TO BE INTEGER OR NOT TO BE RATIONAL: THAT IS THE QUESTIO \sqrt{N}

Samuel G. Moreno and Esther M. García-Caballero

Abstract. Another proof is given of the fact that the square root of a nonnegative integer is either an integer or an irrational. Bibliography on this theme is presented.
MathEduc Subject Classification: F64
MSC Subject Classification: 97F60
Key words and phrases: Rational and irrational numbers.

The square root of a nonnegative integer is either an integer or an irrational. To show this, let N be a nonnegative integer.
(i) If $N=m^{2}$ for some nonnegative integer m, then $\sqrt{N}=m$.
(ii) But if this is not the case, then $b^{2}<N<(b+1)^{2}$ for some positive integer b. Note that \sqrt{N} being rational implies that there exist positive integers m, n, with n minimal, such that $x=\sqrt{N}+b=m / n$. In addition, the bound $\sqrt{N}<b+1$ gives us $m / n<(b+1)+b$ and so $m-2 n b<n$. Now observe that $x(x-2 b)=(\sqrt{N}+b)(\sqrt{N}-b)=N-b^{2}>0$, and consequently

$$
x=\frac{N-b^{2}}{x-2 b}=\frac{N-b^{2}}{\frac{m}{n}-2 b}=\frac{n\left(N-b^{2}\right)}{m-2 n b},
$$

which contradicts the minimality of n.
Further comments. The argument above may be considered as a generalization of the one in [36], which was designed to prove the irrationality of $\sqrt{2}$.

Should it be of interest to the readers

There are many proofs of the above result disperse in the literature. We refer the reader to [7] as a first approach (this reference is mainly concerned with the case $N=2$, but also includes the proofs in $[4,5,13,17,31,40,43]$ of the general case). As a way of classifying the different proofs, let us say that some of them are of arithmetic nature: they rely on the prime factorization of N (see, for example

[^0][22]). Other proofs rely on the division algorithm [4, 18, 26, 28, 31], or on Bezout's Lemma [17, 24, 38]. The use of algebraic relations is exploited in $[2,5,6,8,11$, $13-16,20,21,23,29,30,39-41,43]$. Geometric constructions, as "proofs without words", can be found in $[1,3,9,12,25,32,34,35,37]$. Also convergence criteria are used to prove irrationality, as $[10,25,42]$ show. Finally, the digit representation of N in some base is also a plausible argument used in [19, 27, 33].

We must also point out that [6, 15, 40] essentially coincide with [39]. Also, our contribution is close to [16], but it may be considered as a simpler form of exploiting a similar idea.

Acknowledgement. This work was partially supported by Junta de Andalucía, Research Group FQM 0178.

REFERENCES

[1] T. M. Apostol, Irrationality of the square root of two - A geometric proof, Amer. Math. Monthly 107 (2000) 841-842.
[2] D. F. Bailey, $N^{1 / m}$ revisited, Math. Gaz. 69 (1985) 113-114.
[3] E. J. Barbeau, Incommensurability proofs: a pattern that peters out, Math. Mag. 56 (1983) 82-90.
[4] R. Beigel, Irrationality without number theory, Amer. Math. Monthly 98 (1991) 332-335.
[5] G. C. Berresford, A simpler proof of a well-known fact, Amer. Math. Monthly 115 (2008) 524.
[6] D. M. Bloom, A one-sentence proof that $\sqrt{2}$ is irrational, Math. Mag. 68 (1995) 286.
[7] A. Bogomolny, Square root of two is irrational, http://www.cut-the-knot.org/proofs/ sq-root.shtml.
[8] R. Bombelli, L'Algebra, Bologna, 1572 (reprinted in 1966 by U. Forti and E. Bortolotti eds., Feltrinelli, Milano).
[9] G. Cairns, Proof without words: $\sqrt{2}$ is irrational, Math. Mag. 85 (2012) 123.
[10] N. Casás Ferreño, Yet another proof of the irrationality of $\sqrt{2}$, Amer. Math. Monthly 116 (2009) 68-69.
[11] P. Clark, Some irrational numbers, http://math.uga.edu/p̃ete/4400irrationals.pdf.
[12] M. Cwikel, "Origami" proofs of irrationality of square roots, http://www2.math.technion. ac.il/ mcwikel/paperfold.pdf.
[13] R. Dedekind, Stetigkeit und irrationale Zahlen, Braunschweig, 1872.
[14] T. Esterman, The irrationality of $\sqrt{2}$, Math. Gaz. 59 (1975) 110.
[15] N. J. Fine, Look, Ma, no primes, Math. Mag. 49 (1976) 249.
[16] H. Flanders, Math bite: irrationality of \sqrt{m}, Math. Mag. 72 (1999) 235.
[17] R. W. Floyd, What else Pythagoras could have done, Amer. Math. Monthly 96 (1989) 67.
[18] E. R. Gentile, Another proof of the irrationality of $\sqrt{2}$, College Math. J. 22 (1991) 143.
[19] R. Gauntt, G. Rabson, The irrationality of $\sqrt{2}$, Amer. Math. Monthly 63 (1956) 247.
[20] L. Goldmakher, Irrational algebraic integers, http://www.math.toronto.edu/lgoldmak/ Irrational.pdf.
[21] E. Halfar, The irrationality of $\sqrt{2}$, Amer. Math. Monthly 62 (1955) 437.
[22] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press Oxford University Press, New York, fifth ed., 1979.
[23] C. R. Huges, Irrational roots, Math. Gaz. 83 (1999) 502-503.
[24] R. Johnson, Rational algebraic integers are integers, http://www.whim.org/nebula/math/ ratalint.html.
[25] D. Kalman, R. Mena, S. Shahriari, Variations on an irrational theme-Geometry, Dynamics, Algebra, Math. Mag. 70 (1997) 93-104.
[26] A. Khazad, A. J. Schwenk, Irrational roots of integers, College Math. J. 36 (2005) 56-57.
[27] M. Klazar, Real numbers as infinite decimals and irrationality of $\sqrt{2}$, http://arxiv.org/ abs/0910.5870.
[28] S. D. Kominers, A correspondence note on Myerson's "Irrationality via well-ordering", Austral. Math. Soc. Gaz. 36 (2009) 53.
[29] S. D. Kominers, Irrational roots revisited, Math. Gaz. 94 (2010) 28.
[30] A. M. Legendre, Eléménts de géométrie, 1794.
[31] N. Lord, Maths bite: An unusual proof that \sqrt{N} is irrational, Math. Gaz. 91 (2007) 256.
[32] E. A. Maier, I. Niven, A method of establishing certain irrationalities, Math. Mag. 37 (1964) 208-210.
[33] MathPath, http://www.mathpath.org/proof/nthroot.irrat.htm.
[34] S. J. Miller, D. Montague, Irrationality from The Book, http://arxiv.org/abs/0909.4913.
[35] S. J. Miller, D. Montague, Picturing irrationality, Math. Mag. 85 (2012) 110-114.
[36] S. G. Moreno, E. M. García-Caballero, On the irrationality of $\sqrt{2}$ once again, Amer. Math. Monthly 120 (2013) 674.
[37] S. G. Moreno, E. M. García Caballero, Entry 1.414... in Ramanujan's notebooks: $\sqrt{2}$ is irrational, Math. Gazette 97 (2013) 329.
[38] S. G. Moreno, E. M. García Caballero, Irrationality of k-th roots, Amer. Math. Monthly 120 (2013) 688.
[39] G. Myerson, Irrationality via well-ordering, Austral. Math. Soc. Gaz. 35 (2008) 121-125.
[40] Y. Sagher, What Pythagoras could have done, Amer. Math. Monthly 95 (1988) 117.
[41] M. V. Subbarao, A simple irrationality proof for quadratic surds, Amer. Math. Monthly 75 (1968) 772-773.
[42] P. Ungar, Irrationality of square roots, Math. Mag 79 (2006) 147-148.
[43] X. Zhu, A simple proof of a well-known fact, Amer. Math. Monthly 114 (2007) 416.
Departamento de Matemáticas, Universidad de Jaén, 23071 Jaén, Spain
E-mail: samuel@ujaen.es

[^0]: This note is one of many slightly varied proofs of the irrationality of square root from any natural number not being a square itself. Attached list of references serves the interested reader to follow these variations. The Editors

