is contained in the small window above which says that is,
if I double n, the percentage shrinks one fourth. What about from 10 to 100 (Figure 25)?

St.: The percentage goes to 1/100 of the former value.
Pr.: What is your interpretation on GW2?
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St.: If I take a band of semi-width 1/100 of the semi-width of the band which left ten points
outside, now one hundred points are lying outside the new band.

Pr.: (adding more values for n) Squaring 10 you get 100. As you can see, this trend seems to
continue. In this case, what can you conjecture about the existing relation between error and the
value of n?

St.: The percentage of error is inversely proportional to the square of n. And this fact holds
for other functions when choosing trapezoids?

Pr.: It does, but what we have done here is merely a hint; to prove it is a different matter.
St.: Then, the trapezoids procedure works fast, isn’t it?
Pr.: Yes, it does although it is not necessarily the best available. Anyway, remember that our

analysis was possible because we made a good guess for the actual area.
St.: Visually, the tool seems to provide a good guess about the actual area and, computationally,

a reasonably powerful method for calculating areas in an approximate way, the larger n the better
the approximation and the percentage error shrinking faster.

Pr.: Right. Could you explain how did you arrive to 18 as a guess for the actual area?
St.: Looking at GW2, the heights of the points in the cloud seem to stabilize around that

height, although the area column in CW is enough to conjecture 18 as a good guess.
Pr.: Let us explore that window (erasing GW2 and leaving CW and reducing to five the number

of digits shown Figure 26). What do you see?

Fig. 26 Fig. 27 Fig. 28

St.: Are you cheating? The estimations tend to settle now to the value 17.999.
Pr.: (increasing the number of approximations) 17.999 being the difference between 18 and

.001. What happens if I allow six digits to be shown?
St.: Stabilization to 17.9999, that is, 18 minus .0001 (Figure 27).
Pr.: What makes you think of 18 as a good guess instead of picking 17 followed by a certain

number of nines?
St.: Because, theoretically, I could allow more and more digits present (Figure 28) and I can

get as close to 18 as I want, since .00 . . . 01 gets as small as desired.

6.4 Level 3 (to the definition of area)
Concerning the needed algebraic operation of putting a dynamic process to

rest,

Pr.: (we select the function (9 − x2)1/2, x ∈ [0, 3] and we show GW1+CW to end up with
GW2+CW, (Figures 29 and 30). Leaving outside everything which is not essential, you are left
with a collection of numbers in CW which seem to approach a certain value that has to be
determined precisely or a cloud of points in GW2 heading somewhere at the ordinate axis, which
should be the actual area.

St.: You want me to consider numbers or points?
Pr.: We are on the road to abstraction and abstraction benefits from having the ability to deal

with different representations of the same phenomenon, which is surely a good sign of understand-
ing what is going on. Let us strip the problem to its bare essentials and forget about trapezoids,
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Fig. 29 Fig. 30

approximations, areas and so on: (taking paper and pencil) algebraically, write a1, a2, . . . , an,
. . . to denote those values shown in CW (that is, the approximations), the sub-indices standing
for the first, the second, etc., and call it a sequence of numbers. If you look at GW2 you can also
see the sequence, not as a table, but as a cloud of points which are ordered from right to left as
the first, second, etc., their abscissas indicating position and their heights indicating numerical
value.

St.: Right. And we have to determine where the sequence or the cloud of points is heading to,
as we did above and that number will stand for the wanted area.

Pr.: Yes, but keep in mind that we are interested in three aspects: If, where and how fast. We
have to determine whether the cloud approaches some value or not and, if it does, we should be
precise about its concrete value, which should be guessed from the pool of candidates you may
have, according to the information gathered at CW or GW2. The ‘how fast’ aspect refers to the
efficiency of the method. In the event that such a number exists, we refer to it as the limit of the
sequence.

St.: Shall we work in GW2?
Pr.: Yes and the limit (if existent) will be the height of the point in the ordinate axis where

the cloud is heading to.
St.: It seems that the cloud approaches from below since the heights of their points increase;

thus the limit has to be larger than any number in the sequence.

Now we ask him now if such a candidate for L is available. We suggest he
uses the mouse to click over the ordinate axis at a chosen height. He chooses 7.06
as L and seems convinced of its suitability. We introduce him to the ‘game of the
sceptic’ as follows: I am the sceptic. I tell you: I need the cloud to get within a
margin of error of .01 of L, or else I’m not convinced. What I need is that you
provide me with a position (that is an integer N) from which all points in the cloud
are placed ‘within’ .01 of L. He demands more precision: What do you mean with
‘within’? As visualization of margin of error, we invite him to draw a band of
semi-width ε = .01 around his choice of L to visualize proximity. We explain that
we use semi-widths instead of widths because, when other functions are considered,
he may need to consider points at both sides of the line, that is, below and above
from his chosen L and the tool should be useful in all instances. He produces the
band (see Figure 31) and reads the message window above which reminds him of
the height and error margin ε chosen as well as how many points of the cloud
are placed outside it. He asks whether we are not interested or not on where the
first N are placed. Well, we are not and we finish the explanation on the game:
suppose you are able to do a little computation or in our case (courtesy of the tool)
a graphical manipulation, and come back and say, “No problem. As long as n is
larger than a certain N (and you have to tell me to which N you are referring),
you’re guaranteed to be that close”. Then, you win the game. If you are unable
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to produce N , I win. That is the game: the tool manipulation is his proof; it’s
our responsibility to define ‘close’, but then it’s his responsibility to show that he
can get that close to L, provided that n is sufficiently large. Now we play with his
candidate.

Fig. 31 Fig. 32

St.: (manipulating the tool and looking at the window) Well, since I chose L as 7.06, the
message tells me that there are 27 points outside; hence N equals 28, easy enough. And that’s
all?

Pr.: No. The point is we should be able to play this game as many times as I want, challenging
you with smaller and smaller margins of error and you being able to produce the required integers
N every time. If this happens, your guess L would be correct.

St.: Well, it reminds me on what you were doing before, allowing more and more digits to be
seen.

Pr.: Indeed, it is the same idea, but we are performing the task now visually.
St.: Visually . . . How to proceed?
Pr.: Use the tool again, and for your candidate L, draw a band around it of semi-width ε = .001

and use the zooming capability if needed. It may happen that you need to consider a larger value
of n, that is, a larger cloud.

St.: (see Figure 32) Something isn’t right: the points go over the line.

We ask him to elaborate why the game has collapsed. He changes the number
of points taken, zooms around the line and so on, but ends up stating that probably
his choice of L was not correct in the first place and that another candidate should
be tried arguing that it should be close to the former election but larger. Since we
are dealing with an arc of circumference, we suggest the choice 7.068583. He starts
the game again.

St.: (manipulating the tool, considering first ε = 0.001 and then ε = 0.0001) Taking a semi-
width of ε = 0.001, I find N as 192 (Figure 33). Now with ε = 0.0001, I need more points on the
screen. Right, setting n as 1500, there are 885 points outside, hence N equals 886.

Fig. 33 Fig. 34 Fig. 35
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Pr.: Where are the other points of the cloud?
St.: All of them inside the band. If I draw more points (manipulating the tool with a larger n,

Figure 34), I still have the same number of points outside.
Pr.: Good. Now take ε = 00001.
St.: (using the tool again, see Figure 35) A larger n then, let us take n = 7000. Then N = 3998

can be selected.
Pr.: Now take ε = .000001.
St.: No need. I understand the game: you are taking smaller and smaller error margins ε and

I am producing N ’s, so I win. Your chosen L seems to work if the trend continues.
Pr.: Right. Is there any relation between margins of error ε and positions N?
St.: The smaller ε is, the bigger is N . That is, the smaller the band, the more points of the

cloud are lying outside and it goes on forever.

We ask him to synthesize what we are doing. What to do in absence of good
guess on L? One could go on and on improving ones approximations, although
none would produce the right answer, if there is actually a right answer. Even if
there is one, it may happen that our estimations are far away from the actual value.
So he has to go for a choice of L and, if correct, what can be checked by playing
the game indefinitely, the limit L is the precisely the number which produces the
actual area.

Pr.: Indeed. How could you know if your choice for L is not good enough?
St. If, at some step, the game collapses in the sense that there is no possibility of finding N

and then, you win. If that happens, I should explore other choices by trial and error.
Pr.: But surely an educated guess.
St.: That’s what the tool provides. Well, all that accounts for the If and Where. What about

the How fast?
Pr.: For the same margin of error, the smaller the N detected, the faster the sequence to reach

its end.
St.: Understood, but . . .
Pr.: You don’t seem to be comfortable.

What is the contribution of the tool? He comments that it gives him a chance
to guess the limit with a certain confidence, although he seems bothered: How does
one reach the limit? Is it by following an infinite number of steps? He rightly points
out that he has just travelled a finite number of them in the game and hopes for
the best in the remaining ones. He poses the inevitable question: How do we play
such a game in an infinite time?

Pr.: Well, we are not entitled to such a luxury. Some compromise with experience is required,
so we have to enter into an imaginary mental world. Since we need to play the game in a finite
time, we should abandon the visual setting and enter the world of algebra.

St.: Why do we have to go the algebraic path?
Pr.: Well, unfortunately there is no shortcut eluding mathematical reasoning: once a basic grasp

is achieved and I think we have done that, we need refinement and more systematic articulation
through algebra which is supposed to be the lingua franca of mathematics courses; we use it
precisely to avoid the vagueness of words and pictures.

St.: ‘Mathematical’ meaning ‘algebraic’? Is there an algebraic way to reach the limit?
Pr.: Yes and to discover that way is the delicate part of this story: translating this infinite

game into a few finite symbols with which we can manipulate algebraically and logically and
do precisely as intended, that is, reaching the limit. You will study this stuff when you enter
University.

St.: But, then, what does the visual game provide?
Pr.: Basically, two ideas: first, the possibility of discarding several wrong choices; when a choice

works in the game, it might not give you certainty, but a hope that it will work for smaller and
smaller errors. Even if you are not certain about the choice, the true value will be lying very close
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to it. Secondly, the algebraic formulation of the game is hidden in the instructions of the game;
once, you are proficient with symbolic and algebraic manipulations, you will be able to define
‘limit’ without pain and ensure therefore the existence of the actual area.

St.: But, even if the limit is warranted, I still do not see how to finish the game because it does
not free me from making calculations indefinitely.

Pr.: Because a good by-product of that promised translation, and you shall learn it in due
time, is a formula relating margins of error ε with integers N (something analogous to what our
message window does) and the formula will speak for itself, it shows that you can react to any
to my choices; the formula encapsulates an infinity of choices and calculations and you win the
game.

We end our experience with examples showing that not every approximation
has to be better than the preceding one and that a suitable candidate for area
is sometimes not easy to find, showing the limitations of our approach. For the
function f(x) = sin2(4π/x)/x in the interval [0.01, 0.5], GW1 and CW (Figure 36)
illustrate our first point whereas Figures 37 and 38 for GW2 and CW show that a
choice between candidates 1.8, 1.9 and 2 cannot be made (1500 trapezoids) where
enlarging the number of trapezoids to 1600 we still have doubts between 1.8 and
1.9. The tool is available on request.

Fig. 36 Fig. 37 Fig. 38

Those last considerations show that a visual understanding of what a limiting
process means is not enough to develop algorithms to calculate limits efficient and
precisely. When we leave the safety of conjectural reasoning and intend to jump to
exact reasoning through formalization, a different battery of actions is required. If
what is needed is a precise algebraic definition of what a limit is and how to calculate
it, we have to wait since it is not easy to make young students sensitive to such
concerns which are not really part of their mathematical culture and establishing
adequate criteria for precise definitions and the idea of proof lie beyond their present
reach, showing that there are limits to what one hopes to achieve with High School
students when confronted with delicate mathematical ideas without the benefit of a
period of incubation. The transition towards more formal approaches, which usually
takes place at the University, represents a tremendous jump, both conceptually
and technically, but all ingredients are present in what we have achieved, except
the algebraic formulation of an operation which treats an indefinite sequence of
numbers (a dynamic process) and puts it to rest by showing a precise number
which intuitively stands for the number the sequence approaches or gets close. In
other words, what is needed is to define algebraically what “approach” or “get
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close” means. For a Socratic dialog leading to put all those considerations under
the optic of a visualization tool, study how those images translate in mathematical
statements favouring the use of logical quantifiers and framing the whole study in
van Hiele’s model allowing the study the cognitive obstacles that arise, we refer the
interested reader to Navarro and Pérez Carreras [3].

7. Coda: Level descriptors

7.1 Level 0:
The interviewee

0.1 Identifies ‘area’ with the known formula for squares and rectangles. When
pressed, is unable to produce a definition of the term, although this fact doesn’t
preclude us to explore this notion.

0.2 Advances the idea of calculating areas of plane figures by reducing the problem
to the use of inserted squares and/or rectangles. Recognizes that this idea
doesn’t work for curvilinear figures.

0.3 Agrees that in order to produce a definition of area, certain intuitive charac-
teristics have to be respected by the wanted definition and is able to develop
area calculations for polygons.

0.4 Confronted with curvilinear figures, the idea of visual approximation comes to
light.

7.2 Level 1:
1.1 Agrees in extending the previous method of inserted polygons to calculate areas

of curvilinear figures, recognizing that the method provides approximations
instead of the actual value.

1.2 As a first use of the tool and in the setting ‘area under a curve’, perceives
the importance of a continuous curve being locally straight in order to get
satisfactory visual approximations to the area which are translated verbally in
selecting blocks with tiny bases.

1.3 Starts choosing rectangles as natural building blocks for the method, once an
appropriate selection of grid and heights is made. But, due to local straightness,
settles for trapezoids.

1.4 Recognizes visually that, in the context of graphs of monotonic functions, area
estimations by defect or excess are both possible and recognizes concavity as
the deciding factor. For more complex paths, adventures the idea of partition
of the path in monotonic paths to apply the method.

1.5 Points out that ‘the more trapezoids the better’ as a verbal statement of what
visual approximation means and extends that idea to the behaviour of a cloud
of points in the plane heading to the ordinate axis, as shown in the graphical
window.

1.6 Recognizes the importance of steepness of the path as a deciding factor on how
to select the grid.
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7.3 Level 2:

2.1 Understands the meaning of error.

2.2 Confronted with a table relating grids and estimations from our former curve
deduces the defect/excess item and is able to settle for a certain number of
digits which should be kept as ‘true values of the actual area, as a statement
of what numerical approximation means.

2.3 Presented with our tool, shows proficiency in its use and applies it to our former
functions to check on previous visual conclusions.

2.4 Starts to grasp the idea of defining area by the method calculating it.

2.5 In absence of a way of deducing the value for the actual area, recognizes the
need for conjecturing the actual value from the tool and also for a control of
the error committed.

2.6 Using the tool, proceeds to conjecture the actual value and proceeds to relate
grid and error to appreciate the convenience of dealing with a fast method.

2.7 Refines previous ideas on what numerical approximation means, by using the
computational window, relating number of digits to be kept in view and the
idea of getting close.

7.4 Level 3:

3.1 States that the product of an approximation process stands for a definition of
area.

3.2 Translates the idea of numerical approximation from the computational one
studied in Level 2 to a more refined use of the visual setting by identifying
margins of error with two-sided bands to cover points approaching from above
and below.

3.3 Establishes the relation between width of the band and number of points lying
outside it.

3.4 Confidently plays the proposed game in a finite number of steps and verbalizes
correctly the logical dependence of statements.

3.5 Confronted with the physical impossibility of playing the game indefinitely,
understands the need to perform another change of setting, this time from the
visual to the algebraic.

8. Addendum

In a forthcoming study we shall study all dysfunctions which do not show in
our transcription of the interview. We shall point out the causes of failure and we
shall propose remedial or tutorial actions for those students unable to reach the
interview’s conclusion, as well as validating our study in the frame of van Hiele’s
model by proving the existence of Levels as well as assigning each participant to
the level reached according to our descriptors (Section 7). Let we advance some of
our findings
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(The interview) It was clear to us that verbal explanation presented serious
challenges to many students, although the most gifted and curious ones were able to
refine their language in terms of verbal accuracy along the interview even if a certain
disdain regarding precision in verbal communication skills was noticeable: once an
idea was understood, no much value was placed in expressing it unambiguously as
if insight was only relevant to the individual and no communication abilities were
deemed relevant.

(The tool) Curiously enough, lack of familiarity with a computer-generated
tool presented no problems whatsoever and students quickly adapted to their use,
some of them with remarkable proficiency. Visualization of limiting processes an-
imated the experience triggering their natural curiosity and they enjoyed taking
partial command of the interview. Executing commands in the tool and producing
graphs and tables was an easy task for them and we sensed that they benefited
from the open door to higher mathematics provided by the experience and from
their first encounter with the tool. Not unexpectedly, it generated excitement and
its manipulation became sometimes the unintended focus of their efforts, but we
sensed also that efficient graphical capabilities without flexible power of interpre-
tation could lead them to failure when interpretation was demanded.

(Success/Failure) From our pool of twenty interviewed students, three of
them had to be discarded from the interview when the word ‘unending’ intruded in
Level 0 (π as a never-ending-sequence of digits) and entering Level 1 (use of trape-
zoids in a never-ending procedure) as they were convinced ‘finitists’ and no appeal
to their imagination was successful: for them infinity was metaphysical and ‘one
should avoid speaking about it ’. The rest accepted the process as legitimate: a vast
majority of them trusted what they saw at the screen without further thought and
made no objections whatsoever, accepting that the process can be repeated indefi-
nitely, at least theoretically. Three more students were discarded when the ‘cloud’
made his appearance since they were unable to exhibit a clear understanding of
the relationship between trapezoids and points of the cloud. Fourteen students en-
tered Level 2 and two of them were uneasy with the idea of error and the need for a
definition of the concept area and left due to their reluctance to admit that a never-
ending process could result in a valid conclusion, which for them should be reached
in a finite number of steps. Level 3 witnessed the failure of three more students due
to their inability to provide sound verbal explanations on how convergence should
be formulated in terms of epsilons and integers. Nine students completed success-
fully the interview exhibiting precise economical verbal explanations, showing that
implicit logical quantification was part of their reasoning armoury, although sailing
through Level 3 was a bumpy road for some of them and this part of the interview
took more time than expected.
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