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A PROOF OF METHOD OF CYLINDRICAL SHELLS BASED
ON A GENERALIZED INTEGRAL REPRESENTATION
OF ADDITIVE INTERVAL FUNCTION

Yuanhong Zhi and Yongkun Li

Abstract. In this paper we provide a generalized integral representation of addi-
tive interval function based on a fundamental integral representation of additive interval
function given in Zorich’s textbook, Mathematical Analysis, Vol I. Then we use it to
give a rigorous proof of the method of cylindrical shells for the evaluation of volume of
solid of revolution about vertical line.
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1. Introduction

In most undergraduate calculus textbooks, the method of cylindrical shells is
given, in order to evaluat easily the volume of solid of revolution about a vertical
line (in many cases about y-axis in Cartesian coordinate system). But almost all
the textbooks do not provide a rigorous proof of the validity of this method (for
example, see [1-3, 5, 6]). Although it is obvious in the frame of measure theory, it
is still vital to give a vigorous proof of this method on the background of Riemann
integral. On Page 376 in Zorich’s book [7], a proposition concerning an additive
interval function to be expressed as an definite integral is provided, which we call
a fundamental integral representation of additive interval function, that is

PROPOSITION 1. Suppose that an additive function I(c, 3), defined for points
a, B of a closed interval [a,b], is such that there exists a function g € R[a,b] con-
nected with I as follows: the relation

inf g(z)(8—a)<I(a,B) < sup g(z)(B—a)
z€[a,f] z€la,B]

holds for any closed interval [, 3] such that a < o < 3 <b. Then

b
I(a,b):/ g(z)dz.

Here an additive interval function means a function (a,3) +— I(«, () that
assigns a real number I(«, 3) to each ordered pair of points («, 3) of a fixed bounded
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closed interval [a,b], in such a way that the following equality holds for any triple
of points «, 8,7 € [a,b]: I(a,v) = I(c, ) + I(5,7).

Using Proposition 1, the calculation of arc length, of area of a curvilinear
trapezoid, and of volume of a solid of revolution about horizontal line (that is
about z-axis in Cartesian coordinate system) are just the direct corollaries. But
for the solid of revolution about y-axis in Cartesian coordinate system, it is not
seemly the case, without resorting to measure theory. In this paper, we give a
generalized version of this proposition (see the theorem 1. As a direct application

of this generalized theorem, we provide a rigorous proof of the method of cylindrical
shells.

2. Main result

A generalized version of Proposition 1 reads as follows.

THEOREM 1. Suppose V =V («a, 3) is an additive (oriented) interval function
defined for any points o, B belonging to a bounded mon-degenerate closed interval
[a,b]. Let functions f and g be Riemann integrable on [a,b]. Assume that for any
closed interval [, B8] such that a < a < [ < b, there exist £&,n € [a, 5], such that
the following condition hold:

) FOnf g@)(F-0) < V(B < f) swp ga)(5-a).

a<z<p

Then V(a,b) can be expressed as the definite integral

b
V(a,b) = / f(@)g(x)dx

Proof. Since f,g are Riemann integrable, they are bounded on [a,b]. Let
A= sup |f(z)|+1,B = sup |g(x)| + 1. For any partition P : o = a < z1 <

z€[a,b) z€la,b
o < -+ < x, = b with corresponding distinguished points 7; € A; (or & € A;)
according to condition (1), ¢ =1,2,...,n, let A; = [x;-1, 2], Ax; = x; — x;—1 and

w(f;A;) be the oscillation of f on the subinterval A;. Then by condition (1) we
obtain

V(a,b) =

'M=

n
Vi(xi—1, ;) Z (n;) sup g(x)Ax;

TEA;

=1

|

Fi)(sup g(z) — g(n;)) A + Z (F(i) — f(&))g(ni) Az

1 5867

2

+ Z F(&)(9(n:) — (&) Ami + > F(&)g(&) A

i=1

<2)  Aw(gi M)Az + Y w(f; A)BAzi + ) f(E)9(&) A
i=1

i=1 i=1
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In the same way, we obtain
b) = Z Vw1, @) > Z f(&) inf g(x)A;
= Zf &)g(&i)Az; — Zf &) (9(&) = nf g(w))Az;

>Zf@ (&) Az; — ZAwg, i) Az;.

Since f, g are Riemann integrable on [a, b], we know that (for reference, see [7]): for
any € > 0, there exists a number d; > 0, such that for any partition P* on [a, ] for
which mesh A\(P*) < 7, the oscillation of f and g satisfy

n n

> wlgi Ai)Az; < €/(64), Y w(f; Ai)Az; < ¢/(3B).

=1 =1

Now for the prescribed €, choose 0 < § < 41, then for any partition with distin-
guished points (P, §) on [a,b] for which mesh 0 < A(P) < J, we have from above
that

—e < —€/6 < V(a,b) — Zf& (&)Az; < €/3+¢€/3 <,

=1
that is
V(a,b) =Y f(&)g(&)Azi| <e,
i=1
which is equivalent to V' (a,b) = f f(x)g(x)dx. Thus the proof is finished. m

Actually, Theorem 1 is a generahzed version of Proposition 1, because the
latter is just the same as the former in the special case of f(z) = 1,Vz € [a, b].

3. Applications

As a direct application of Theorem 1, we give a rigorous proof of the method
of cylindrical shells, which is very useful to calculate the volume of the solid of
revolution about vertical line.

Suppose a nonnegative Riemann integrable function y = g(x) is defined on the
bounded closed interval [a,b], where 0 < a < b. Let D = {(z,y) e R|a <z <
b,0 < y < g(x)} be the ordinate set of g (for ordinate set, see [3]). Then revolve
this set about the coordinate axis y, see figure below. As a consequence, the volume
V(a,b) of this solid of revolution about y-axis can be calculated by the method of
cylindrical shells, and the formula of this volume is (see [1-6])

b
V(a,b) = / 2nx - g(x)dz, where 0 < a <b.
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It is intuitively and geometrically obvious that the above volume function V =
V(a,b) is an additive interval function defined on Cartesian product [a,b] x [a, b].
By Theorem 1 we then give a rigorous proof of formula (2). Actually we see from
the picture below that, for any «, 8 with a < a < 8 <D,

V(e, B) <7wf% sup g(z) —ma?® sup g(z) = n(6* —a?) sup g(x)

alz<p alz<p alz<p
+ «
:277(52 ) sup g(x)(6— a).
a<e<p
Yy
@ y = g(z)
vl
o] a « 8 b T
Similarly,
2 2 _ 2 2y
V(e, B) > 7f a%gfgﬂg(:c) Ta a%gfgﬂg(x) (B a)a%gféﬁg(w)
B B+a) .
27r<2 onf 9(x)(6 - a).

As aresult, we see that the condition (1) of Theorem 1 is fulfilled, where f(z) = 27z,
with both ¢ and 7 of Theorem 1 to be the middle point (a+ (3)/2 of interval [a, f3].
Therefore we see the method of cylindrical shells is actually rigorous, that is the
formula (2) is right, provided the function g is nonnegative Riemann integrable on
interval [a, b], where 0 < a < b < +00.
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