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Abstract. In this paper we consider the combinatorial problem of rectangular
islands by elementary means. The topic of islands and the methods for its investigation
is suitable also for high school students, although some of the corresponding results are
quite new. The arising questions need no advanced mathematical knowledge. Because
most of the problems are of finitary type, experimental mathematics with computer
support proves to be useful for the formulation of general conjectures related to the
bounds of the number of islands in particular configurations.
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1. Introduction

1.1. Historical background
Recently the notion of Czédli-type islands caught attention of several math-

ematicians. The notion comes from information theory: it appeared first in [5].
Several generalizations of this notion gave interesting combinatorial problems. In
two dimensions, Gábor Czédli [3] has determined the maximum number of rectan-
gular islands: on the m × n size rectangular board for the maximum number of
rectangular islands he obtained f(m,n) = b(mn+m+n−1)/2c. His proof is based
on a result in lattice theory [4], but now by [2] two elementary ways are also known
to prove the same result. The topic of islands is still developing, and already many
branches of mathematics are involved. The reader can find a complete synthesis in
[13] with the most important results, which can be approached in elementary ways,
so can be used in elementary and grammar schools too. The technique of gradual
increase of the water level is applied successfully in medical image processing [1].
This outlook may also motivate our students to consider mathematics not as an
abstract sterile world, but rather as the general technique of systematic problem
solving with real applications.

The reader might find further details in the References, but for understanding
the present paper, the reader need not read anything in advance.

1.2. Didactic
The literature considers the maximum number of islands in the case, when the

heights of the islands are not bounded. In this paper we try to find the maximum
number of islands in the bounded height case. We will not solve the very general
case, but we will be able to give the number in the 2× n and 3×n case, and point
out some problems on larger boards.
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The use of calculators and computer algebra systems is gaining greater and
greater importance in education today. We should not be scared to use them.
We apply here a computer program to get a hint on what the maximum number
is, what is the construction giving this number; in short what we need to prove.
We will be able to prove the conjectures by induction. Naturally, we may omit
mentioning the use of a computer to get a deus ex machina type proof, but one
of our goals here is to show the usefulness of using computers. The computers are
playing an ever increasing role in our lives, their use in experimental mathematics
[8] is nowadays inevitable. We do not replace proof by computer generated results,
but rather use this result to find conjectures, to help the proofs.

2. Sequences and islands

Let us consider sequences of length n (n ∈ N) containing numbers between 1
and k (k ∈ N). We search for connected subsequences of this sequence having the
property that the minimum number in the subsequence is larger than the numbers
at the sides of the subsequence. Why are we interested in these “islands” and why
are they called “islands”? Suppose that these numbers denote heights, we put these
in a board containing 1× n cells and that water floods. First the water level is 0,
but then it increases continuously. Then the found subsequences are exactly those,
for which we can find a water level where the cells containing this subsequence is
an island in the classical sense.

Example of the water flood in the case of a 4× 4 board

For example (here n = 12, k = 3 and the islands are exactly the underlined
subsequences):

2, 1, 3, 2, 3, 1, 1, 2, 3, 1, 3, 1

In order to make it possible to ask questions about these subsequences, we need
a mathematically correct definition of these islands, which can be the following:

Definition 1. We call islands those connected subsequences of a sequence of
length n (n ∈ N) containing positive integer numbers, that have the property that
the minimum number in the subsequence is larger than the numbers at the sides
of the subsequence. We call the minimum number in the subsequence the height
of the island. We always assume 0’s at the ends of the complete sequence, i.e. the
complete sequence is always an island.

We can now formulate our first question.
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Exercise 1. What is the maximum number of possible islands in a sequence
of length n if the height is at most h?

This question seems hard at first, so we try to answer first some special, easier
questions, which will also help us estimate the answer of this question. We can get
an upper estimation if we do not bound the heights of the islands.

Exercise 2. What is the maximum number of possible islands in a sequence
of length n?

We can construct n islands easily:

1, 2, 3, . . . , n

But can’t we have more than n islands? Checking the cases n = 1, 2, 3 we conjec-
ture, that the answer is no. So we can state our first theorem and we will even try
to prove it.

Theorem 1. The maximum number of possible islands in a sequence of length
n is n.

Proof. Suppose, that we are standing on a cell of height k and the water level
is just below k, say k− 1

2 . Then we are standing on an island. This island’s height
cannot be larger than k as we are standing on a point of height k not covered by
the water. But the island’s height cannot even be smaller than k, since the water
level is larger than k − 1, all cells of height at most k − 1 are covered by the water
and there are no island of height less than k above the water level. Therefore the
island’s height is k.

Let us do this for all cells in the 1×n board. Since we have n cells, this method
gives us n, not necessarily different islands. On the other hand, if we have an island
of height k, then standing on the cell of height k of the island we will get exactly
this island by the above process. Therefore we can have at most n islands.

This proof may seem a bit fuzzy, but it is mathematically correct. We will give
a detailed proof later in the general m× n case. But this proof also shows, that if
the numbers are different in the cells then we will always get n islands, no matter
in what order the numbers are. This is easy to see: if the numbers in the cells are
different, then the method gives us islands of different heights, therefore different
islands and we have exactly n islands.

As we have already solved the case when the height is unbounded, let us
continue with some special bounded case. If the maximum height h = 1, then we
can have only one island, the whole sequence:

1, 1, . . . , 1

What if h = 2? Since we want the maximum number of islands, it is easy to see
that repeating a number in the sequence is not optimal: they are always in the
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very same islands, they can be collapsed together in one number and the number
of islands does not change.

1, 2, 1, 1, 2, 1, 2, 2, 1 → 1, 2, 1, 2, 1, 2, 1

Then the number of islands is determined by the first number in the sequence. For
even n we will always get n

2 + 1 islands, while for odd n we will get more islands if
we choose the first number to be 2, and in this case we have n+1

2 + 1 islands. With
this we proved the following

Theorem 2. If h = 2 then on a 1× n board (n > 1) we can have at most

I2(n) =
[
n + 1

2

]
+ 1

islands, where [·] denotes the greatest integer function.

Let us experiment with the h = 3 case. Doing it by “hand” quickly proves
that this is now a hard enough case to ask the computer for help: if we had n = 10
then the number of possible cases is hn = 310 = 59049. Also, the still small enough
n = 30 is too large for even the computer to check all cases: hn = 330 is about 206
thousand billion. But we can help the computer a little.

We write the program for the general case, i.e. the maximal height is h. First
note that the number 1 must appear among the numbers in the sequence. If the
minimum number in the sequence is k ≥ 2, then subtracting k−1 from all numbers
does not change the number of islands, but then there is at least one 1 among
the numbers. We then search by recursion: let us try to put the number 1 on
all positions from 1, . . . , n and assuming that this is the first 1 in the sequence,
let us try the numbers 2, . . . , h on the positions before the 1 and the numbers
1, 2, . . . , n after it. Also we keep track of the solved problems: how many islands
we can construct if we are given the length and the bounding numbers of the
subsequence, and can write some numbers in the subsequence between a minimum
and a maximum height. Then if we run into the same problem during the recursion,
then we do not need to recompute the result. We can simplify the computation
even more, and the final algorithm has a running time linear in h and cubic in
n. This is (naturally) much better than a running time hn and the algorithm is
even simple to code: it is less than 80 lines in C programming language. It is good
enough to get conjectures: it can compute the maximum number of islands for
h = 10 and n = 1000 in less than a second.

So, let us run the program for h = 3. We get the following for different n’s:



The maximum number of rectangular islands 35

n the sequence the number of islands
2 1, 2 2
3 1, 2, 3 3
4 1, 3, 2, 3 4
5 2, 1, 3, 2, 3 5
6 2, 3, 1, 3, 2, 3 6
7 3, 2, 3, 1, 3, 2, 3 7
8 1, 3, 2, 3, 1, 3, 2, 3 7
9 2, 1, 3, 2, 3, 1, 3, 2, 3 8

10 2, 3, 1, 3, 2, 3, 1, 3, 2, 3 9
11 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3 10
12 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3 10
13 2, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3 11
14 2, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3 12
15 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3 13
16 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3 13
17 2, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3 14
18 2, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3 15
19 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3 16
20 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3 16

The first thing to note is that the number of islands is not always n, for n ≥ 8
it is less than n. This is not much of a surprise: we bounded the height and we
would expect something like this. Looking at the number of islands more closely we
find that they do a “hickup” for all n’s divisible by 4: it is not increasing compared
to the previous n. We know from the theorems above that the number of islands
is n for n ≤ h = 3 and we get the following:

Theorem 3. If h = 3 then on a 1× n board we can have at most

I3(n) = n + 1−
[n

4

]+

islands where [·]+ = max{1, [·]}.
We will not prove this theorem separately, as it will be included in the general

case, but let us look at the construction the computer gave us for this case. Reading
the numbers in the sequence backwards in the n = 20 case (for example) we see
that every second number is 3, then every second number (on the remaining empty
places) is 2 and the rest is 1. Although the computer sometimes did not follow this
construction, it is easy to check, that this construction always gives the maximum
number of islands (given by the computer, of course, which is not proved as yet). A
little explanation (not a proof) why this might be the best construction: all 3’s are
island in themselves, all 2’s with their neighboring 3’s are islands (these islands are
different so far), and the only island of height 1 is the whole sequence (as always).
So the number of islands is n+1 minus the number of 1’s in the construction, which
is exactly [n/4] (the n ≤ 3 case must be handled separately, of course, as there is
no 1 according to the construction).
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Using the computer for h ≥ 4 one will find the conjecture, that the maximum
number of islands if n + 1 − [n/2h−1]+. And the construction is very similar to
that of the case h = 3: every second number is h, then every second number (on
the remaining empty places) is h− 1, then every second number (on the remaining
empty places) is h− 2, etc, and the rest is 1.

So let us prove our conjecture.

Theorem 4. On a 1 × n board using the maximal height h ≥ 1 we can have
at most

Ih(n) = n + 1−
[ n

2h−1

]+

islands.

Proof. The main idea comes from the computer program: the recursion in
programming is called induction in mathematics. So we prove by induction, actually
by two inductions: first by h and second by n.

For h = 1 and all n the statement is true:

n + 1−
[ n

2h−1

]+

= 1

and we can have only one island.
Let us suppose for induction by h that we proved the statement for heights

less than a given h and for all n, and we want prove the theorem for h. We first
note that the above construction gives n islands for n ≤ 2h − 1 (since only one 1
will appear in the construction), which is the absolute maximum, and of course

n + 1−
[ n

2h−1

]+

= n

in this case. Now we are supposing for induction by n that we proved the statement
for numbers smaller than n using the maximal height h. Then we consider a
sequence of n ≥ 2h numbers.

We do know that the number 1 must appear somewhere in the sequence. Let
us cut off a subsequence of length 2h−1 from one side of the sequence so that in the
remainder part of the sequence there is a number 1. Then we have two cases.

Case 1. If there is a 1 in cut off part of length 2h−1, then the number of islands
is at most

n− 2h−1 + 1−
[
n− 2h−1

2h−1

]

︸ ︷︷ ︸
+2h−1︸︷︷︸−2 + 1 = n + 1−

[ n

2h−1

]

where the braced additives are coming from the induction, the −2 because the
two subsequences are not islands (they contain cells with 1’s), and the +1 is there
because the whole sequence is an island.

Case 2: If there is no 1 in cut off part of length 2h−1, then the number of
islands is at most

n− 2h−1 + 1−
[
n− 2h−1

2h−1

]

︸ ︷︷ ︸
+2h−1 + 1−

[
2h−1

2h−2

]

︸ ︷︷ ︸
−1 + 1 = n + 1−

[ n

2h−1

]
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where the first brace comes from induction, the second because we must generate
maximum number of islands in a subsequence of length 2h−1 with heights 2, 3, ..., h
(there is no 1 in that part), the −1 is there because the first part is not an island
(it contains a 1), and +1 stands for the whole sequence.

In both cases we proved that the number of islands is at most the stated
number. To end the proof, we just check that the above construction gives the
desired number of islands.

A natural generalization of this problem is to consider a rectangular board of
size m× n, and ask the maximum number of rectangular islands when we can use
the heights 1, 2, . . . , h only. This is a much more complicated question so let us
start with some easier cases.

If h = 2, then one can easily find the answer: the maximum number of islands
is [

m + 1
2

]
·
[
n + 1

2

]
+ 1

To prove this, we note first that the whole board is always an island, so in the
following we are not concerned with it, if we say “island” we will always mean
islands that are not the whole board. Then obviously, all islands contains only
cells with height 2. The more cells an island contains, the less space is left for more
islands, so the best way to obtain the maximum number of islands is that all islands
contain only one cell, and we pack the cells as close as possible. Then the distance
of these cells are at least 2, so in the best packing we have islands in every second
cell both horizontally and vertically, like this (in the case 4× 5):

2 1 2 1 2
1 1 1 1 1
2 1 2 1 2
1 1 1 1 1

Vertically there are [(n + 1)/2] columns in which we can write the height 2 and in
those columns we can write 2 in [(m + 1)/2] cells. Multiplying these together and
adding 1 for the whole board as an island, we get the said result.

If h ≥ 3 then the problem is much harder. So, instead of “going higher” in the
general case let us first consider a smaller board. Suppose, that our board’s size
is 2 × n or 3 × n. We will be able to solve these cases by building on the 1 × n
case. To make the proofs easier to understand, let us start with some definitions,
the first of which is a simple generalization of the 1× n case.

Definition 2. The height of an island is the minimum height of the cells
within the island.

Definition 3. The coast of an island are the cells neighboring the island.

Definition 4. The height of a coast is the maximum height of the cells within
the coast.
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Definition 5. A half-island is a non-rectangular island, i.e. a set of connected
cells with minimal height larger than the maximum height of the cells in the coast.

In the following we will call rectangular islands simply islands. We will always
keep in mind that our goal is to find the maximum number of islands, so if we
say we can change the heights of some cells without problems, we mean that this
change does not decrease (or even increases) the number of islands.

Theorem 5. The maximum number of islands in a rectangular m× n grid is
at most mn.

Proof. Let us start from a cell C of the grid having the height k. The connected
subsets of cells with height at least k are half-islands with heights at least k. Let M
be the half-island containing the selected cell C (we call this the half-island implied
by C in the following), then the height of M is exactly k. If M is not a rectangle
(i.e. it is not an island), then it means that M as a whole can only be part of islands
of height less than k. Therefore we can decrease the heights of all cells in M by 1
without decreasing the number of islands.

Let us apply the above method for all cells of the grid and (as the height of
the cells might change during the process) repeat it as long as we can find half-
islands implied by some cell. If we find a half-island then at least two cell’s height
will decrease (the smallest non-rectangle contains a minimum of two cells), so the
repetition will end in finite number of steps. At the end we arrive at some height
setting, where all cells imply islands and not half-islands, and the number of islands
did not decrease during the process. (Actually: the number, size and position of
the islands does not change at all, only their heights might decrease.)

We have mn cells, they imply mn not necessarily different islands. On the
other hand if M is an island of height k, then any cell with height k within M
will imply M , and hence all islands are implied by some cell. Therefore we have at
most mn different islands, and the proof is complete.

Note that if m = 1, then the maximum number of islands is equal to n. One
can simply put all numbers from 1 to n in the cells. The above process will not
change the heights, since the half-islands must be islands: all are of the form 1× k.
A cell of height h will imply an island of height h, and since h will run from 1 to
n, we must have n different islands, as their heights are different.

It is also easy to see, that if an island M of height at least h + 2 has a coast of
height h, then the height of all cells in M can be decreased so that M ’s height will
be h + 1: this way M remains an island, all islands within M remain islands, and
all islands containing M remain islands. In other words, with a coast of height h
there must be a cell of height h + 1 in the island otherwise the height of the island
can be decreased.

Let us first consider the 2 × n case. If we have an island of height 2, then it
contains either 1× k or 2× k cells. The first case is not optimal: then the island’s
coast contains a 1 × k grid under or over the island, which (naturally) can have
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cells of height 1 only like here in the left-hand side 2× 3 grid:

3 2 3 1 3 2 3
1 1 1 1 4 2 4

If we simply repeat the island in that part of the coast, then the number of islands
does not change:

3 2 3 1 3 2 3
3 2 3 1 4 2 4

but we may be able to increase the number of islands by changing the heights of
those cells previously in the coast:

3 2 3 1 3 2 3
4 2 4 1 4 2 4

So all islands of height 2 are of the form 2 × k. In other words, the 2 × n board
must be cut vertically to islands of height 2. This idea can be used to show the
following theorem.

Theorem 6. The number of islands in a 2× n board using heights 1, 2, . . . , h
only (h ≥ 3) is [

3n + 1
2

]
+ 1−

[ n

2h−2

]+

Proof. Let us consider the islands of height 2 in the 2 × n grid. According
to the note above this theorem, they are of the form 2 × ki (i = 1, 2, . . . p) and
they are separated by columns with cells of height 1. In these islands we can use
heights 2, 3, . . . , h to generate more sub-islands. If we forget for a minute that these
islands are part of a larger board, then the maximum number of islands for these
heights is the same as for the heights 1, 2, . . . , h− 1 (we just need to add 1 for the
height of each cell to get the required heights), and we can apply the note before
this theorem again for these islands. Then in an island of size 2 × ki (ki ≥ 2) we
must cut vertically by a column with cells of height 2, etc. This induction can be
followed as long as the width of the island is at least 2, and naturally, in an island
of size 2×1 we can have at most 2 sub-islands. This means that the 2×n board has
two 1×n sub-boards in which (at most) every second cells’s height can be different
and hence the number of islands in the 2× n board is the number of islands in the
1×n board plus 1 island for each difference. But the construction also shows, that
when the two 1 × n boards differ, then they must contain the maximal heights in
those cells, i.e. the heights h and h − 1. By sorting these heights so that the first
line of the 2×n board contains the height h−1 in these cells (this does not change
the number of islands), we have there a 1 × n board with heights 1, 2, . . . , h − 1
and (of course) we want maximum number of islands. We already know how to do
that and how many islands we obtain, then the 2× n board can have at most(

n + 1−
[ n

2h−2

]+
)

+
[
n + 1

2

]
=

[
3n + 1

2

]
+ 1−

[ n

2h−2

]+
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islands, which is exactly the number we need for the maximum height h. On the
other hand this is also the construction: let us fill the first line of the 2× n board
with height 1, 2, . . . , h − 1 so that we obtain the maximum number of islands for
that 1 × n board, repeat this height setting for the second line but change all
heights h− 1 to h (in exactly [(n + 1)/2] cells, increasing the number of islands by
this number), and we get exactly the stated number islands. The following picture
shows the result for a 2× 11 grid and h = 4:

3 2 3 1 3 2 3 1 3 2 3
4 2 4 1 4 2 4 1 4 2 4

The 3×n case is a bit more difficult. Just as in the case of the 2×n board, we
can prove here that the islands of height 2 cannot be of size 2 × k: we can repeat
the line of the island neighboring the 1× k coast instead of the coast line and the
number of islands does not change. Then this means that the islands of height 2
in this case are of size either 1 × k or 3 × k. The construction for the case 2 × n
might give us an idea: let us fill the middle line in the 3 × n board with heights
1, 2, . . . , h − 1 to get the maximum number of islands in that 1 × n board, and
repeat that line in the first and third lines while changing h− 1 to h. This gives us
all together (

n + 1−
[ n

2h−2

]+
)

+ 2
[
n + 1

2

]

islands. But unfortunately, this is not optimal, we can do better for example for a
3× 4 board and h = 4:

4 3 1 3
2 2 1 2
4 3 1 3

which has 9 islands, while the above construction gives 8 islands only. Looking at
this example and the construction it is easy to see, that the construction always
cuts vertically (just as in the case of a 2 × n board), while in the example we cut
horizontally too: for example in the 3 × 2 sub-board on the left-hand side. This
is not surprising, we have just proved in the previous theorem that a 3 × 2 board
must be cut horizontally.

To find out what is happening here, let us look at the construction of the
maximum number of islands in a 1 × n board with heights 1, 2, . . . , h − 1. One
way the construction may go is to say that as long as n ≥ 2h−2 we always cut off
an island of height 2 of width 2h−2 − 1 by a cell of height 1. By repeating this
procedure, we always cut off all together an even number of cells from the board.
Then if n is even, we will always end up with a board of even width. Hence, after
at the final vertical cut, this cut will be at the side of the board (which is clearly
not optimal) or we will have a 3 × 2 sub-board, which must be cut horizontally,
and we get one more island compared to the case if we would cut vertically again.
Then the formula can be guessed and we have the following
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Theorem 7. The number of islands in a 3× n board using heights 1, 2, . . . , h
only (h ≥ 3) is

2n + 2−
[ n

2h−2

]+

Proof. There are two cases, the n < 2h−1 case is easier. Czédli’s formula gives
[(m + 1)(n + 1)/2] − 1 = 2n + 1 in this case, so the number of islands cannot be
larger than this. On the other hand, let’s cut the 3×n board into two 1×n boards
by setting height 1 in the middle line, then the heights 2, 3, . . . , h are enough to
get n islands in both 1× n boards, plus the whole board is an island too, and this
construction gives exactly 2n + 1 islands.

At first glance this construction seems to work for the n ≥ 2h−1 case too. Let’s
do the same, we cut the board into two 1× n boards and fill these board with the
heights 1, 2, . . . , h optimally. This will give us

2
(
n + 1−

[ n

2h−1

])
− 1 = 2n + 1− 2

[ n

2h−1

]

islands, which is almost the number we needed. Let n = k2h−1 + l, where 0 ≤ l <
2h−1 and we have two cases.

1. If 2h−2 ≤ l < 2h−1 then

2
[ n

2h−1

]
= 2k =

[ n

2h−2

]
− 1

and we get the desired number of islands.
2. If 0 ≤ l < 2h−2, then

2
[ n

2h−1

]
= 2k =

[ n

2h−2

]

then we change the above construction a little. Let us first cut off a sub-board of
size 3 × max{1, l} vertically, apply the above construction to the rest and we get
there

2(n− 1−max{1, l}) + 2−
[
n− 1−max{1, l}

2h−2

]
= 2(n−max{1, l}) + 1−

[ n

2h−2

]

islands. On the 3 × max{1, l} board we cut it horizontally at the middle line by
height 2, and the remaining two 1×max{1, l} boards we can fill optimally with the
heights 3, . . . , h to get max{1, l} islands each. With the 3×max{1, l} board as one
more island all together we obtain 2max{1, l}+ 1 islands there. This construction
provides us with(

2(n−max{1, l})−
[ n

2h−2

]
+ 1

)
+ (2 max{1, l}+ 1) = 2n + 2−

[ n

2h−2

]

islands for the 3× n board. The following picture demonstrates this procedure for
a 3× 18 board and h = 4, where then k = 2 and l = 2:

4 3 1 4 3 4 2 4 3 4 1 4 3 4 2 4 3 4
2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 3 1 4 3 4 2 4 3 4 1 4 3 4 2 4 3 4
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This proves the lower estimate for the maximum number of islands.
For the upper estimate we use induction by h and inside that induction another

by n. To start we note that the h = 2 case is solved for all n. Let’s suppose for
induction that all cases, where the maximum height is less than h are proved, and
also all cases where the maximum height is h and the width of the board is less
than n (the n = 1 case for all h ≥ 3 are trivial: there are 3 islands). Consider
the islands of height 2 in the 3× n-sized board, they are of size 3×(something) or
1×(something). There are two cases.

1. If there is a 3 × k-sized island of height 2, then we apply the induction
assumptions for the 3×k sub-board with heights 2, 3, . . . , h (i.e. heights 1, 2, . . . , h−
1) and for the rest of the board of size 3× (n−k−1) with heights 1, 2, . . . , h. Then
the number of islands is at most

2k+2−
[

k

2h−3

]+

+2(n−k−1)+2−
[
n− k − 1

2h−2

]+

= 2n+2−
[

k

2h−3

]+

−
[
n− k − 1

2h−2

]+

To prove that this is at most what is stated in the theorem, we have three cases:
a; If k < 2h−3 then we have

2n + 1−
[
n− k − 1

2h−2

]+

islands in the construction and we want to prove that it is at most

2n + 2−
[ n

2h−2

]+

Since n and n− k − 1 may differ by at most 2h−3, the difference between the two
numbers in the greatest integer functions is less than one, and this case is proved.

b; If k ≥ 2h−3 and n− k − 1 < 2h−2 then we need to prove that

2n + 1−
[

k

2h−3

]
≤ 2n + 2−

[ n

2h−2

]+

If n < 2h−2 then we have 2n + 1 on the right hand side, and the estimation is OK.
Otherwise we need that

[ n

2h−2

]
≤

[
k

2h−3

]
+ 1 =

[
2k + 2h−2

2h−2

]

Since n = (n− k) + k ≤ k + 2h−2, this estimate also holds.
c; The only case left is when k ≥ 2h−3, n− k − 1 ≥ 2h−2 and hence n ≥ 2h−2.

Then we need

2n + 2−
[

k

2h−3

]
−

[
n− k − 1

2h−2

]
≤ 2n + 2−

[ n

2h−2

]

Let n = c2h−2 + d (0 ≤ d < 2h−2) then

c ≤ c +
[
d− k − 1

2h−2

]
+

[
2k

2h−2

]
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In the worst case we have d = 0: it is easy to check that for 2h−3 ≤ k ≤ 2h−2 the
inequality holds. If k > 2h−2 then 2k ≥ k + 1 + 2h−2 and hence

[−k − 1
2h−2

]
≥ −

[
k + 1 + 2h−2

2h−2

]
≥ −

[
2k

2h−2

]

and the proof of this case is complete.
2. If all islands of height 2 are of size 1 × k, then clearly the 3 × n board is

cut horizontally by putting height 1 in the middle line. In this case the number of
islands can be computed using the proven formula for 1 × n-sized boards. There
are two cases to check now:

a; If n < 2h−1 then

2
(

n + 1−
[ n

2h−1

]+
)

+ 1 = 2n + 1 = 2n + 2−
[ n

2h−2

]+

and this case is fine.
b; If n ≥ 2h−1 then

2
(
n + 1−

[ n

2h−1

])
− 1 = 2n + 1− 2

[ n

2h−1

]
≤ 2n + 2−

[ n

2h−2

]

and this completes the proof of the theorem.
If we would want to go even further, then the next smallest case would be a

board of size 4 × 4 and h = 3. A little experimenting shows, that this is not an
easy case, the best height setting is

2 1 2 3
3 1 1 1
1 1 1 2
2 3 1 3

This gives 9 islands but its construction does not bear any resemblance to the
previous ones. The main difference is that the islands are not constructed by
cutting though the board. For boards of size m × n (m,n ≥ 4) one needs to
put optimally sized rectangles on the board optimally, whatever that means. To
reconstruct a rectangle from rectangles is an NP-hard problem, very hard to study
even using computer.
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44 A. Máder, G. Makay

[4] G. Czédli, A. P. Huhn and E. T. Schmidt, Weakly independent subsets in lattices, Algebra
Universalis, 20 (1985), 194–196.
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rectangular sea, Acta Sci. Math., 76 (2010), 35–48.

[8] J. M. Borwein, The Experimental Mathematician: The Pleasure of Discovery an the Role
of Proof, International Journal of Computers for Mathematical Learning, 10 (2), Springer,
2005, 75–108.
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