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TO BE INTEGER OR NOT TO BE RATIONAL:
THAT IS THE QUESTIO

√
N

Samuel G. Moreno and Esther M. Garćıa-Caballero

Abstract. Another proof is given of the fact that the square root of a nonnegative
integer is either an integer or an irrational. Bibliography on this theme is presented.
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The square root of a nonnegative integer is either an integer or an irrational.
To show this, let N be a nonnegative integer.
(i) If N = m2 for some nonnegative integer m, then

√
N = m.

(ii) But if this is not the case, then b2 < N < (b + 1)2 for some positive integer
b. Note that

√
N being rational implies that there exist positive integers m,

n, with n minimal, such that x =
√

N + b = m/n. In addition, the bound√
N < b+1 gives us m/n < (b+1)+ b and so m− 2nb < n. Now observe that

x(x− 2b) = (
√

N + b)(
√

N − b) = N − b2 > 0, and consequently

x =
N − b2

x− 2b
=

N − b2

m

n
− 2b

=
n(N − b2)
m− 2nb

,

which contradicts the minimality of n.

Further comments. The argument above may be considered as a general-
ization of the one in [36], which was designed to prove the irrationality of

√
2.

Should it be of interest to the readers

There are many proofs of the above result disperse in the literature. We refer
the reader to [7] as a first approach (this reference is mainly concerned with the
case N = 2, but also includes the proofs in [4, 5, 13, 17, 31, 40, 43] of the general
case). As a way of classifying the different proofs, let us say that some of them are
of arithmetic nature: they rely on the prime factorization of N (see, for example

This note is one of many slightly varied proofs of the irrationality of square root from any
natural number not being a square itself. Attached list of references serves the interested reader
to follow these variations. The Editors
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[22]). Other proofs rely on the division algorithm [4, 18, 26, 28, 31], or on Bezout’s
Lemma [17, 24, 38]. The use of algebraic relations is exploited in [2, 5, 6, 8, 11,
13–16, 20, 21, 23, 29, 30, 39–41, 43]. Geometric constructions, as “proofs without
words”, can be found in [1, 3, 9, 12, 25, 32, 34, 35, 37]. Also convergence criteria
are used to prove irrationality, as [10, 25, 42] show. Finally, the digit representation
of N in some base is also a plausible argument used in [19, 27, 33].

We must also point out that [6, 15, 40] essentially coincide with [39]. Also,
our contribution is close to [16], but it may be considered as a simpler form of
exploiting a similar idea.
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[31] N. Lord, Maths bite: An unusual proof that
√

N is irrational, Math. Gaz. 91 (2007) 256.

[32] E. A. Maier, I. Niven, A method of establishing certain irrationalities, Math. Mag. 37 (1964)
208–210.

[33] MathPath, http://www.mathpath.org/proof/nthroot.irrat.htm.

[34] S. J. Miller, D. Montague, Irrationality from The Book, http://arxiv.org/abs/0909.4913.

[35] S. J. Miller, D. Montague, Picturing irrationality, Math. Mag. 85 (2012) 110–114.
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Departamento de Matemáticas, Universidad de Jaén, 23071 Jaén, Spain

E-mail : samuel@ujaen.es


