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Introduction

This is the second part of a study published in a previous issue of this Jour-
nal whose main goal was to analyze and document the types of knowledge that
university students exhibit to deal with fundamental issues that they had studied
in a first ordinary differential equation course. In the first part, we presented the
conceptual framework and methodological features associated with the research.
Here, we focus on analyzing and discussing the following research questions:
(ii) How do students make sense of, interpret and deal with the concept of solution

to an ODE?
In this question, we document the ways in which students think of and operate

ideas around the concept of solution to an ODE. In addition, we examine the types
of difficulties students experience during the process of verifying whether a function
fulfils the necessary conditions to be the solution to a given ODE.
(iii) What systems of representation do they use to represent and explore the infor-

mation embedded in those questions in order to answer them? And, to what
extent do the students privilege the use of certain type of representation?
In this question, we analyze the extent to which students show consistent

tendencies or preferences to select and use a set of resources to deal with problems
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or questions associated with ODEs. To answer and discuss these questions we
relied on data gathered from task-based interviews. The interviews used in this
part involved problems of types 2 and 3 which were described in the first part of
this study (see methodology) (see also appendix 1 at the end of this part).

Data Analysis and Presentation of Results

The analysis of the information gathered in our research is divided into two
parts. First, we focus on analyzing the answers given by the twenty-one participat-
ing students to the problems set in the questionnaire. To this end, each student’s
answer was analyzed in terms of identifying salient mathematical features that were
summarized in Appendix 2. These tables were used as a heuristic aid to identify
initial global patterns in students work related to their level of proficiency to deal
with basic concepts associated with the study of ODEs. This global behavior is
complemented with data from interviews with the students. That is, we follow up
students’ answers to the questionnaire by considering their ideas expressed during
the interview. In addition, we also show examples of the students’ work to illustrate
their answers.

On the concept of solution of an ODE
To analyze the students’ ways of dealing with the concept of solution of an

ODE, we focused on what students answered to questions that were grouped as
Type 2 questions (see Appendix 1). Knowledge needed to deal with these questions
includes understanding the concept of solution to an ODE, recognizing explicit and
implicit functions and ways of differentiating those functions; and the meaning of
both a particular and general solution of an ODE.

Based on the work shown by students to answer questions Q3, Q4 and Q11 we
can infer that for some students the meaning of solution of an ODE is restricted
to the result of the process of solving the equation. This is the case of Mary and
Gaby who choose to solve the equations in order to find the solutions of the three
equations (Tables 1, 2 and 4, Appendix 2). Other students think of the concept of
the solution to a differential equation as the set of functions which substituted into
the equation, together with their derivatives, transform this into an identity. Six
students (Angie, Jordan, Edna, Laure, Stella and Betty) decided to differentiate the
possible function solution in order to verify whether it was a solution to the given
ODE. However, it is important to mention that when these students encountered
difficulties while differentiating such expressions, they were not able to think of
another alternative like solving directly the equation.

Jordan is one of those students who chose differentiation to check that a func-
tion was a solution in Q3(a), but failed to answer Section Q3(b). In the interview
we could see that the difficulty this student encounters when answering these ques-
tions is related to the process of differentiation. Jordan recognizes the implicit
expression of the function given in Q3(b) but does not differentiate correctly in any
of the subsections of this question. In the first section he recognizes that he does
not know how to differentiate the function and he expresses doubts about the use
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of the chain rule to differentiate the implicit function, a differentiation that he also
performs incorrectly.

J (Jordan): [ . . . ] Well, if we differentiate here (the implicit expression) with respect to x, if I
have this OK,

[ . . . ] we’ll get this

and [ . . . ] substituting here . . . we’ll get x2 = 0. I think that this is wrong. [ . . . ]

R: You said before “if I have this OK”. Have you any doubts that you have it OK?

J : No, this happens, the chain rule thing. I think I have it OK.

Jordan only sets about solving the differential equation when we insisted on
him doing so during the interview.

R: And do you have to calculate the derivative of that function necessarily to answer?

J : It’s probably not so easy, but . . . you have to do it.

R: Can you think of any other way of going about the problem or isn’t there any?

J : Calculate the solutions of the equation (the ODE).

R: Will that help?

J : If we get all the solutions . . . we can know if this is one.

Stella uses differentiation as the procedure for checking that a function is the
solution to an ODE, but, like Jordan, she fails to differentiate the function given
implicitly, which leads us to suppose that this concept might be an obstacle to
answer this part (Q3(b)). In the interview Stella answers these questions by solving
the equations. For her, as well as for other twelve students, the concept of solution
of a differential equation has several meanings. However, based on the answer she
gives in the interview when asked to solve Q3(b) differentiating the function, we
could see that the implicit expression of a function has no meaning for Stella.

S (Stella): Section b is strange . . . So, f(x), what is it?, f(x) might be anything, any function
of x, but obviously, as they tell you that it holds this [−x3 + 3y − y3 = C]. If it satisfies this
[−x3 + 3y − y3 = C], does that mean that f(x) is the same as that?

When analyzing Wanda’s answers we observe that her understanding of the
concept of implicit function can also be an obstacle when undertaking Q3(b). In
this case it is not because of any lack of meaning of the expression, but rather
because of her idea of this concept. Wanda believes that the implicit expression of
a function is of the form F (x, y), and reflects this idea when she differentiates to
answer the questionnaire, the derivative of the expression F (x, y) = C with respect
to x being correct. As she does not know what to do with the expression obtained
from differentiation, this student chooses to solve the equation and classifies it as
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exact. Her answer is wrong as she makes a mistake when applying the algorithm
for solving this type of equation. During the interview she classifies the ODE as
exact, basing this idea on the fact that she remembers that this was the expression
of the solutions to these equations, but she cannot remember how to check if this
equation is exact and how to calculate the expression of the exponential function.
This is an example of the meaninglessness use of algorithms in students’ actions.

W (Wanda): How can you know if something is the solution of something? Well, we should
substitute the y from here [she indicates the implicit expression] into this [she indicates the
equation] and see if this verifies the differential equation. What happens is that finding from
here isn’t easy because you have y3 and y [ . . . ] When you see something like this [the ODE]
and you see an answer of this type [the implicit function] . . . To me they look like equations,
I think they’re called exact equations but I’m not sure, and the solutions are going to be an
exponential function, the same as a constant. I can’t remember precisely why, or how . . .

Roger, Wanda and Angie seem to have a more robust understanding of the
concept of solution of an ODE than the rest of the students. They rely on the use
of heuristic strategies to solve Type 2 problems. Roger uses the relationship between
the number of integration constants that appears in the algebraic expression of the
general solution of an ODE with the order of this equation in order to solve Q4.
Wanda and Angie give counterexamples to demonstrate that the statement made
in Q5 is false (Figure 1).

“A more complete set of solutions of the equation y′′ − y = 0 would be y = Aex + be−x, A
and B are arbitrary constants.” (Roger)

“Generally not. As far as I can remember, this is verified in linear equations, but there are
cases, for example, in separate variables, where the solution is a fraction where the denominator
is cancelled and you can’t say that it is delimited to all R2.” (Wanda)

(Angie)

Figure 1. Procedure followed by Roger in Q4 and Wanda and Angie in Q5

Comment. Raychaudhuri (2008) cited a definition found in a classic textbook
(Boyce & DiPrima [1]) “any differentiable function y = φ(t) that satisfies the DE



An exploration of students’ conceptual knowledge 67

(Differential Equation) y′ = f(t, y) for all t in some interval is called a solution” to
highlight that the concept of solution of an ODE requires students to understand
“what the solution represents as an entity in the context of differential equations (a
function) and what mathematical process makes that function a solution—that it
satisfies the DE for all x in a certain interval”. He distinguishes two processes relat-
ed to the concept of solution of an ODE: the generating process, solutions are the
result of solving the equation, and the defining process, solutions are functions that
satisfy the ODE for all values of the independent variable. In this context, there
is evidence that in general, students do not consider the properties associated with
the function that represents the solution in the context of the differential equation
involved. In addition, when students direct their attention to differentiability or
integration processes, they often face serious difficulties to accomplish successfully
the task of verifying the solution. In terms of the strands that characterize profi-
ciency in comprehending the concept of solution on an ODE, it is clear that the
students privilege the use of derivation or integration rules (procedural fluency),
isolated from the others strands, to answer the questions. However, they also face
difficulties to perform efficiently even those rules or procedures (see Appendix 2).

On the concept of “direction field”

To what extent do students recognize the importance of representing a slope
field or direction field associated with a first-order differential equation in order
to visualize its solution? Do they rely on using their knowledge of functions and
derivatives to construct and interpret a direction field? The process shown by
the participants to answer problems of Type 3 helps us document the ideas and
resources they use, and difficulties they encounter to construct and interpret the
slope field associated with the given differential equations.

We observe that half the students experience difficulties with questions that
demand the interpretation or construction of a direction field (Type 3 problems).
Many students left their answers blank, even though they had studied the elements
needed to go about the problems using both graphical as well as algebraic systems
of representation (Tables 5, 6 and 7).

Twelve students appeared not to have the slightest knowledge of the processes
of representation and interpretation of a direction field. Thus, they failed to relate
the geometric meaning of the derivative, the slope of the tangent line to a function
at one point, to the direction field. In an interview one of these students, Jordan,
showed that he could interpret this concept but not represent it. This student’s
behavior might be due to the fact that the he answered the questionnaire during
his study of the subject, while the interview was conducted after he had finished
the course and had thus developed certain resources.

Several students, among them Jordan, give the concept of differential equation
a single role, that of something that has to be solved. This is what this student does
in all the Type 3 questions in the interview: he always tries to solve the equation
immediately. At no time does he refer to the monotony of the function, which
might be the reason why he fails to represent any direction field correctly. He only
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attempts to represent the direction field in question Q15 and he does this based
on the solution to the problem that he had previously represented after solving the
ODE (Figure 2).

J : Draw the direction field . . . I’m not going to do that!

E : Why? . . . Are you tired?

J : . . . No, I’m not tired, it’s just . . . I couldn’t do it in other questions . . . Well, I’ll try . . . Let’s
see . . . I will graph the solution of this [points to the PVI and represents the solutions] [ . . . ]
That’s the particular problem; the general problem would be plus C. As the lines indicate the
derivative the solution has at that point . . . [Jordan’s represention of the direction field]

Figure 2. Jordan’s answer to Q15

Answering Q6 in the questionnaire, Stella uses the differential equation both
to obtain the algebraic expression of the function solution as well as to analyze the
monotony of this, but she does not represent the direction field. In the interview
Stella merely solves the equation, leading us to think that in the questionnaire she
was attempting to apply an algorithm that she could not altogether remember.
This algorithm acquires meaning for her during the interview, giving rise to the
geometric meaning of the derivative and permitting correct representation of the
direction field.

R: What I’ve just given you is what you did. Here there is a series of calculations where it says
direction field. Can you tell what you did there?

S : Here I analyze the derivative, whether it’s positive or negative [ . . . ]
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and here I begin to calculate the derivative . . . I calculate how much the parameter t is in
accordance with the values of the derivative.

R: And how would you use these calculations to draw the direction field?

S : It’d be like that, at t = 1, the derivative is supposed to be the tangent line to the curve at
that point, so at t = 1, the curve has slope 1, something like that, at t = 1 it has slope 1, so
that it’d be like this . . . At t = 1/2 it has slope 2, sloping further and at t = 1/2 . . . Well, to
tell you the truth, I knew that this was the slope of the curve and I don’t know what, but I
didn’t know what it was . . . And here it’s the same with the opposing slope.

It is interesting to observe that during the interview, Stella was able to relate
the symbolic representation of the derivative to its geometric meaning.

Regarding the information that can be obtained from a direction field asso-
ciated with an equation we have observed that the source of students’ greatest
difficulties is the representation of solutions to the differential equation that holds
a certain condition; only four students tried to represent the solutions by consid-
ering initial conditions P (00 and P (−2) = 12 in Q8 (Table 6) and only Edna and
Wanda did it correctly while Jeremy and Angie made a mistake with the solution
corresponding to P (0) = 0 (Figure 3).

In the questionnaire, neither Jordan nor Stella manage to extract any sort of
information from the direction field given in activity Q8; however, in the interview,
they managed to answer the questions in this problem related to the monotony
of the function and its behavior at infinity, making use only of the direction field.
Stella could not represent the specific solutions asked for in the problem; she appears
to confuse the differential equation with its solutions.
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Wanda’s representation in Q8 Jeremy’s representation in Q8

Figure 3

S : What does it mean that P (0) is 0? That it is annulled when the equation is zero, but . . .

R: What does P (−2) = 12 mean?

S : That when you substitute into the equation you put −2 at t, and this gives twelve.

R: What gives you twelve?

S : The equation, the result of . . . I don’t know . . . This is as if we had, for example, a polynomial,
then when instead of x you put −2; if it is, for example, x squared plus one, then if you put
this it gives you a value. Well, the same but with P , I suppose.

R: Could you draw that solution?

S : No.

Comment. There is evidence that students experience serious difficulties in
identifying and accessing a series of concepts and ideas previously studied to make
sense of problem statements that are not asked for explicitly. It is also interesting
to observe that when some students were asked to reflect on those concepts (during
the interview), then they were able to recall and use them to draw the direction
field.

A focus on the students’ use of systems of representation

The way students represent concepts and problems play a relevant role in the
identification and exploration of mathematical relations. To analyze the types of
representation that students used to answer the questionnaire, we focus on three
cognitive approaches that Duval [5] deems fundamental in the learning of mathe-
matical concepts: the types of representations used, the treatment or operations
carried out within and between the representations, and the transit, conversion,
and connections utilized by the students among the different representations.

Generally, students recognize the algebraic expression of a differential equation
and carry out the necessary operations within this register to solve the problem.
Some of the difficulties that students found when handling the algebraic system
of representation are related to the unsuitable choice of the method of solution to
the equation (Figure 5 from Camacho-Machn et al. [4]), or an incorrect process of
integration (Figure 4).

In general, all students recognize the algebraic representation of the solution to
an ODE as an explicit function, except one who fails to answer any of the problems
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Mary Laure

Figure 4. Mistakes in the integration of functions

included in Type 2. Representation of the solution as an implicit function is very
different, as this is recognized by only four of the twenty-one students answering
the questionnaire (Figure 5).

“Yes, they’re solutions, because differentiating in the equation with respect to x we get

−3x2 + 3y2 − 3y2y′ = 0. Substituting into the equation and as if finding from (∗) the

differential equation is satisfied.”

Figure 5. Carina recognizes and transforms the implicit function

With regard to the graphical system of representation, the students in Type
1 problems (see Appendix 1 from Camacho-Machn et al. [4]) are faced with the
representation of basic functions such as linear, exponential, trigonometric and
hyperbolic functions. We can see that some students are not rigorous enough when
making the graphical representations referred to, and merely give sketches of the
functions without any detail (Figure 6).

Figure 6. Some students’ graphical representations

Other students make mistakes when representing the functions, even with the
most basic functions, as is the case with Stella who incorrectly represents the func-
tion sin x. This student also finds it difficult to transit from the algebraic to the
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graphical register and makes mistakes when graphically representing the function
y = ax + b (Figure 7).

Figure 7. Errors in handling the graphical register (Stella)

Another piece of data that might tend to show us a lack of coordination between
registers is the fact that Betty, in order to solve the equation dy

dx = cos x, merely
analyzes the sign of the derivative and does not establish any connection with the
corresponding graph (Figure 3 from Camacho-Machn et al. [4]).

In question Q6, included in both the questionnaire and the interview with the
aim of creating contradictions for those students who incorrectly solved the integral
of the logarithmic function, Jordan provides us with an example of the importance
of the activity of conversion between different registers of representation. Jordan
solves the ODE in this problem by separating the variables but, when integrating
the logarithmic function, he fails to take into account the absolute value of the
argument, so that this solution would only be defined for positive values of the
independent variable, in this case t. The student then shows that he does not know
how to represent the direction field associated with this equation. Although he
represents a function corresponding to t = −1, he does not accept this as a solution
to the ODE.

R: You said before that for t = −1 the logarithm isn’t defined, so the solution couldn’t be drawn.
And now, with the direction field, you’ve drawn it. What does this mean to you?

J : [ . . . ] If the differential equation had a solution, it’d be like this (he indicates the drawing)
but then if the problem is that the solution, lest’s say, wasn’t defined, then we wouldn’t have
to draw it.

R: So, what you drew for t = −1, is it a solution or isn’t it a solution to the differential equation?

J : I think it isn’t.

R: Why?

J : Because if doesn’t verify this solution [y = ln t + C].

Another example of a student’s lack of coordination between registers, and
that leads him to a flaw interpretation, is shown by Jordan when solving question
Q8 in the interview. This student graphically represents the solutions satisfying
P (0) = 0 and P (−2) = 12, following the trace of the direction field (Figure 8).
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This leads Jordan into the error of considering that the function that initially has
value 0 is increasing, when the differential equation tells us that it is an equilibrium
solution.

Figure 8. Jordan interprets the direction field

However, Jordan also provides us with an example of how the use of different
systems of representation helps develop heuristic strategies to solve these prob-
lems. He attempted to solve problem Q8, where an ODE and its direction field are
presented simultaneously, by solving the equation. The solution leads to the inte-
gration of a rational function, the algorithm of which he cannot remember, making
him think again about the situation and he now takes into account the direction
field represented. It can be seen that the graphical system of representation allows
him to solve the activity correctly, something he would not have managed using
only the algebraic register which requires the subject to remember at least two
algorithms—the algorithm for approaching the ODE and the algorithm for solving
integrals of rational functions.

J : For what positive values of P are the solutions increasing? Up here (for P > 10) they’re
decreasing and down here (for 0 < P < 10) increasing.

J : What is the limit of P when t tends to infinity? The two of them would tend to 10.

Comment. The way students make sense of problem statements or situations
is essential for them to engage in meaningful thinking or reasoning activities. In
the conceptual framework, we argue that the students’ development of mathemat-
ical proficiency involves not only understanding concepts and ways of operating
with them in different contexts; but also developing mental habits consistent with
mathematical practices. A crucial habit for students to develop such proficiency is
to examine or explore problems or situations through the use of different systems
of representation. In this context, it is evident that the participants mainly focus
on the use of one system and fail to transit, in terms of meaning, from one system
to another.

Final remarks

A central theme in this paper is to characterize the extent to which university
students have developed mathematical proficiency to deal with basic ideas studied
in a first-year course in ordinary differential equations. To this end, we rely on a
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framework (Kilpatrick et al. [8]) that identifies five interdependent or interconnected
strands to discuss the development of mathematical proficiency. Thus, to document
features of students’ proficiency we use a set of mathematical tasks where the
students had the opportunity to exhibit their ways of thinking to approach the
tasks. The process shown by the students to deal with the tasks provides us with
useful information in order to characterize their ways of thinking about and dealing
with the concept of solution to an ordinary differential equation, the use derivative
knowledge to make sense of differential equations and ways of constructing and
interpreting the concept of slope or direction fields associated with some differential
equations. In this context, we should consider the patterns of behaviors shown
throughout this study.

Regarding the concept of solution, there is evidence that the students expe-
rience difficulties in identifying the different meanings of the concept of solution
to a differential equation. For example, in general, they failed to report general
solutions. It was also observed that to verify whether a function was a solution
of an equation, they either chose to solve the equation and compare the obtained
result with the given solution or they obtained the derivative of the function to
check whether it satisfied the equation. In this process, they encountered difficul-
ties in identifying and accessing proper knowledge and strategies to operate that
knowledge. For example, some students could not recall how to apply the chain
rule to get the derivative of an implicit function, and as a consequence they could
not verify whether an implicit function was the possible solution to a differential
equation.

In relation to the students’ construction and interpretation of slope fields as-
sociated with some ODEs, it was observed that, in general, students also seem to
rely initially on general sketches of elementary functions, which could not be used
to relate their graphic representation to the algebraic expressions. That is, they
could not transit in terms of meaning from geometric to algebraic representations
or vice versa. As we can see in other research works (Gonzlez-Martn & Camacho
[4]; Camacho, Depool & Santos-Trigo [2]), the graphical system of representation
produces a certain degree of rejection among students, especially when it is related
to a concept that is relatively new to them, as is the direction field associated with
a differential equation. The student does not feel comfortable in this system when
representing and exploring mathematical concepts. In particular, they had difficul-
ties when relating the monotonicity of the function with its derivative and graphic
behaviors. Graphical representation of the direction field consists of converting (in
terms of meaning) from the algebraic to the graphical system. It cannot be limited
to a codification of a process as this might lead to mistakes when solving certain
problems. Thus, students need to focus their attention to the global behavior of the
derivative function and its relation to the original function. That is, they should
move back and forth from the graphic representation of the derivative function and
the behavior of the function.

It seems that most students possess the conceptual resources needed to answer
the questionnaire (differentiation, integration, graphical representation of functions,
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properties of the functions and their derivatives, algorithms to solve differential
equations, etc.), but they cannot exploit these resources efficiently. We have also
noted that students’ learning of algorithms is not durable over time. Also, students
lack, or at least do not rely on, monitoring strategies to focus on ways to recall
procedures and forms of reasoning related to the expression involved. For exam-
ple, students experienced difficulties to derive implicit functions. In this context,
students need to become aware of the resources they possess and that they can
use these resources in approaching different situations or problems. Rasmussen
& Kwon [10, p. 190] suggest that an inquiring approach could guide the students
construction and development of mathematical concepts learn new mathematics
through inquiry by engaging in mathematical discussions, posing and following up
on conjectures, explaining and justifying their thinking, and solving novel problems.
We also argue that the way in which the mathematical contents are structured and
presented to students plays an important role in the students’ development of con-
ceptual learning (Camacho, Perdomo & Santos [3]).

In this perspective, the results in this study provide important information
to restructure and connect a first calculus course with an introductory differential
equation course. For example, to review, extend, and articulate the meanings
associated with the concept of derivative studied in a first calculus course, students
could also relate the interpretation and/or meaning of the derivative to finding the
solution of type of equations that involves y′(t) = k or dy

dx = cos x. Similarly, the
geometric interpretation of the derivative could also help students represent the
direction fields associated with a particular ODE or to analyze certain solution
to an ODE without expressing them algebraically. That is, in a calculus course
students can discuss certain types of differential equations in terms of the meaning
of the concept of derivative without focusing yet on the use of particular algorithm
to solve it. In this context, the use of the derivative to solve this type of problems
could be the bridge for students to connect the concept of derivative with the initial
concepts that appear in an ordinary differential equation course. Indeed, we argue
that discussing this type of ODEs adds another meaning associated to the concept
of derivative to the list of meaning proposed by Thurston [13].

Suitable representation of mathematical objects leads to greater perception of
the intrinsic properties of these objects (Santos-Trigo & Barrera-Mora [11]). This
does not mean that it is merely enough for students to use different systems of
representation so that they can discover these properties. The students who took
part in our research work recognized that their previous experiences of dealing
with mathematics problems involve the use of graphical and algebraic systems of
representation, though principally the latter system. However, very few students
tackled those questions related to the direction field associated with a differential
equation. Instruction based on the use of different systems of representation does
not guarantee success in the solution of non-traditional activities, as noted by Ras-
mussen [9]. Rasmussen observed that, in this context, learning activities that in
traditional instruction were performed through mechanical algebraic manipulations
now get to be carried out as mechanical symbolic manipulations.
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In view of the results obtained in this research work we believe that algebraic
treatment of differential equations should not be limited to classification and later
solution using algorithms, but that the equations should be analyzed from other
points of view, relating them to the concept of derivative of a function and ex-
tracting from them as much information as possible about the solutions. In the
case that an equation can be solved, the algebraic expression of the solution as well
as the properties observed in the equation itself should be contrasted, leading to
the development of heuristic strategies that the students appear to have forgotten.
Similarly, students need to discuss and use the geometric meaning of the derivative
concepts and not only to focus on rules or procedures to construct the direction
field associated with an equation.

Finally, we argue that in order for students to develop mathematical proficien-
cy, they need to develop a way of thinking that includes not only different ways
of representing, connecting, using, or extending mathematical concepts; but also
ways of overcoming difficulties that may arise during the problem solving approach-
es (Camacho, Perdomo & Santos [3]). We also recognize that proficiency is not all
or nothing in terms of presence or absence of the strands that characterize it. It
involves a process where students’ behaviors associated with the strands need to
be explicitly integrated. The results in this study show that the participants’ ini-
tial attempts to make sense of problem statements is guided by the methods that
they believe match those methods studied in the specific course and often fail to
relate them to other concepts or ideas. Speer, Smith III & Horvath [12] underline
the need to examine systematically collegiate mathematical practices in order to
inform on solid knowledge or research grounds what is involved in teaching college
mathematics. They state that:

Studies that have targeted the classrooms practices of K-12 teachers
have been productive in understanding the choices and acts of teaching,
the factors that shape them, and the practices of teacher education. We
expect that similar research at the collegiate level holds equal promise for
understanding teachers’ choices (and their rationales for them) and for
aiding beginners by informing the design of professional development. . . .
we also acknowledge that there are important differences between college
and pre-college teachers and teaching. Collegiate teachers, for example,
are less likely to face limits in their content knowledge. On the other
hand, they also have less time with students, making experimenting with
new content and activities potentially harder . . . In the space that is not
constrained, collegiate teachers make judgments, and decisions, before,
during, and after teaching, based on their sense of content, what their
students do and do not understand, and what is possible in the time
remaining in their courses. This is the space of teaching practice that we
consider worthy of examination and analysis (pp. 100–101).

Thus, a research inquiry into collegiate teaching practices will help us under-
stand and explain why in general students exhibit a fragmented or isolated knowl-
edge in their attempts to solve problems and experience difficulties to overcome



An exploration of students’ conceptual knowledge 77

obstacles that they might encounter during the solution process.
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