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MONOTONICITY OF CERTAIN RIEMANN-TYPE SUMS

Szilárd András

There is frequently more to be
learned from the unexpected ques-
tions of a child than the discourses
of men.

John Locke

We hear only those questions for
which we are in a position to find
answers.

Friedrich Nietzsche

Abstract. In this short note we prove with elementary techniques that the
sequence xn =

∑n

k=1
n

n2+k2 is increasing and its limit is π
4
. Moreover, we give a suf-

ficient condition for the monotonicity of some Riemann-type sums assigned to uniform
subdivisions as a function of the number of the intervals from the subdivision. This
mathematical content came up in a group discussion during an IBL centered teacher
training activity and reflects a crucial problem is implementing IBL teaching attitudes
in the framework of a highly scientific curricula (such as the Romanian mathematics
curricula for upper secondary school).

MathEduc Subject Classification: I35

AMS Subject Classification: 97I30

Key words and phrases: Monotone sequence; Riemann sums.

1. Introduction

The main aim of this note is to reflect in a concrete mathematical context on
the two statements from the motto. The background and the necessity of such a
reflection is the new European Inquiry Based Learning (IBL) trend in teaching of
mathematics. In the last decade it became clear that Europe needs more scientists
(see [2]) and that in order to attain this goal the renewal of mathematics and science
education is needed (see [4]). The Rocard-report [4] recommends a more extensive
use of inquiry based learning. Since then several European projects (at local and
international level) focused on IBL have been started (for a brief overview see the
project coordinators network at http://proconet.ph-freiburg.de/). The basic
ideas of IBL goes back to the work of John Dewey, but nowadays IBL is used for
a large variety of pedagogies that allow students to construct their own knowl-
edge based on inquiries. The use of students centered pedagogies needs a different
student-teacher communication, different attitudes both from students and teach-
ers and well designed, rich problem situations in which the inquiry can be done.
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However there are strong evidence on the efficiency of this method (see [5]), the
implementation process needs a lot of care and effort. According to the philosophy
of inquiry based learning the main focus of teaching is not only the content itself,
but the way knowledge is constructed by students, the learning process which takes
place in well chosen contexts. For many teachers, who have been using mostly
frontal teaching methods (with a long history of success) this philosophy is com-
pletely new. During an IBL activity students are encouraged to ask questions. But
in the upper secondary level these questions can lead to very deep problems that
teachers are not prepared to handle. In the traditional setting many natural ques-
tions arose without teachers being able to give answers on the existing knowledge
level of the students (this problem is a consequence of the curricula construction and
not the problem of teachers training), but most of these questions were not heard
(as in the motto) or only a superficial answer was given to them (which postpones
the answer until forgetting the question). In an IBL setting this attitude needs to
be revised and changed. In this short note we give an answer to a question raised in
a group discussion during an IBL centered teacher training activity and reflects a
crucial problem is implementing IBL teaching attitude. This problem is also deeply
rooted in the history of mathematical ideas, mainly the problem of measuring. The
training session was focused on the introduction of the Riemann integral based on
some real world problems which led to the approximation of the area of a planar
domain bounded by the coordinate axes, the graph of the function f : [0, 1] → R,
f(x) = 1

1+x2 and the line x = 1. The idea was to use students’ former knowledge
namely concepts and properties related to sequences and approximation. In this
framework the following problems arose:

Problem 1. Prove that the sequence (xn)n≥1 with general term

xn =
n∑

k=1

n

n2 + k2
, n ≥ 1,

is increasing. (This problem can also be found in [1].)

Problem 2. Prove that the sequence (yn)n≥1 with general term

yn =
n−1∑

k=0

n

n2 + k2
, n ≥ 1,

is decreasing.

Problem 3. Find the limit of the sequence (xn)n≥1, defined by

xn =
n∑

k=1

n

n2 + k2
, n ≥ 1

using elementary methods (without derivatives or integral calculus).

Remark 1. The terms of these two sequences ((xn)n≥1 and (yn)n≥1) are lower
and upper bounds for the area in question, while the limit could be interpreted as
the area of the domain.
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2. Proofs and strategies

Solution of Problem 1. The general term of the sequence (xn)n≥1 can be
written as

xn =
1
n

n∑

k=1

1

1 +
(

k
n

)2 ,

so we have to study the monotonicity of the sum

xn =
1
n

n∑

k=1

f

(
k

n

)
,

where f : [0, 1] → R, f(x) = 1
1+x2 . This is the sum of areas of the rectangles

constructed on the intervals
[

k−1
n

k
n

]
with height f

(
k
n

)
for all 1 ≤ k ≤ n. Using

Figure 1, we have to compare the area of two systems of rectangles. These systems
differ in the rectangles marked with + and −, so it is sufficient to prove that
each rectangle marked with + has greater area than the right neighbour rectangle
marked with −. This inequality can be expressed as

(1)
(

k

n + 1
− k − 1

n

) (
f

(
k

n + 1

)
− f

(
k

n

))

≥
(

k

n
− k

n + 1

)(
f

(
k

n

)
− f

(
k + 1
n + 1

))
,

where 1 ≤ k ≤ n− 1. In an equivalent form we have

f

(
k

n

)
≤ n + 1− k

n + 1
f

(
k

n + 1

)
+

k

n + 1
f

(
k + 1
n + 1

)
.

x

y

O 1k
n

k+1

n
k+1

n+1

-

+

+

+

+

+

-

-

-

k
n+1

k
n

1

Fig. 1. Subdivisions for n and n + 1 for the function f(x) = 1
1+x2 .

Using the explicit form of the function we can rewrite the previous inequality
in the following equivalent forms:

(n + 1)(n + 1− k)
(n + 1)2 + k2

+
(n + 1)k

(n + 1)2 + (k + 1)2
≥ n2

n2 + k2
,
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(
(n + 1)4 + (n + 1)2(k + 1)2 − k(2k + 1)(n + 1)

) (
n2 + k2

)

≥ n2
(
(n + 1)2 + k2

) (
(n + 1)2 + (k + 1)2

)
,

(n + 1)4k − n2(n + 1)(2k + 1) + (2n + 1)k(k + 1)2 − k2(2k + 1)(n + 1) ≥ 0,

n4k + (2k − 1)n3 + (4k − 1)n2 + n(3k2 + 6k) + 2k − k3 + k2 ≥ 0

Throughout all these inequalities 1 ≤ k ≤ n − 1. The last inequality is true for
k ≥ 1 because 3k2n ≥ k3 and the rest of the terms are all positive. Hence (1) is
true and this guaranties that (xn)n≥1 is increasing.

Remark 2. Problem 2 can be solved using a similar reasoning by comparing
areas of rectangles. This is left to the reader as a good exercise.

Remark 3. It is easy to see that 1
2 ≤ xn ≤ 1, hence the sequence is also

bounded, and this implies the convergence of the sequence. Using the definition
of the Riemann integral we could easily find the limit of the sequence without the
study of convergence:

lim
n→∞

xn =
∫ 1

0

dx

1 + x2
=

π

4
.

Solution of Problem 3. First we observe that

arctg
k + 1

n
− arctg

k

n
= arctg

n

n2 + k2 + k
,

hence there is a telescopic expansion for the sum
∑n

k=1 arctg n
n2+k2+k . Using this

we need to establish inequalities between arctg n
n2+k2+k and n

n2+k2 . For this we
recall the following basic trigonometric inequalities and their geometric proof:

(2) x− x3

2
< arctg x < x, if x ∈ [0,∞).

Remark 4. In the first expression of the previous relations x3

2 can be replaced
with x3

3 .
Consider the trigonometric circle as in Figure 2. The area of the circular

sector AOC is t
2 , the area of the triangle AOB is tg t

2 , hence t < tg t and this
implies arctg x < x. On the other hand, the area of triangle AOB is smaller than
the sum of the areas of the circular sector OAC and the triangle ACB. This can
be written as t

2 + tg t sin2 t
2 > tg t

2 , so by using tg t > 2 sin t
2 (0 < t < π

2 ), we obtain
t > tg t− tg3 t

2 and this implies x− x3

2 < arctg x.
From (2) we obtain

arctg
n

n2 + k2 + k
<

n

n2 + k2 + k
<

n

n2 + k2
and

n

n2 + k2 + k
− 1

2

(
n

n2 + k2 + k

)3

< arctg
n

n2 + k2 + k
.

Using a short straightforward calculation we can verify that

n

n2 + k2 + 2k + 1
<

n

n2 + k2 + k
− 1

2

(
n

n2 + k2 + k

)3

.
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Fig. 2. Inequalities for tg t

Indeed, this inequality is equivalent (after reducing the fractions) with
n2(n2 + k2 + 2k + 1) < 2(k + 1)(n2 + k2 + k)2

and this holds because n2(n2 + k2 + 2k + 1) < (x− y)(x + y) < x2 < 2yx2, where
x = n2 + k2 + k and y = k + 1. So

arctg
n

n2 + (k + 1)2
< arctg

n

n2 + k2 + k
<

n

n2 + k2
.

From these inequalities we obtain the following estimations

xn =
n∑

k=1

n

n2 + k2
>

n∑

k=1

arctg
n

n2 + k2 + k
= arctg

n + 1
n

− arctg
1
n

,

xn =
n∑

k=1

n

n2 + k2
<

n−1∑

k=0

arctg
n

n2 + k2 + k
= arctg

n

n
.

On the other hand limn→∞ arctg n+1
n −arctg 1

n = arctg 1 = π
4 , so limn→∞ xn = π

4 .
In what follows we give some sufficient conditions for the monotonicity of

Riemann type sums constructed as above.

Theorem 1. If the function f : [0, 1] → R is concave and decreasing, then the
sequence

an =
1
n

n∑

k=1

f

(
k

n

)

is increasing and the sequence

bn =
1
n

n−1∑

k=0

f

(
k

n

)

is decreasing.
Proof. We prove that

(3)
(

k + 1
n + 1

− k

n

)(
f

(
k + 1
n + 1

)
− f

(
k + 1

n

))

≥
(

k

n
− k

n + 1

)(
f

(
k

n

)
− f

(
k + 1
n + 1

))
.
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Fig. 3. Subdivision for n and n + 1 for a concave function

This is equivalent to the following inequalities
(

k + 1
n + 1

− k

n + 1

)
f

(
k + 1
n + 1

)
≥

(
k + 1
n + 1

− k

n

)
f

(
k + 1

n

)
+

(
k

n
− k

n + 1

)
f

(
k

n

)

f

(
k + 1
n + 1

)
≥ n− k

n
f

(
k + 1

n

)
+

k

n
f

(
k

n

)
.

On the other hand f is concave, so we have

f

(
n− k

n
· k + 1
n + 1

+
k

n
· k

n

)
≥ n− k

n
f

(
k + 1

n

)
+

k

n
f

(
k

n

)
,

hence

(4) f

(
nk + n− k

n2

)
≥ n− k

n
f

(
k + 1

n

)
+

k

n
f

(
k

n

)
.

Due to the monotonicity of the function f and the inequality

nk + n− k

n2
≥ k + 1

n + 1
,

we have

(5) f

(
k + 1
n + 1

)
≥ f

(
nk + n− k

n2

)
.

From (4) and (5) we obtain (3) and this implies an+1 ≥ an.

The second part of the proof can be obtained by using a similar argument or
we can simply change the orientation of both axis and placing the origin to (1, f(0))
in order to reduce this part of the proof to the first part of the following theorem.

Theorem 2. If the function f : [0, 1] → R is convex and decreasing, then the
sequence

an =
1
n

n∑

k=1

f

(
k

n

)
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Fig. 4. Subdivisions for n and n + 1 for a convex function

is increasing and the sequence

bn =
1
n

n−1∑

k=0

f

(
k

n

)

is decreasing.
Proof. We prove that

(6)
(

k

n + 1
− k − 1

n

) (
f

(
k

n + 1

)
− f

(
k

n

))

≥
(

k

n
− k

n + 1

)(
f

(
k

n

)
− f

(
k + 1
n + 1

))
.

This is equivalent to the following inequalities
(

k

n
− k − 1

n

)
f

(
k

n

)
≤

(
k

n + 1
− k − 1

n

)
f

(
k

n + 1

)
+

(
k

n
− k

n + 1

)
f

(
k + 1
n + 1

)

f

(
k

n

)
≤ n + 1− k

n + 1
f

(
k

n + 1

)
+

k

n + 1
f

(
k + 1
n + 1

)
.

From the convexity and monotonicity of f we have
(7)

f

(
n + 1− k

n + 1
· k

n + 1
+

k

n + 1
· k + 1
n + 1

)
≤ n + 1− k

n + 1
f

(
k

n + 1

)
+

k

n + 1
f

(
k + 1
n + 1

)

and

(8) f

(
(n + 2)k
(n + 1)2

)
≥ f

(
k

n

)
,

because
n + 1− k

n + 1
· k

n + 1
+

k

n + 1
· k + 1
n + 1

=
(n + 2)k
(n + 1)2

≤ k

n
.

Inequalities (7) and (8) imply (6) and from this we obtain an+1 ≥ an.
The second part of the proof is equivalent to the first part of the previous

theorem or can be obtained using a similar argument.
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3. Concluding remarks

1. Based on students’ former knowledge the emphasized problems are natural
and can come up during teaching activities. The difficulties which we have to face
in solving such kind of problems motivates (and had motivated throughout the
history of mathematics) the introduction of a slightly different point of view in the
construction of the Riemann integral.

2. In the existing curricula Problem 3 (and many other similar problems) is
solved using integrals, so students do not have the occasion to understand that the
use of the integral is a very powerful and effective way for solving these kind of
problems and in fact spares us from individual effort in treating these problems.

3. The presented problems and solutions offer us a good example for the first
statement of the motto and in the same time an insight into understanding why is
convenient to choose the second statement as teaching attitude in many cases. In
order to be successful in teaching mathematics and science we need to fight against
this attitudes as many times as it is possible for us.
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[4] H. Wallberg-Henriksson, V. Hemmo, P. Csermely, M. Rocard, D. Jorde, D. Lenzen, Sci-
ence education now: a renewed pedagogy for the future of Europe, http://ec.europa.eu/
research/science-society/document library/pdf 06/report-rocard-on-science-
education en.pdf

[5] S. Laursen, M.-L. Hassi, M. Kogan, A.-B. Hunter, T. Weston, Evaluation of the IBL Math-
ematics Project: Student and Instructor Outcomes of Inquiry-Based Learning in College
Mathematics, Colorado University, 2011.
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